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Derivative and Di�erence Operators

In�nite calculus: derivative

Euler's notation

Df (x) = lim
h→0

f (x +h)− f (x)

h

Lagrange's notation
f ′(x) = Df (x)

Leibniz's notation If y = f (x), then
dy
dx = df

dx (x) = df (x)
dx = Df (x)

Newton's notation
ẏ = f ′(x)

Finite calculus: di�erence

∆f (x) = f (x +1)− f (x)

In general, if h ∈ R (or h ∈ C), then
Forward di�erence

∆h [f ] (x) = f (x +h)− f (x)

Backward di�erence
Oh [f ] (x) = f (x)− f (x−h)

Central di�erence
δh [f ] (x) =

f (x + 1

2
h)− f (x− 1

2
h)

Df (x) = lim
h→0

∆h [f ] (x)

h



Derivative of Power function

Example: f (x) = x3

In this case,

∆h [f ] (x) = f (x +h)− f (x)

= (x +h)3−x3

= x3 +3x2h+3xh2 +h3−x3

= h · (3x2 +3xh+h2)

Hence,

Df (x) = lim
h→0

h · (3x2 +3xh+h2)

h
= lim

h→0

3x2 +3xh+h2 = 3x2

In general, for m ≥ 1 integer:

D(xm) = mxm−1



(Forward) Di�erence of Power Function

Example: f (x) = x3

In this case,
∆f (x) = ∆1 [f ] (x) = 3x2 +3x +1

In general, for m ≥ 1 integer:

∆(xm) =
m

∑
k=1

(
m

k

)
xm−k

because of Newton's binomial theorem.



Falling and Rising Factorials

De�nition

The falling factorial (power) is de�ned for m > 0 by:

xm = x(x−1)(x−2) · · ·(x−m+1)

The rising factorial (power) is de�ned for m > 0 by:

xm = x(x +1)(x +2) · · ·(x +m−1)

Properties

xm = (−1)m(−x)m

n! = nn = 1n(
n

k

)
=

nk

k!

xm+n = xm(x−m)n

xm =
xm+1

x−m
if x 6= m

x−m =
1

(x +1)m
=

1

(x +1)(x +2) · · ·(x +m)



Di�erence of falling factorial with positive exponent

∆(xm) = (x +1)m−xm

= (x +1) · (x · · ·(x−m+2))− (x · · ·(x−m+2)) · (x−m+1)

= (x +1− (x−m+1)) · (x · · ·(x−m+2))

= m ·xm−1

Hence:
∆(xm) = mxm−1 ∀m > 1



Di�erence of falling factorial with negative exponent:
Example

Let's check this formula for negative power:

∆x−2 = (x +1)−2−x−2

=
1

(x +2)(x +3)
− 1

(x +1)(x +2)

=
(x +1)− (x +3)

(x +1)(x +2)(x +3)

=
−2

(x +1)(x +2)(x +3)

=−2 ·x−3



Di�erence of falling factorial with negative exponent

∆x−m = (x +1)−m−x−m

=
1

(x +2) · · ·(x +m)(x +m+1)
− 1

(x +1)(x +2) · · ·(x +m)

=
(x +1)− (x +m+1)

(x +1)(x +2) · · ·(x +m)(x +m+1)

=
−m

(x +1)(x +2) · · ·(x +m)(x +m+1)

=−mx−(m+1)

=−mx−m−1
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Inde�nite Integrals and Sums

The Fundamental Theorem of Calculus

Df (x) = g(x) iff
∫

g(x)dx = f (x) + C

De�nition

The inde�nite sum of the function g(x) is the class of functions f such that
∆f (x) = g(x):

∆f (x) = g(x) iff ∑g(x)δx = f (x) +C(x)

where C(x) is a function such that C(x +1) = C(x) for any integer value of x .



De�nite Integrals and Sums

If g(x) = Df (x), then:

∫ b

a
g(x)dx = f (x)

∣∣∣b
a

= f (b)− f (a)

Similarly:

If g(x) = ∆f (x), then:

b

∑
a

g(x)δx = f (x)
∣∣∣b
a

= f (b)− f (a)



De�nite sums

Some observations

∑
a
a g(x)δx = f (a)− f (a) = 0

∑
a+1
a g(x)δx = f (a+1)− f (a) = g(a)

∑
b+1
a g(x)δx−∑

b
a g(x)δx = f (b+1)− f (b) = g(b)

Hence,

b

∑
a

g(x)δx =
b−1

∑
k=a

g(k) = ∑
a6k<b

g(k)

