Sums

ITT9132 Concrete Mathematics
 Lecture 4-18 February 2019

```
Chapter Two
    Summation factors
    Manipulation of sums
    Multiple sums
    General methods
```


Contents

1 Sums and Recurrences

- Summation factors

2 Manipulation of Sums
3 Multiple sums
4 General Methods

- Looking up
- Guessing the answer
- Perturbation
- Build a repertoire
- Integrals
- Expansion
- More methods

Next section

1 Sums and Recurrences

- Summation factors

2 Manipulation of Sums
3 Mult iple sums
4 General Methods

- Looking up
- Guessing the answer
- Perturbation
- Build a repertoire
- Integrals
- Expansion
- More methods

Next subsection

1 Sums and Recurrences

- Summation factors

2 Manipulation of Sums
3 Multiple sums
4 Gencralm.iods

- Looking up
- Guessing the answer
- Perturbation
- Build a repertoire
- Integrals
- Expansion
- More methods

Linear recurrence in form $a_{n} T_{n}=b_{n} T_{n-1}+c_{n}$

Here $\left\{a_{n}\right\},\left\{b_{n}\right\}$ and $\left\{c_{n}\right\}$ are arbitrary sequences and the initial value T_{0} is a constant.

The idea:

Find a summation factor s_{n} satisfying the following property:

$$
s_{n} b_{n}=s_{n-1} a_{n-1} \text { for every } n \geqslant 1
$$

If such a factor exists, one can do following transformations:

- $s_{n} a_{n} T_{n}=s_{n} b_{n} T_{n-\mathbf{1}}+s_{n} c_{n}=s_{n-\mathbf{1}} a_{n-\mathbf{1}} T_{n-\mathbf{1}}+s_{n} c_{n}$.
- Set $S_{n}=s_{n} a_{n} T_{n}$ and rewrite the equation as:

$$
\begin{aligned}
& S_{0}=s_{0} a_{0} T_{0} \\
& S_{n}=S_{n-1}+s_{n} c_{n}
\end{aligned}
$$

- This yields a closed formula (!) for solution:

$$
T_{n}=\frac{1}{s_{n} a_{n}}\left(s_{0} a_{0} T_{0}+\sum_{k=1}^{n} s_{k} c_{k}\right)=\frac{1}{s_{n} a_{n}}\left(s_{1} b_{1} T_{0}+\sum_{k=1}^{n} s_{k} c_{k}\right)
$$

Finding a summation factor

Assuming that $b_{n} \neq 0$ for every n :

- Set $s_{0}=1$
- Compute the next elements using the property $s_{n} b_{n}=s_{n-1} a_{n-1}$:

$$
\begin{aligned}
s_{1} & =\frac{a_{0}}{b_{1}} \\
s_{2} & =\frac{s_{1} a_{1}}{b_{2}}=\frac{a_{0} a_{1}}{b_{1} b_{2}} \\
s_{3} & =\frac{s_{2} a_{2}}{b_{3}}=\frac{a_{0} a_{1} a_{2}}{b_{1} b_{2} b_{3}} \\
& \ldots \ldots \ldots \\
s_{n} & =\frac{s_{n-1} a_{n-1}}{b_{n}}=\frac{a_{0} a_{1} \ldots a_{n-1}}{b_{1} b_{2} \ldots b_{n}}
\end{aligned}
$$

(To be proved by induction!)

Example: application of summation factor

$a_{n}=c_{n}=1$ and $b_{n}=2$ gives the Hanoi Tower sequence:
Evaluate the summation factor:

$$
s_{n}=\frac{s_{n-1} a_{n-1}}{b_{n}}=\frac{a_{0} a_{1} \ldots a_{n-1}}{b_{1} b_{2} \ldots b_{n}}=\frac{1}{2^{n}}
$$

The solution is:

$$
T_{n}=\frac{1}{s_{n} a_{n}}\left(s_{1} b_{1} T_{0}+\sum_{k=1}^{n} s_{k} c_{k}\right)=2^{n} \sum_{k=1}^{n} \frac{1}{2^{k}}=2^{n}\left(1-2^{-n}\right)=2^{n}-1
$$

Yet Another Example: constant coefficients

Equation $Z_{n}=a Z_{n-1}+b$

Taking $a_{n}=1, b_{n}=a$ and $c_{n}=b$:

- Evaluate summation factor:

$$
s_{n}=\frac{s_{n-1} a_{n-1}}{b_{n}}=\frac{a_{0} a_{1} \ldots a_{n-1}}{b_{1} b_{2} \ldots b_{n}}=\frac{1}{a^{n}}
$$

- The solution is:

$$
\begin{aligned}
Z_{n} & =\frac{1}{s_{n} a_{n}}\left(s_{1} b_{1} Z_{0}+\sum_{k=1}^{n} s_{k} c_{k}\right)=a^{n}\left(Z_{0}+b \sum_{k=1}^{n} \frac{1}{a^{k}}\right) \\
& =a^{n} Z_{0}+b\left(1+a+a^{2}+\cdots+a^{n-1}\right) \\
& =a^{n} Z_{0}+\frac{a^{n}-1}{a-1} b
\end{aligned}
$$

Yet Another Example: check up on results

Equation $Z_{n}=a Z_{n-1}+b$

$$
\begin{aligned}
Z_{n} & =a Z_{n-1}+b \\
& =a^{2} Z_{n-2}+a b+b \\
& =a^{3} Z_{n-3}+a^{2} b+a b+b \\
& =a^{k} Z_{n-k}+\left(a^{k-1}+a^{k-2}+\ldots+1\right) b \\
& =a^{k} Z_{n-k}+\frac{a^{k}-1}{a-1} b \quad(\text { assuming } a \neq 1)
\end{aligned}
$$

Continuing until $k=n$:

$$
\begin{aligned}
Z_{n} & =a^{n} Z_{n-n}+\frac{a^{n}-1}{a-1} b \\
& =a^{n} Z_{0}+\frac{a^{n}-1}{a-1} b
\end{aligned}
$$

Efficiency of quick sort

Average number of comparisons: $C_{n}=n+1+\frac{2}{n} \sum_{k=0}^{n-1} C_{k}, C_{0}=0$.

Efficiency of quick sort (2)

The following transformations reduce this equation

$$
n C_{n}=n^{2}+n+2 \sum_{k=0}^{n-2} C_{k}+2 C_{n-1}
$$

Write the last equation for $n-1$:

$$
(n-1) C_{n-1}=(n-1)^{2}+(n-1)+2 \sum_{k=0}^{n-2} C_{k}
$$

and subtract to eliminate the sum:

$$
\begin{aligned}
n C_{n}-(n-1) C_{n-1} & =n^{2}+n+2 C_{n-1}-(n-1)^{2}-(n-1) \\
n C_{n}-n C_{n-1}+C_{n-1} & =n^{2}+n+2 C_{n-1}-n^{2}+2 n-1-n+1 \\
n C_{n}-n C_{n-1} & =C_{n-1}+2 n \\
n C_{n} & =(n+1) C_{n-1}+2 n
\end{aligned}
$$

Efficiency of quick sort (3)

Equation $n C_{n}=(n+1) C_{n-1}+2 n$

- Evaluate summation factor with $a_{n}=n, b_{n}=n+1$ and $c_{n}=2 n$:

$$
s_{n}=\frac{a_{1} a_{2} \cdots a_{n-1}}{b_{2} b_{3} \cdots b_{n}}=\frac{1 \cdot 2 \cdots(n-1)}{3 \cdot 4 \cdots(n+1)}=\frac{2}{n(n+1)}
$$

- Then the solution of the recurrence is:

$$
\begin{aligned}
C_{n} & =\frac{1}{s_{n} a_{n}}\left(s_{1} b_{1} C_{0}+\sum_{k=1}^{n} s_{k} c_{k}\right) \\
& =\frac{n+1}{2} \sum_{k=1}^{n} \frac{4 k}{k(k+1)} \\
& =2(n+1) \sum_{k=1}^{n} \frac{1}{k+1}=2(n+1)\left(\sum_{k=1}^{n} \frac{1}{k}+\frac{1}{n+1}-1\right) \\
& =2(n+1) H_{n}-2 n
\end{aligned}
$$

where $H_{n}=1+\frac{1}{2}+\frac{1}{3}+\ldots+\frac{1}{n} \approx \ln n$ is the nth harmonic number.

