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Derivative and Difference Operators

Infinite calculus: derivative

Finite calculus: difference

Euler's notation

Df(x) = Ll_%

Lagrange's notation

f'(x) =Df(x)
Leibniz's notatlon If y = f(x), then
f(x
% =800="¢ =pr(x)
Newton's notation
y="F(x)

Df(x) = ;I,TB

f(x+ h) —f(x)
h

Af(x)=f(x+1)—f(x)
In general, if h€R (or h € C), then
Forward difference

Ap[fl(x) = Fx+h) = f(x)

Backward difference
Vhlfl(x) =f(x) = f(x—h)

Central difference
on[f1(x) =
f(x+3h)—f(x—1h)

An[f1(x)
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Derivative of Power function

Example: f(x)=x3

In this case,

Ay [f](x) = f(x+h)—f(x)
=(x+h)3-x3
=x34+3x2h+3xh> + h> —x3
= h-(3x% +3xh+ h?)

Hence,

h- (3X2 —|—3xh+h2)
h

Df(x) = lim = lim 3x2 +3xh+ h? = 3x2
h—0 h—0

In general, for m > 1 integer:

D(x™) = mx™!
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(Forward) Difference of Power Function

Example: f(x) = x3

In this case,

Af(x) = Aq [f](x) = 3x* +3x+1

In general, for m > 1 integer:

A(x™)

Il
agE]
ey
x> 3
N——

x

3

=

because of Newton's binomial theorem.
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Falling and Rising Factorials

The falling factorial (power) is defined for m > 0 by:
xT=x(x—1)(x—2)---(x—m+1)
The rising factorial (power) is defined for m > 0 by:

X™ = x(x+1)(x+2)---(x+m—1)

v

X = (—1)"(—x)2 XTEN — M (5 — m)2

| — p— 17 m+1
m=n=1 xm =% if x#m
n _f Xﬁ{"
k)~ K m

T )T GADxT2) - (x+m) [EEH



Difference of falling factorial with positive exponent

A(xD)=(x+1)2—x2
=(x+1) (x---(x—=m+2))—(x:--(x—m+2))-(x—m+1)
=(x+1-(x—m+1))-(x:-(x—m+2))

=m-xm=1

Hence:
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Difference of falling factorial with negative exponent:

e

Let's check this formula for negative power:

Ax=2 = (x+1)2—x=2
_ 1 1
T (x4+2)(x+3)  (x+1)(x+2)
 (x4+1) - (x+3)
- (x+1)(x+2)(x+3)
-2
- (x+1)(x+2)(x+3)
=-2.x=3

TAL
TECH



Difference of falling factorial with negative exponent

Ax—T = (x+1)"—x=7
3 1 1
T (x+2) - (xt+m)(x+m+1)  (x+1)(x+2)--(x+m)
_ (x+1)—(x+m+1)
T (x+D)(x+2) (x+m)(x+m+1)
—-m
T (x+HD)(x+2) - (x+m)(x+m+1)

_ _mX—(m+1)

— _mx=m=1
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Indefinite Integrals and Sums

The Fundamental Theorem of Calculus

Df(x) = g(x) iff /g(x)dx =f(x)+C

Definition

The indefinite sum of the function g(x) is the class of functions f such that
Af(x) =g(x):

Af(x)=g(x) iff Y g(x)éx = f(x)+ C(x)

where C(x) is a function such that C(x+1) = C(x) for any integer value of x.

v
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Definite Integrals and Sums

If g(x) =Df(x), then:

[ stax= 10} = £y 7(2)

Similarly:

If g(x) = Af(x), then:

b b
Y g(x)8x = f(x)L = f(b)— f(a)
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Definite sums

Some observations

= Lig(x)0x =f(a)~f(a) =0
= I3 g(x)8x =f(a+1)~f(a) = g(a)
= L2 g(x)8x—L2g(x)8x = F(b+1)—f(b) = g(b)

Hence,

b b—1
Zg(X)5><:kZ,g(k): Y, g(k)

a<k<b

= Y (f(k+1)=f(k))

a<k<b
= (F(a+1) — F()) +(F(a+2) ~ Fa+ 1))+
+(f(b—1)—f(b=2))+(f(b) - f(b—1))
=f(p)—f(a)
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Integrals and Sums of Powers