= ∑
a6k<b

(f (k +1)− f (k))

= (f (a+1)− f (a)) + (f (a+2)− f (a+1)) + · · ·
+ (f (b−1)− f (b−2)) + (f (b)− f (b−1))

= f (b)− f (a)



Integrals and Sums of Powers

If m 6=−1, then:

∫ n

0

xmdx =
xm+1

m+1

∣∣∣n
0

=
nm+1

m+1

Analogous �nite case:

If m 6=−1, then:

n

∑
0

km
δx = ∑

06k<n

km =
km+1

m+1

∣∣∣n
0

=
nm+1

m+1



Sums of Powers: applications

Case m = 1

∑
06k<n

k =
n2

2
=

n(n−1)

2

Case m = 2 Due to k2 = k2 +k1 we get:

∑
06k<n

k2 =
n3

3
+

n2

2

=
1

3
n(n−1)(n−2) +

1

2
n(n−1)

=
1

6
n (2(n−1)(n−2) +3(n−1))

=
1

6
n(n−1)(2n−4+3)

=
1

6
n(n−1)(2n−1)

Taking n+1 instead of n gives:

�n =
(n+1)n(2n+1)

6



Sums of Powers (case m =−1)

As a �rst step, we observe that:

∆Hx = Hx+1−Hx

=

(
1+

1

2
+ . . .+

1

x
+

1

x +1

)
−
(
1+

1

2
+ . . .+

1

x

)
=

1

x +1
= x−1

We conclude:
b

∑
a

x−1 δx = Hx

∣∣∣b
a



Sums of Discrete Exponential Functions

We have:
Dex = ex

The �nite analogue should have ∆f (x) = f (x). This means:

f (x +1)− f (x) = f (x) , that is, f (x +1) = 2f (x) , only possible if f (x) = 2x

For general base c > 0, the di�erence of cx is:

∆(cx ) = cx+1−cx = (c−1)cx

and the �anti-di�erence� for c 6= 1 is
cx

(c−1)
.

As an application, we compute the sum of the geometric progression:

∑
a6k<b

ck =
b

∑
a

cxδx =
cx

c−1

∣∣∣b
a

=
cb−ca

c−1
= ca · c

b−a−1
c−1

.



Di�erential equations and di�erence equations

Differential equation Solution Difference equation Solution
Dfn(x) = nfn−1(x) fn(x) = xn ∆um(x) = mum−1(x) um(x) = xm

fn(0) = [n = 0] , n > 0 um(0) = [m = 0] , m > 0
Dfn(x) = nfn−1(x) fn(x) = xn ∆um(x) = mum−1(x) um(x) = xm

fn(1) = 1 , n < 0 um(0) = 1/m! , m < 0

Df (x) =
1

x
· [x > 0] f (x) = lnx ∆u(x) =

1

x
· [x > 1] u(x) = Hx

f (1) = 1 u(1) = 1
Df (x) = f (x) f (x) = ex ∆u(x) = u(x) u(x) = 2x

f (0) = 1 u(0) = 1
Df (x) = b · f (x) f (x) = ax ∆u(x) = b ·u(x) u(x) = cx

f (0) = 1 where b = lna u(0) = 1 where b = c−1



l'Hôpital's rule and Stolz-Cesàro lemma

l'Hôpital's rule: Hypotheses

1 f (x) and g(x) are both

vanishing or both in�nite

at x0.

2 g ′(x) is always positive in

some neighborhood of x0.

Stolz-Cesàro lemma:

Hypotheses

1 u(n) and v(n) are de�ned

for every value n ∈ N.
2 v(n) is positive, strictly

increasing, and divergent.

l'Hôpital's rule: Thesis

If limx→x0

f ′(x)

g ′(x)
= L ∈ R,

then limx→x0

f (x)

g(x)
= L.

Stolz-Cesàro lemma: Thesis

If limn→∞

∆u(n)

∆v(n)
= L ∈ R,

then limn→∞

u(x)

v(x)
= L.
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Summation by Parts

In�nite analogue: integration by parts∫
u(x)v ′(x)dx = u(x)v(x)−

∫
u′(x)v(x)dx

Di�erence of a product

∆(u(x)v(x)) = u(x +1)v(x +1)−u(x)v(x)

= u(x +1)v(x +1)−u(x)v(x +1) +u(x)v(x +1)−u(x)v(x)

= ∆u(x)v(x +1) +u(x)∆v(x)

= u(x)∆v(x) +Ev(x)∆u(x)

where E is the shift operator Ef (x) = f (x +1). We then have the:

Rule for summation by parts

∑u∆v δx = uv −∑Ev∆u δx



Why the shift?