Next section

1 Sums and Recurrences
 - Summation factors

2 Manipulation of Sums
3 Multiple sums
4 General Methods

- Looking up
- Guessing the answer
- Perturbation
- Build a repertoi
- Integrals
- Expansion
- More methods

Manipulation of Sums

Some properties of sums:

For every finite set K and permutation $p(k)$ of K :
Distributive law

$$
\sum_{k \in K} c a_{k}=c \sum_{k \in K} a_{k}
$$

Associative law

$$
\sum_{k \in K}\left(a_{k}+b_{k}\right)=\sum_{k \in K} a_{k}+\sum_{k \in K} b_{k}
$$

Commutative law

$$
\sum_{k \in K} a_{k}=\sum_{p(k) \in K} a_{p(k)}
$$

Application of these laws for $S=\sum_{0 \leqslant k \leqslant n}(a+b k)$

$$
\begin{array}{rcr}
S & =\sum_{0 \leqslant n-k \leqslant n}(a+b(n-k)) & =\sum_{0 \leqslant k \leqslant n}(a+b n-b k) \\
2 S=\sum_{0 \leqslant k \leqslant n}((a+b k)+(a+b n-b k)) & =\sum_{0 \leqslant k \leqslant n}(2 a+b n) \\
2 S & =(2 a+b n) \sum_{0 \leqslant k \leqslant n} 1 & \\
=(2 a+b n)(n+1)
\end{array}
$$

Hence, $S=(n+1) a+\frac{n(n+1)}{2} b$.

Yet Another Useful Equality

$$
\sum_{k \in K} a_{k}+\sum_{k \in K^{\prime}} a_{k}=\sum_{k \in K \cup K^{\prime}} a_{k}+\sum_{k \in K \cap K^{\prime}} a_{k}
$$

Special cases:

a. For $1 \leqslant m \leqslant n$:

$$
\sum_{k=1}^{m} a_{k}+\sum_{k=m}^{n} a_{k}=a_{m}+\sum_{k=1}^{n} a_{k}
$$

b. For $n \geqslant 0$:

$$
\sum_{0 \leqslant k \leqslant n} a_{k}=a_{0}+\sum_{1 \leqslant k \leqslant n} a_{k}
$$

c. For $n \geqslant 0$:

$$
S_{n}+a_{n+1}=a_{0}+\sum_{0 \leqslant k \leqslant n} a_{k+1}
$$

Example: $S_{n}=\sum_{k=0}^{n} k x^{k}$

- For $x \neq 1$:

$$
\begin{aligned}
S_{n}+(n+1) x^{n+1} & =\sum_{0 \leqslant k \leqslant n}(k+1) x^{k+1} \\
& =\sum_{0 \leqslant k \leqslant n} k x^{k+1}+\sum_{0 \leqslant k \leqslant n} x^{k+1} \\
& =x S_{n}+\frac{x\left(1-x^{n+1}\right)}{1-x}
\end{aligned}
$$

- From this we get:

$$
\sum_{k=0}^{n} k x^{k}=\frac{x-(n+1) x^{n+1}+n x^{n+2}}{(x-1)^{2}}
$$

Next section

1 Sums and Recurrences
 - Summation factors

2 Manipulation of Sums
3 Multiple sums
4 General Methods

- Looking up
- Guessing the answer
- Perturbation
- Build a repertoire
- Integrals
- Expansion
- More methods

Multiple sums

Definition

If K_{1} and K_{2} are index sets, then:

$$
\sum_{i \in K_{\mathbf{1}}, j \in K_{\mathbf{2}}} a_{i, j}=\sum_{i}\left(\sum_{j} a_{i, j}[P(i, j)]\right)
$$

where P is the predicate $P(i, j)=\left(i \in K_{1}\right) \wedge\left(j \in K_{2}\right)$.

Law of interchange of the order of summation:

$$
\sum_{j} \sum_{k} a_{j, k}[P(j, k)]=\sum_{P(j, k)} a_{j, k}=\sum_{k} \sum_{j} a_{j, k}[P(j, k)]
$$

If $a_{j, k}=a_{j} b_{k}$, then:

$$
\sum_{j \in J, k \in K} a_{j} b_{k}=\left(\sum_{j \in J} a_{j}\right)\left(\sum_{k \in K} b_{k}\right)
$$