If m# —1, then:

Analogous finite case:

If m# —1, then:

n pm+1l

o m+1

S m kmL
z;kA*sx:: 2: kM = ;;;ji

0<k<n
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Sums of Powers: applications

Case m=1
K f _ n(n—1)
0<k<n 2 2
Case m=2 Due to k? = k2 + k1 we get:
Z k2 — f + f
0<k<n 3 2
1

1
= 5n nfl)(n*2)+§n(n*1)

- %n(2(n—1)(n—2)+3(’7—1))

1
= gn(n—l)(Zn—4+3)

:%n(nfl)(2n71)

Taking n+1 instead of n gives:

_ (n+1)n(2n+1)

Ln 6 TAL
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Sums of Powers (case m = —1)

As a first step, we observe that:

AHy = Hxy1— Hx

:<1+1+...+1+L>7(1+1+,..+1>
2 x x+1 2 X
_ 1
T x4+1 T

We conclude:
b
a

b
inSXZ H,
a
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Sums of Discrete Exponential Functions

m We have:
De* = e~

The finite analogue should have Af(x) = f(x). This means:
f(x+1)—f(x) = f(x), thatis, f(x+1)=2f(x), only possible if f(x)=2*
m For general base ¢ > 0, the difference of c* is:
A=t — X =(c—1)c

X

- " . c

and the “anti-difference” for c #£1 is .
(c-1)

As an application, we compute the sum of the geometric progression:

b X b b a b—a
c c’—c c 1
Yy ck:ZcX(SX: = =c?-
a<kab 3 c—1la c—1 c—1
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Differential equations and difference equations

Differential equation Solution Difference equation Solution
DE() =ttt () | TGO =X || Btin() = M1 () | tim(() = 5™
fa(0)=[n=0],n>0 um(0)=[m=0], m>0

Df,(x) = nfp_1(x) fa(x) = x" Aum(x) = mum_1(x) Um(x) = x2
f(l)=1,n<0 um(0)=1/m!, m<0

DF(x)= (x>0 | F)=tnx || Au(x) = 1x>1] ()= H
f(1)y=1 u(l)=1

Df (x) = f(x) f(x)=¢e" Au(x) = u(x) u(x) =2%
F0)=1 u(0) =1

Df(x) = b-f(x) f(x) =a* Au(x)=b-u(x) u(x) =c*
f(0)=1 where b=1Ina || u(0)=1 where b=c—1

TAL
TECH



I'Hépital's rule and Stolz-Cesaro lemma

I'Hépital’s rule: Hypotheses Stolz-Cesaro lemma:
Hypotheses

H f(x) and g(x) are both
vanishing or both infinite ) and v(n) are defined
for every value n € N.

at xp.
g'(x) is always positive in v(n) is positive, strictly
some neighborhood of xg. increasing, and divergent.
I'Hépital’s rule: Thesis Stolz-Cesaro lemma: Thesis
. f'(x) : Au(n) _
m If limy sy W =L eR, B Iflimp e —Av(n) =LeR,
: f(x) - u(x)
m then lim,_,,, @ =L m then |lmn—>wm =
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Summation by Parts

Infinite analogue: integration by parts
/u(x)v'(x)dx = u(x)v(x) —/u’(x)v(x)dx J

Difference of a product

A(u(x)v(x)) = u(x+1)v(x+1) — u(x)v(x)
=u(x+1)v(x+1)—u(x)v(x+1)+ u(x)v(x+1) — u(x)v(x)
= Au(x)v(x+1)+u(x)Av(x)
= u(x)Av(x)+ Ev(x)Au(x)

where E is the shift operator Ef(x) = f(x+1). We then have the:

Rule for summation by parts

ZuAva = uv—ZEvAqu

—
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Why the shift?