If we repeat our derivation with two continuous functions f and g of one real variable
x , we �nd for any increment h 6= 0:

f (x +h)g(x +h)− f (x)g(x) = f (x +h)g(x +h)− f (x)g(x +h) + f (x)g(x +h)− f (x)g(x)

= f (x)(g(x +h)−g(x)) +g(x +h)(f (x +h)− f (x))

The incremental ratio is thus:

f (x +h)g(x +h)− f (x)g(x)

h
= f (x) · g(x +h)−g(x)

h
+g(x +h) · f (x +h)− f (x)

h

So there is a shift: but it is in�nitesimal�and disappears by continuity of g .



Summation by Parts (2)

Example: S = ∑
n
k=0

k2k

Taking u(x) = x , v(x) = 2x and Ev(x) = 2x+1:

∑x2xδx = x2x −∑2x+1
δx = x2x −2x+1 +C

This yields:

n

∑
k=0

k2k =
n+1

∑
0

x2xδx

= (x2x −2x+1)
∣∣∣n+1

0

=
(
(n+1)2n+1−2n+2

)
− (0 ·20−2)

= (n−1)2n+1 +2



Summation by Parts (3)

Example: S = ∑
n−1
k=0

kHk

Continuous analogue:

∫
x lnx dx =

x2

2
lnx−

∫
x2

2
· 1
x

dx

=
x2

2
lnx− 1

2

∫
x dx

=
x2

2
lnx− 1

2
· x

2

2

=
x2

2

(
lnx− 1

2

)



Summation by Parts (3)

Example: S = ∑
n−1
k=0

kHk

Taking u(x) = Hx and vx = x2/2, we get ∆u(x) = ∆Hx = x−1 1

x+1
,

∆v(x) = x = x1, and Ev(x) = (x+1)2

2
. Then:

n−1

∑
k=0

kHk =
n

∑
0

xHx δx = uv
∣∣∣n
0

−
n

∑
0

Ev∆u δx

=
x2

2
Hx

∣∣∣n
0

−
n

∑
0

(x +1)2

2
·x−1 δx

=
x2

2
Hx

∣∣∣n
0

− 1

2

n

∑
0

x δx

=

(
x2

2
Hx −

1

2
· x

2

2

)∣∣∣n
0

=
n2

2

(
Hn−

1

2

)
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How to sum in�nite number sequences?

Setting ∑k∈N ak = limn→∞ ∑
n
k=0

ak seems meaningful . . .

Example 1

Let

S = 1+
1

2
+

1

4
+

1

8
+

1

16
+

1

32
+

1

64
+

1

128
+ · · · .

Then

2S = 2+1+
1

2
+

1

4
+

1

8
+

1

16
+

1

32
+

1

64
+ · · ·= 2+S ,

and
S = 2



How to sum in�nite number sequences?

Setting ∑k∈N ak = limn→∞ ∑
n
k=0

ak seems meaningful . . .

Example 1

Let

S = 1+
1

2
+

1

4
+

1

8
+

1

16
+

1

32
+

1

64
+

1

128
+ · · · .

Then

2S = 2+1+
1

2
+

1

4
+

1

8
+

1

16
+

1

32
+

1

64
+ · · ·= 2+S ,

and
S = 2

But can we manipulate such sums like we do with �nite sums?



How to sum in�nite number sequences?

Example 2

Let
T = 1+2+4+8+16+32+64+ . . .

Then
2T = 2+4+8+16+32+64+128 . . . = T −1

and
T =−1



How to sum in�nite number sequences?

Example 2

Let
T = 1+2+4+8+16+32+64+ . . .

Then
2T = 2+4+8+16+32+64+128 . . . = T −1

and
T =−1

Problem:

The sum T is in�nite . . .

and we cannot subtract an in�nite quantity from another in�nite quantity.



How to sum in�nite number sequences?

Example 3

Let

∑
k>0

(−1)k = 1−1+1−1+1−1+1−1+ . . .

Di�erent ways to sum

(1−1) + (1−1) + (1−1) + (1−1) + . . . = 0+0+0+0+ . . . = 0

and

1−(1−1)−(1−1)−(1−1)−(1−1)− . . .= 1−0−0−0−0−0− . . .= 1



How to sum in�nite number sequences?

Example 3

Let

∑
k>0

(−1)k = 1−1+1−1+1−1+1−1+ . . .