Multiple sums with independent indices

If $P(j, k)=Q(j) \wedge R(k)$, where Q and R are properties and \wedge indicates the logical conjunction (AND), then the indices j and k are independent and the double sum can be rewritten:

$$
\begin{aligned}
\sum_{j, k} a_{j, k} & =\sum_{j, k} a_{j, k}([Q(j) \wedge R(k)]) \\
& =\sum_{j, k} a_{j, k}[Q(j)][R(k)] \\
& =\sum_{j}[Q(j)] \sum_{k} a_{j, k} R(k)=\sum_{j} \sum_{k} a_{j, k} \\
& =\sum_{k} a_{j, k}[R(k)] \sum_{j}[Q(j)]=\sum_{k} \sum_{j} a_{j, k}
\end{aligned}
$$

Multiple sums with dependent indices

In general, the indices are not independent, but we can write:

$$
P(j, k)=Q(j) \wedge R^{\prime}(j, k)=R(k) \wedge Q^{\prime}(j, k)
$$

In this case, we can proceed as follows:

$$
\begin{aligned}
\sum_{j, k} a_{j, k} & =\sum_{j, k} a_{j, k}[Q(j)]\left[R^{\prime}(j, k)\right] \\
& =\sum_{j}[Q(j)] \sum_{k} a_{j, k}\left[R^{\prime}(j, k)\right]=\sum_{j \in J} \sum_{k \in K^{\prime}} a_{j, k} \\
& =\sum_{k}[R(k)] \sum_{j} a_{j, k}\left[Q^{\prime}(j, k)\right]=\sum_{k \in K} \sum_{j \in J^{\prime}} a_{j, k}
\end{aligned}
$$

where:

- $J=\{j \mid Q(j)\}, K^{\prime}=\left\{k \mid R^{\prime}(j, k)\right\}=K^{\prime}(j)$
- $K=\{k \mid R(k)\}, J^{\prime}=\left\{j \mid Q^{\prime}(j, k)\right\}=J^{\prime}(k)$

Warmup: what's wrong with this sum?

$$
\begin{aligned}
& =\sum_{i=1}^{\sum_{i}^{a x}} \\
& =\sum_{i=1}^{2} \\
& =n^{2}
\end{aligned}
$$

Warmup: what's wrong with this sum?

$$
\begin{aligned}
\left(\sum_{j=1}^{n} a_{j}\right) \cdot\left(\sum_{k=1}^{n} \frac{1}{a_{k}}\right) & =\sum_{j=1}^{n} \sum_{k=1}^{n} \frac{a_{j}}{a_{k}} \\
& =\sum_{k=1}^{n} \sum_{k=1}^{n} \frac{a_{k}}{a_{k}} \\
& =\sum_{k=1}^{n} \sum_{k=1}^{n} 1 \\
& =n^{2}
\end{aligned}
$$

Solution

The second passage is seriously wrong:
It is not licit to turn two independent variables into two dependent ones.

Examples of multiple summing: Mutual upper bounds

Compute: $\sum_{j=1}^{n} \sum_{k=j}^{n} a_{j} a_{k}=\sum_{1 \leq j \leq n} \sum_{j \leq k \leq n} a_{j} a_{k}$.

Examples of multiple summing: Mutual upper bounds

Compute: $\sum_{j=1}^{n} \sum_{k=j}^{n} a_{j} a_{k}=\sum_{1 \leq j \leq n} \sum_{j \leq k \leq n} a_{j} a_{k}$.

A crucial observation

$$
[1 \leq j \leq n][j \leq k \leq n]=[1 \leq j \leq k \leq n]=[1 \leq k \leq n][1 \leq j \leq k]
$$

Hence,

$$
\sum_{j=1}^{n} \sum_{k=j}^{n} a_{j} a_{k}=\sum_{k=1}^{n} \sum_{j=1}^{k} a_{j} a_{k}
$$

Also,

$$
[1 \leq j \leq k \leq n]+[1 \leq k \leq j \leq n]=[1 \leq j, k \leq n]+[1 \leq j=k \leq n]
$$

Examples of multiple summing: Mutual upper bounds

Compute: $\sum_{j=1}^{n} \sum_{k=j}^{n} a_{j} a_{k}=\sum_{1 \leq j \leq n} \sum_{j \leq k \leq n} a_{j} a_{k}$.

A crucial observation (cont.)