If we repeat our derivation with two continuous functions f and g of one real variable
x, we find for any increment h # 0:

f(x+h)g(x+h) — f(x)g(x) = f(x+ h)g(x+h) — F(x)g(x + h) + F(x)g(x + h) — f(x)g(x)
=f(x)(g(x+h) —g(x)) +&(x+h)(f(x+h) - f(x))

The incremental ratio is thus:

fOxt hg(x+h) = F(Ig(x) _ ¢,y 80+ hz —8(9 | o

f(x+ h) —f(x)
h h

x4+ h)-

So there is a shift: but it is infinitesimal—and disappears by continuity of g.
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Summation by Parts (2)

Example: S=Y]_, k2k

m Taking u(x) = x, v(x) =2 and Ev(x)=2""1:
ZX2X6X = x2% —Z2X+16x =x2X—oxtl 4 C
This yields:
nt1

i k2k = Z x2%X6x
k=0 0

— X _ ox+1 i
= (x2* -2 )(0
= ((n+1)2" —2"2) _(0.2° —2)
=(n—1)2"t1 42
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Summation by Parts (3)

Example: S = Y725 kHj

Continuous analogue:
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Summation by Parts (3)

Example: S = Zz;é kH,

m Taking u(x) = Hy and vx = x2/2, we get Au(x) = AH, = x=1_1

x+1’
Av(x)=x=x% and Ev(x) = % Then:

n—1 n n n
Z ka:ZXHX6X= uv‘ 7ZEvAu5X
k=0 0 0 ‘9

x2 n "(X+1); a
X oy Xt
2 ™o ; 2 <90
xZ 1Z
= 2HX0 2;x5x
(R, L Rp
2 2 2 0
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Next section

Infinite Sums
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How to sum infinite number sequences?

Setting Yxen ak = limp e Yf_g ak Seems meaningful . ..

Example 1

Let
5—1+1+1+1+i+i+i+i+
- 2 4'8"16 32 64 128
Then 11 01 1 1 1
25=2+1+ 4 +otet et =245,
and

SEY
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How to sum infinite number sequences?

Setting Y ey ak = lim, o Y7 ax seems meaningful ...

Example 1

Let
5—1+1+1+1+1+1+1+ ! +
- 2 4 8 16 32 64 128
Then 1 1 1 1 1 1
25:2+1+§+Z+§+R+372+674+“.:2+S7
and

5=2

But can we manipulate such sums like we do with finite sums?
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How to sum infinite number sequences?

Example 2

Let
T=1+2+4+8+16+32+64+...

Then
2T =2+4+8+16+32+64+128...=T —1

and
T=-1
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How to sum infinite number sequences?

Example 2

Let
T=14+2+4+8+16+324+64+...
Then
2T =2+4+8+16+324+64+128...=T -1
and

T=-1

Problem:
m The sum T is infinite . ..

m and we cannot subtract an infinite quantity from another infinite quantity.
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How to sum infinite number sequences?

Example 3

Let
Y (1) =1-141-14+1-1+1-1+...
k=0

Different ways to sum
(1-1)+@1-1)+(1-1)+(1-1)+...=04+04+0+0+...=0
and

1-(1-1)-(1-1)-(1-1)—(1-1)—...




How to sum infinite number sequences?

Example 3

Let
Y (-D)fF=1-141-1+1-1+1-1+...
k=0

Different ways to sum
a-1y)+1-1)+(1-1)+(1-1)+...=04+04+0+0+...=0
and
1-(1-1)-(1-1)-(1-1)—-(1-1)-...=1-0-0-0-0-0—...=1
Problem:

m The sequence of the partial sums does not converge ...

= and we cannot manipulate something that does not exist.
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Defining Infinite Sums: Nonnegative Summands

If ay > 0 for every k > 0, then:

n
Zak:Iim Zakz sup Zak
k>0 =20 KCN,|K|<eo kK

Note that:
m The definition as a limit is (sort of) a Riemann integral.
m The definition as a least upper bound is a Lebesgue integral.

m The limit / least upper bound above can be finite or infinite, but are always
equal.
Exercise: Prove this fact.
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Defining Infinite Sums: Riemann Summation

Definition 2 (Riemann sum of a series)

A series Y ;¢ ax with real coefficients converges to a real number S, called the sum of

the series, if:
n

lim ) a,=S.

nﬁwk:o
In this case, we write: Y,>pax =S.
The values S, =Y]_ ax are called the partial sums of the series.
The series Yy~ ax converges absolutely if ¥ 4~¢ |ax| converges.