Di�erent ways to sum

(1−1) + (1−1) + (1−1) + (1−1) + . . . = 0+0+0+0+ . . . = 0

and

1−(1−1)−(1−1)−(1−1)−(1−1)− . . .= 1−0−0−0−0−0− . . .= 1

Problem:

The sequence of the partial sums does not converge . . .

and we cannot manipulate something that does not exist.



De�ning In�nite Sums: Nonnegative Summands

De�nition 1

If ak > 0 for every k > 0, then:

∑
k>0

ak = lim
n→∞

n

∑
k=0

ak = sup
K⊆N,|K |<∞

∑
k∈K

ak

Note that:

The de�nition as a limit is (sort of) a Riemann integral.

The de�nition as a least upper bound is a Lebesgue integral.

The limit / least upper bound above can be �nite or in�nite, but are always
equal.
Exercise: Prove this fact.



De�ning In�nite Sums: Riemann Summation

De�nition 2 (Riemann sum of a series)

A series ∑k>0 ak with real coe�cients converges to a real number S , called the sum of
the series, if:

lim
n→∞

n

∑
k=0

ak = S .

In this case, we write: ∑k>0 ak = S .
The values Sn = ∑

n
k=0

ak are called the partial sums of the series.
The series ∑k>0 ak converges absolutely if ∑k>0 |ak | converges.

If the series ∑k>0 ak = ∑k>0(bk + ick ) has complex coe�cients, we say that it
converges to S = T + iU if ∑k>0 bk converges to T and ∑k>0 ck converges to U.

A series that converges, but not absolutely

Let ak =
(−1)k−1

k
[k > 0]. Then ∑k>0 ak = ln2.

However, it is easy to prove by induction that ∑
2
n

k=0
|ak |= H2n >

n

2
for every n > 1.



In�nite Sums: Associativity

Associativity

A series ∑k>0 ak has the associative property if for every two strictly increasing

sequences
i0 = 0< i1 < i2 < .. . < ik < ik+1 < .. .
j0 = 0< j1 < j2 < .. . < jk < jk+1 < .. .

we have:

∑
k>0

(
ik+1−1

∑
i=ik

ai

)
= ∑

k>0

(
jk+1−1

∑
j=jk

ai

)

We have seen that the series ∑k>0(−1)k does not have the associative property.

Theorem

A series has the associative property if and only if it is convergent.

Proof: Regrouping as in the de�nition means taking a subsequence of the sequence of
partial sums, which can converge to any of the latter's limit point.



De�ning In�nite Sums: Lebesgue Summation

Every real number can be written as x = x+−x−, where:

x+ = x · [x > 0] = max(x ,0) and x− =−x · [x < 0] = max(−x ,0)

Note that: x+ > 0, x− > 0, and x+ +x− = |x |.

De�nition 3 (Lebesgue sum of a series)

Let {ak}k be an absolutely convergent sequence of real numbers. Then:

∑
k

ak = ∑
k

a+
k −∑

k

a−k

The series ∑k ak :

converges absolutely if ∑k a
+
k < +∞ and ∑k a

−
k < +∞;

diverges positively if ∑k a
+
k = +∞ and ∑k a

−
k < +∞;

diverges negatively if ∑k a
+
k < +∞ and ∑k a

−
k = +∞.

If both ∑k a
+
k = +∞ and ∑k a

−
k = +∞ then �Bad Stu� happens�.



In�nite Sums: Bad Stu�

Riemann series theorem

Let ∑k ak be a series with real coe�cients which converges, but not absolutely.
For every real number L there exists a permutation p of N such that:

lim
n→∞

n

∑
k=0

ap(k) = L

Example: The harmonic series

If we rearrange the terms of the series 1− 1

2
+

1

3
− 1

4
+ . . . as follows:

1− 1

2
− 1

4
+

1

3
− 1

6
− 1

8
+ . . . = . . .+

1

2k−1
− 1

2(2k−1)
− 1

4k
+ . . .

= . . .+
1

2

(
1

2k−1
− 1

2k

)
+ . . .

we obtain:

1− 1

2
+

1

3
− 1

4
+ . . . = ln2 but 1− 1

2
− 1

4
+

1

3
− 1

6
− 1

8
+ . . . =

1

2
ln2



In�nite Sums: Commutativity

Commutativity

A series ∑k>0 ak has the commutative property if for every permutation p of N,

∑
k>0

ap(k) = ∑
k

ak

The Riemann series theorem says that any series which is convergent, but not
absolutely convergent, does not have the commutative property.