This can also be understood by considering the following matrix:

$$
\left(\begin{array}{ccccc}
a_{1} a_{1} & a_{1} a_{2} & a_{1} a_{3} & \ldots & a_{1} a_{n} \\
a_{2} a_{1} & a_{2} a_{2} & a_{2} a_{3} & \ldots & a_{2} a_{n} \\
a_{3} a_{1} & a_{3} a_{2} & a_{3} a_{3} & \ldots & a_{2} a_{n} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
a_{n} a_{1} & a_{n} a_{2} & a_{n} a_{3} & \ldots & a_{n} a_{n}
\end{array}\right)
$$

and observing that $\sum_{j=1}^{n} \sum_{k=j}^{n} a_{j} a_{k}=S_{U}$ is the sum of the elements of the upper triangular part of the matrix.

Examples of multiple summing: Mutual upper bounds

Compute: $\sum_{j=1}^{n} \sum_{k=j}^{n} a_{j} a_{k}=\sum_{1 \leq j \leq n} \sum_{j \leq k \leq n} a_{j} a_{k}$.

A crucial observation (end)

If we add to S_{U} the sum $S_{L}=\sum_{k=1}^{n} \sum_{j=1}^{k} a_{j} a_{k}$ of the elements of the lower triangular part of the matrix, we count each element of the matrix once, except those on the main diagonal, which we count twice.
But the matrix is symmetric, so $S_{U}=S_{L}$, and

$$
S_{U}=\frac{1}{2}\left(\left(\sum_{k=1}^{n} a_{k}\right)^{2}+\sum_{k=1}^{n} a_{k}^{2}\right)
$$

Examples of multiple summation

Example 1

$$
\begin{aligned}
S_{n} & =\sum_{1 \leqslant k \leqslant n} \sum_{1 \leqslant j<k} \frac{1}{k-j} \\
& =\sum_{1 \leqslant k \leqslant n} \sum_{1 \leqslant k-j<k} \frac{1}{j} \\
& =\sum_{1 \leqslant k \leqslant n} \sum_{0<j \leqslant k-\mathbf{1}} \frac{1}{j} \\
& =\sum_{1 \leqslant k \leqslant n} H_{k-\mathbf{1}} \\
& =\sum_{1 \leqslant k+1 \leqslant n} H_{k} \\
& =\sum_{0 \leqslant k<n} H_{k}
\end{aligned}
$$

Examples of multiple summation

Example 2

$$
\begin{aligned}
S_{n} & =\sum_{1 \leqslant j \leqslant n} \sum_{j<k \leqslant n} \frac{1}{k-j} \\
& =\sum_{1 \leqslant j \leqslant n} \sum_{j<k+j \leqslant n} \frac{1}{k} \\
& =\sum_{1 \leqslant j \leqslant n} \sum_{0<k \leqslant n-j} \frac{1}{k} \\
& =\sum_{1 \leqslant j \leqslant n} H_{n-j} \\
& =\sum_{1 \leqslant n-j \leqslant n} H_{j} \\
& =\sum_{0 \leqslant j<n} H_{j}
\end{aligned}
$$

Examples of multiple summation

Example 3

$$
\begin{aligned}
S_{n} & =\sum_{1 \leqslant j<k \leqslant n} \frac{1}{k-j} \\
& =\sum_{1 \leqslant j<k+j \leqslant n} \frac{1}{k} \\
& =\sum_{1 \leqslant k \leqslant n} \sum_{1 \leqslant j \leqslant n-k} \frac{1}{k} \\
& =\sum_{1 \leqslant k \leqslant n} \frac{n-k}{k} \\
& =\sum_{1 \leqslant k \leqslant n} \frac{n}{k}-\sum_{1 \leqslant k \leqslant n} 1 \\
& =n\left(\sum_{1 \leqslant k \leqslant n} \frac{1}{k}\right)-n \\
& =n H_{n}-n
\end{aligned}
$$

Next section

1 Sums and Recurrences
 - Summation factors

2 Manipulation of Sums
3 Viutiple sums
4 General Methods

- Looking up
- Guessing the answer
- Perturbation
- Build a repertoire
- Integrals
- Expansion
- More methods

General Methods: a Review

Example

$$
\square_{n}=\sum_{0 \leqslant k \leqslant n} k^{2} \text { for } n \geqslant 0
$$

n	0	1	2	3	4	5	6	7	8	9	10	11	12
n^{2}	0	1	4	9	16	25	36	49	64	81	100	121	144
\square_{n}	0	1	5	14	30	55	91	140	204	285	385	506	650