If the series Y'y~0 ak = Lx>0(bk + ick) has complex coefficients, we say that it
converges to S = T + iU if ¥y~q bx converges to T and Y ,-q cx converges to U.

A series that converges, but not absolutely
(_1)k—1
k n
. . . . n
However, it is easy to prove by induction that Y2_  |ax| = Han > > for every n> 1.

Let ay = [k >0]. Then Yy>0ak =In2.
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Infinite Sums: Associativity

Associativity

A series Yy g ax has the associative property if for every two strictly increasing
sequences
=0<ii<h<.. <ip<igy1<...
Jo=0<j1<ja<...<jk<jky1<...

ikt1—1 k11
):( 5 a,-)=z( 5 )
k>0 \ i=iy k>0 \ j=Ji

We have seen that the series Zk>0(—1)k does not have the associative property.

we have:

Theorem
A series has the associative property if and only if it is convergent.

Proof: Regrouping as in the definition means taking a subsequence of the sequence of
partial sums, which can converge to any of the latter’s limit point.

TAL
TECH



Defining Infinite Sums: Lebesgue Summation

Every real number can be written as x =xtT —x~, where:
xT =x-[x > 0] = max(x,0) and x~ = —x-[x < 0] = max(—x,0)

Note that: x* >0, x~ >0, and x* +x~ = |x]|.

Definition 3 (Lebesgue sum of a series)

Let {ax}x be an absolutely convergent sequence of real numbers. Then:

Ya=Ya —Ya
3 3 x

The series Y, ax:

m converges absolutely if ¥y af <+ and ¥y a, < +oo;

m diverges positively if ¥4 af =+ and ¥y a < +oo;

m diverges negatively if Y a;r < +ooand Yy a, = oo
If both ¥ ar = +o0 and Y, a, = +oo then “Bad Stuff happens”. TAL
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Infinite Sums: Bad Stuff

Riemann series theorem

Let Y ax be a series with real coefficients which converges, but not absolutely.
For every real number L there exists a permutation p of N such that:

il kgo ap(k) = L

Example: The harmonic series

1 1 1
If we rearrange the terms of the series 1 — - + 372 + ... as follows:
P U OO O S SRS SR S
6 T 2k—1 2(2k—1) 4k

we obtain:

1 1 1 1 TAL
3= +5——-—3 +...==1In2 rECH

1
Z+...—In2 but 17571 36 8 "2

1
1-=
2+



Infinite Sums: Commutativity

Commutativity

A series Yy ~q ax has the commutative property if for every permutation p of N,

Y 3 =Y ak
k=0 k

The Riemann series theorem says that any series which is convergent, but not
absolutely convergent, does not have the commutative property.

Theorem

A convergent series has the commutative property if and only if it is absolutely
convergent.

Proof: (Sketch) Think of Lebesgue summation.
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Infinite Sums: Commutativity

Commutativity

A series Y'y~q ax has the commutative property if for every permutation p of N,

Y 3y =Y ak
k=0 k

The Riemann series theorem says that any series which is convergent, but not
absolutely convergent, does not have the commutative property.

Theorem

A convergent series has the commutative property if and only if it is absolutely
convergent.

If we want to manipulate infinite sums like finite ones,
we must require absolute convergence.
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Multiple infinite sums

Definition: Double infinite sums

For every j,k >0 let aj, > 0.
If aj > 0 for every j and k, then:

Zaj’k = sup Zaj,k = Im aj k-
Jk KCNXN,|K|<e K %0 k<n

(Recall that Yoqj k<najk = Xjkajk[0<j<n][0< k< n])
If Zj,k ‘3j7k| < oo, then:

TAL
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Multiple infinite sums

Definition: Double infinite sums

For every j,k >0 let a;, > 0.
If ajx >0 for every j and k, then:

Yau= sup  Yaj.=lim 3j k-
jk KCNxN,|K|<e K 0<j,k<n

(Recall that Yoo k<najk = Yk ajk[0<j<n][0< k
If ¥« |aj k| < oo, then:

IN
=

Can we use Y50 Y k>0 3j,k OF Yk>0Lj>03jk instead?
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Multiple infinite sums

Definition: Double infinite sums

For every j,k >0 let a;, > 0.
If aj x >0 for every j and k, then:
Zaj,k = sup Zaj,k = Im Z aj k-
Jk KCNxN,|K|<eo K 0L k<n

(Recall that Yo k<najk = Ljkajk [0 <j<n[0< k< n])
If ¥k |aj k| < —+oo, then:

Can we use Y50 Y k>0 3j,k OF Lk=0Lj>03jk instead? In general, no:
m One writing is the limit on j of a limit on k which is a function of j;
m The other writing is the limit on k of a limit on j which is a function of k.
m There are no guarantees that the double limits be equal!
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Multiple sums: An example of noncommutativity

From Joel Fel 's notes!

Let aj, =[j=k=0]+[k=j+1]-[k=j—-1]:

| o 1 2 3 4
o[ 1 1 0 0 o0
1/-1 0o 1 0 0
2| 0 -1 0 1 0
3] 0 0 -1 0 1

Then:
m for every j >0, Yysoajk =2-[j=0];
m for every k>0, Yiz0ak=0; and

m for every n >0, Yogjk<najk = 1.

Y Y ax=2; ) ) 2x=0; and lim aji=1.

j>0k>0 k>0,j>0 0<j.k<n

Hence:

TAL
i http://www.math.ubc.ca/ feldman/m321/twosum.pdf retrieved 21.02.2019. U


http://www.math.ubc.ca/~feldman/m321/twosum.pdf

Multiple infinite sums: Swapping indices

For j,k >0 let aj be real numbers.

Tonelli If a;, >0 for every j and k, then:

ZZaj,k—ZZ%k—Z%h

Jj>0k>0 k>0,j>0

regardless of the quantities above being finite or infinite.
Fubini If ;i |aj x| < +o0, then:
Y Yak=Y Za,k—):a,k

j>0k>0 k>0,>0

Fubini's theorem is proved in the textbook.
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Multiple infinite sums: Swapping indices

For j,k >0 let aj be real numbers.

Tonelli If aj, >0 for every j and k, then:

ZZaj,k—ZZajk—Zam

Jj=0k>0 k>0,j>0

regardless of the quantities above being finite or infinite.
Fubini If ¥; i [aj k| < +eo, then:

L Yo=Y X o=

j>0k>0 k>0,>0

Fubini's theorem is proved in the textbook. Again:

If we want to manipulate infinite sums like finite ones,
we must require absolute convergence.




Cesaro summation

Given a series ) ay, consider the sequence S, =Y7_ ax of the partial sums.
m Put u(x) = Zi;; Sk and v(x) = x. Then Au(x) =S, and Av(x)=1.

. S
m Suppose Y ax converges. Put L=Y,-0ax = lim_e T"
. Yro Sk
m We then have by the Stolz-Cesaro lemma: lim, . == =L,
n

Given a (not necessarily convergent) series Y ax, the quantity:
n—1 S
. _0 2k
CZak = lim Lio >k
k n—soo n

is called the Cesaro sum of the series Y, ax.
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Cesaro summation

Given a series Y i a, consider the sequence S, =Y_ ax of the partial sums.
m Put u(x)=Y;_5 Sk and v(x) = x. Then Au(x) =S, and Av(x)=1.
5n
1T
Lhso Sk

m Suppose Y a converges. Put L=Y,-gax =lim,

m We then have by the Stolz-Cesaro lemma: limp_e =L

Given a (not necessarily convergent) series Y, ax, the quantity:

YRt Sk
R m =5

is called the Cesaro sum of the series Y, ax.
A series can have a Cesaro sum without being convergent. For example, if ay = (fl)k,

is odd 1
then Y7_% Sk = %, so CYi(—1)k = 3
n_|o 2 3 4 5 6 7 8 9
an I -1 1 -1 1 -1 1 -1 1 -1
Sn 1 o1 01 01 01 0
YitSc|o 11 2 2 3 3 4 4 5
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