Next subsection

1 Sums and Recurrences

- Summation factors

2 Manipulation of Sums
3 Multiple sums
4 General Methods

- Looking up
- Guessing the answer
- Perturbation
- Build a reperto
- Integrals
- Expansion
- More methocs

Review: Method 0

Example: $\square_{n}=\sum_{0 \leqslant k \leqslant n} k^{2}$ for $n \geqslant 0$

Find solution from a reference books:

- "CRC Standard Mathematical Tables"
- "Valemeid matemaatikast"

■ "The On-Line Encyclopedia of Integer Sequences (OEIS)" (http://oeis.org/)

- etc

Possible answer:

$$
\square_{n}=\frac{n(n+1)(2 n+1)}{6} \quad \text { for } n \geqslant 0
$$

Next subsection

1 Sums and Recurrences

- Summation factors

2 Manipulation of Sums
3 Multiple sums
4 General Methods

- Looking up
- Guessing the answer
- Perturbation
- Build a repertoire
- Integrals
- Expansion
- More methods

Review: Method 1

Example: $\square_{n}=\sum_{0 \leqslant k \leqslant n} k^{2}$ for $n \geqslant 0$

Guess the answer, prove it by induction.

Let's compute

n	0	1	2	3	4	5	6	7	8	9
n^{2}	0	1	4	9	16	25	36	49	64	81
\square_{n}	0	1	5	14	30	55	91	140	204	285
\square_{n} / n^{2}	-	1	1.25	1.56	1.88	2.2	2.53	2.86	3.19	3.52
$3 \square_{n} / n^{2}$	-	3	3.75	4.67	5.63	6.6	7.58	8.57	9.56	10.56
$n(n+1)$	0	2	6	12	20	30	42	56	72	90
$3 \square_{n} / n(n+1)$	-	1.5	2.5	3.5	4.5	5.5	6.5	7.5	8.5	9.5

Review: Method 1

Example: $\square_{n}=\sum_{0 \leqslant k \leqslant n} k^{2}$ for $n \geqslant 0$

Guess the answer, prove it by induction.

Let's compute

n	0	1	2	3	4	5	6	7	8	9
n^{2}	0	1	4	9	16	25	36	49	64	81
\square_{n}	0	1	5	14	30	55	91	140	204	285
\square_{n} / n^{2}	-	1	1.25	1.56	1.88	2.2	2.53	2.86	3.19	3.52
$3 \square_{n} / n^{2}$	-	3	3.75	4.67	5.63	6.6	7.58	8.57	9.56	10.56
$n(n+1)$	0	2	6	12	20	30	42	56	72	90
$3 \square_{n} / n(n+1)$	-	1.5	2.5	3.5	4.5	5.5	6.5	7.5	8.5	9.5

Hypothesis:

$$
\frac{3 \square_{n}}{n(n+1)}=n+\frac{1}{2} \Longrightarrow \square_{n}=\frac{n(n+1 / 2)(n+1)}{3}=\frac{n(n+1)(2 n+1)}{6}
$$

Review: Method 1

Proof. $3 \square_{n}=n\left(n+\frac{1}{2}\right)(n+1)$
The formula is trivially true for $n=0$
Assume that the formula is true for $n-1$.
We know that $\square_{n}=\square_{n-1}+n^{2}$
We have

$$
\begin{aligned}
3 \square_{n} & =(n-1)\left(n-\frac{1}{2}\right) n+3 n^{2} \\
& =\left(n^{3}-\frac{3}{2} n^{2}+\frac{1}{2} n\right)+3 n^{2} \\
& =n^{3}+\frac{3}{2} n^{2}+\frac{1}{2} n \\
& =n\left(n+\frac{1}{2}\right)(n+1)
\end{aligned}
$$

Q.E.D.

Next subsection

1 Sums and Recurrences

- Summation factors

2 Manipulation of Sums
3 Vilutiple sums
4 General Methods

- Looking up
- Guessing the answer
- Perturbation
- Build a repertoire
- Integrals
- Expansion
- More methods

Review：Method 2

Example：$\square_{n}=\sum_{0 \leqslant k \leqslant n} k^{2}$ for $n \geqslant 0$

Perturb the sum．

－Define a sum： 四 $_{n}=0^{3}+1^{3}+2^{3}+\ldots+n^{3}$ ．
－Then we have：

$$
\begin{aligned}
\text { 四 }_{n}+(n+1)^{3} & =\sum_{0 \leqslant k \leqslant n}(k+1)^{3}=\sum_{0 \leqslant k \leqslant n}\left(k^{3}+3 k^{2}+3 k+1\right) \\
& =⿴ 囗 ⿰ 丿 ㇄_{n}+3 \square_{n}+3 \frac{(n+1) n}{2}+(n+1) .
\end{aligned}
$$

－Delete $⿴ 囗 ⿰ 丿 ㇄_{n}$ and extract \square_{n} ：

$$
\begin{aligned}
3 \square_{n} & =(n+1)^{3}-3 \frac{(n+1) n}{2}-(n+1) \\
& =(n+1)\left(n^{2}+2 n+1-\frac{3}{2} n-1\right)
\end{aligned}
$$

Next subsection

1 Sums and Recurrences

- Summation factors

2 Manipulation of Sums
3 Viltiple sums
4 General Methods

- Looking up
- Guessing the answer
- Perturbation
- Build a repertoire
- Integrals
- Expansion
- More methocs

Review: Method 3

Example: $\square_{n}=\sum_{0 \leqslant k \leqslant n} k^{2}$ for $n \geqslant 0$

Build a repertoire.

Recurrence: $R_{n}=R_{n-1}+\alpha+\beta n+\gamma n^{2}$ with $R_{0}=0$.
We look for a solution $R_{n}=\alpha A(n)+\beta B(n)+\gamma C(n)$ for suitable $A(n), B(n), C(n)$.

Review: Method 3

Example: $\square_{n}=\sum_{0 \leqslant k \leqslant n} k^{2}$ for $n \geqslant 0$

Build a repertoire.

Recurrence: $R_{n}=R_{n-1}+\alpha+\beta n+\gamma n^{2}$ with $R_{0}=0$.
We look for a solution $R_{n}=\alpha A(n)+\beta B(n)+\gamma C(n)$ for suitable $A(n), B(n), C(n)$.

Case 1: $R_{n}=n$

- Equation: $n=n-1+\alpha+\beta n+\gamma n^{2}$ for every $n \geqslant 1$.
- Then $\alpha=1$ and $\beta=\gamma=0$, and $A(n)=n$.

Review: Method 3

Example: $\square_{n}=\sum_{0 \leqslant k \leqslant n} k^{2}$ for $n \geqslant 0$

Build a repertoire.

Recurrence: $R_{n}=R_{n-1}+\alpha+\beta n+\gamma n^{2}$ with $R_{0}=0$.
We look for a solution $R_{n}=\alpha A(n)+\beta B(n)+\gamma C(n)$ for suitable $A(n), B(n), C(n)$.

Case 2: $R_{n}=n^{2}$

- Equation: $n^{2}=(n-1)^{2}+\alpha+\beta n+\gamma n^{2}$ for every $n \geqslant 1$;
- or: $0=(\alpha+1)+(\beta-2) n+\gamma n^{2}$.
- Then $\alpha=-1, \beta=2, \gamma=1$: we obtain the equation $-A(n)+2 B(n)=n^{2}$
- As $A(n)=n$, we find $B(n)=\frac{n(n+1)}{2}$

Review: Method 3

Example: $\square_{n}=\sum_{0 \leqslant k \leqslant n} k^{2}$ for $n \geqslant 0$

Build a repertoire.

Recurrence: $R_{n}=R_{n-1}+\alpha+\beta n+\gamma n^{2}$ with $R_{0}=0$.
We look for a solution $R_{n}=\alpha A(n)+\beta B(n)+\gamma C(n)$ for suitable $A(n), B(n), C(n)$.

Case 3: $R_{n}=n^{3}$

- Equation: $n^{3}=(n-1)^{3}+\alpha+\beta n+\gamma n^{2}$
- or: $(\alpha-1)+(\beta+3) n+(\gamma-3) n^{2}=0$.
- Then $\alpha=1, \beta=-3, \gamma=3$: we obtain the equation $A(n)-3 B(n)+3 C(n)=n^{3}$.
- As $A(n)=n$ and $B(n)=\frac{n(n+1)}{2}$, we find:

$$
6 C(n)=2 n^{3}-2 n+3\left(n^{2}+n\right)=2 n^{3}+3 n^{2}+n=n\left(2 n^{2}+3 n+1\right)=n(2 n+1)(n+1)
$$

Review: Method 3

Example: $\square_{n}=\sum_{0 \leqslant k \leqslant n} k^{2}$ for $n \geqslant 0$

Build a repertoire.

Recurrence: $R_{n}=R_{n-1}+\alpha+\beta n+\gamma n^{2}$ with $R_{0}=0$.
We look for a solution $R_{n}=\alpha A(n)+\beta B(n)+\gamma C(n)$ for suitable $A(n), B(n), C(n)$.

Summarizing:

- $R_{n}=\square_{n}$ corresponds to $\alpha=\beta=0, \gamma=1$.
- The solution of the recurrence is thus:

$$
\square_{n}=C(n)=\frac{n(n+1)(2 n+1)}{6}
$$

Next subsection

1 Sums and Recurrences

- Summation factors

2 Manipulation of Sums
3 viuitiple sums
4 General Methods

- Looking up
- Guessing the answer
- Perturbation
- Build a repertoire
- Integrals
- Expansion
- More methods

Review: Method 4

Example: $\square_{n}=\sum_{0 \leqslant k \leqslant n} k^{2}$ for $n \geqslant 0$

Replace sums by integrals.

Review: Method 4

Example: $\square_{n}=\sum_{0 \leqslant k \leqslant n} k^{2}$ for $n \geqslant 0$

Replace sums by integrals.

Evaluate (3):

$$
\begin{aligned}
E_{n} & =\sum_{k=1}^{n}\left(k^{2}-\int_{k-1}^{k} x^{2} d x\right) \\
& =\sum_{k=1}^{n}\left(k^{2}-\frac{k^{3}-(k-1)^{3}}{3}\right) \\
& =\sum_{k=1}^{n}\left(k-\frac{1}{3}\right) \\
& =\frac{(n+1) n}{2}-\frac{n}{3}=\frac{3 n^{2}+n}{6}
\end{aligned}
$$

Finally, from (2) and (1) we get :

$$
\square_{n}=\frac{n^{3}}{3}+\frac{3 n^{2}+n}{6}=\frac{n(n+1)(2 n+1)}{6}
$$

Next subsection

1 Sums and Recurrences

- Summation factors

2 Manipulation of Sums
3 Vilutiple sums
4 General Methods

- Looking up
- Guessing the answer
- Perturbation
- Build a repertoire
- Integrals
- Expansion
- More methods

Review: Method 5

Example: $\square_{n}=\sum_{0 \leqslant k \leqslant n} k^{2}$ for $n \geqslant 0$

Expand and Contract.

$$
\begin{aligned}
\square_{n} & =\sum_{1 \leqslant k \leqslant n} k^{2}=\sum_{1 \leqslant k \leqslant n}\left(\sum_{1 \leqslant j \leqslant k} 1\right) k=\sum_{1 \leqslant j \leqslant k \leqslant n} k \\
& =\sum_{1 \leqslant j \leqslant n} \sum_{j \leqslant k \leqslant n} k=\sum_{1 \leqslant j \leqslant n}\left(\sum_{1 \leqslant k \leqslant n} k-\sum_{1 \leqslant k<j} k\right) \\
& =\sum_{1 \leqslant j \leqslant n}\left(\frac{n(n+1)}{2}-\frac{(j-1) j}{2}\right) \\
& =\frac{1}{2}\left(n^{2}(n+1)-\sum_{1 \leqslant j \leq n} j^{2}+\sum_{1 \leqslant j \leqslant n} j\right) \\
& =\frac{1}{2} n^{2}(n+1)-\frac{1}{2} \square_{n}+\frac{1}{4} n(n+1)
\end{aligned}
$$

Next subsection

1 Sums and Recurrences

- Summation factors

2 Manipulation of Sums
3 Multiple sums
4 General Methods

- Looking up
- Guessing the answer
- Perturbation
- Build a repertoire
- Integrals
- Expansion
- More methods

Review: Other methods

Example: $\square_{n}=\sum_{0 \leqslant k \leqslant n} k^{2}$ for $n \geqslant 0$

- Finite calculus
- Generating functions