Theorem

A convergent series has the commutative property if and only if it is absolutely
convergent.

Proof: (Sketch) Think of Lebesgue summation.



In�nite Sums: Commutativity

Commutativity

A series ∑k>0 ak has the commutative property if for every permutation p of N,

∑
k>0

ap(k) = ∑
k

ak

The Riemann series theorem says that any series which is convergent, but not
absolutely convergent, does not have the commutative property.

Theorem

A convergent series has the commutative property if and only if it is absolutely
convergent.

If we want to manipulate in�nite sums like �nite ones,
we must require absolute convergence.



Multiple in�nite sums

De�nition: Double in�nite sums

For every j ,k > 0 let aj ,k > 0.

1 If aj ,k > 0 for every j and k, then:

∑
j ,k

aj ,k = sup
K⊆N×N,|K |<∞

∑
K

aj ,k = lim
n→∞

∑
06j ,k6n

aj ,k .

(Recall that ∑06j ,k6n aj ,k = ∑j ,k aj ,k [06 j 6 n] [06 k 6 n].)

2 If ∑j ,k |aj ,k |< +∞, then:

∑
j ,k

aj ,k = ∑
j ,k

a+
j ,k −∑

j ,k

a−j ,k .



Multiple in�nite sums

De�nition: Double in�nite sums

For every j ,k > 0 let aj ,k > 0.

1 If aj ,k > 0 for every j and k, then:

∑
j ,k

aj ,k = sup
K⊆N×N,|K |<∞

∑
K

aj ,k = lim
n→∞

∑
06j ,k6n

aj ,k .

(Recall that ∑06j ,k6n aj ,k = ∑j ,k aj ,k [06 j 6 n] [06 k 6 n].)

2 If ∑j ,k |aj ,k |< +∞, then:

∑
j ,k

aj ,k = ∑
j ,k

a+
j ,k −∑

j ,k

a−j ,k .

Can we use ∑j>0 ∑k>0 aj ,k or ∑k>0 ∑j>0 aj ,k instead?



Multiple in�nite sums

De�nition: Double in�nite sums

For every j ,k > 0 let aj ,k > 0.

1 If aj ,k > 0 for every j and k, then:

∑
j ,k

aj ,k = sup
K⊆N×N,|K |<∞

∑
K

aj ,k = lim
n→∞

∑
06j ,k6n

aj ,k .

(Recall that ∑06j ,k6n aj ,k = ∑j ,k aj ,k [06 j 6 n] [06 k 6 n].)

2 If ∑j ,k |aj ,k |< +∞, then:

∑
j ,k

aj ,k = ∑
j ,k

a+
j ,k −∑

j ,k

a−j ,k .

Can we use ∑j>0 ∑k>0 aj ,k or ∑k>0 ∑j>0 aj ,k instead? In general, no:

One writing is the limit on j of a limit on k which is a function of j ;

The other writing is the limit on k of a limit on j which is a function of k.

There are no guarantees that the double limits be equal!



Multiple sums: An example of noncommutativity

From Joel Feldman's notes1

Let aj ,k = [j = k = 0] + [k = j +1]− [k = j−1]:

0 1 2 3 4 . . .
0 1 1 0 0 0 . . .
1 −1 0 1 0 0 . . .
2 0 −1 0 1 0 . . .
3 0 0 −1 0 1 . . .
...

...
...

...
...

...

Then:

for every j ≥ 0, ∑k>0 aj ,k = 2 · [j = 0];

for every k ≥ 0, ∑j>0 aj ,k = 0; and

for every n ≥ 0, ∑06j ,k6n aj ,k = 1.

Hence:

∑
j>0

∑
k>0

aj ,k = 2 ; ∑
k>0

∑
j>0

aj ,k = 0 ; and lim
n→∞

∑
06j ,k6n

aj ,k = 1 .

1 http://www.math.ubc.ca/�feldman/m321/twosum.pdf retrieved 21.02.2019.

http://www.math.ubc.ca/~feldman/m321/twosum.pdf


Multiple in�nite sums: Swapping indices

Theorem

For j ,k > 0 let aj ,k be real numbers.

Tonelli If aj ,k > 0 for every j and k, then:

∑
j>0

∑
k>0

aj ,k = ∑
k>0

∑
j>0

aj ,k = ∑
j ,k

aj ,k ,

regardless of the quantities above being �nite or in�nite.

Fubini If ∑j ,k |aj ,k |< +∞, then:

∑
j>0

∑
k>0

aj ,k = ∑
k>0

∑
j>0

aj ,k = ∑
j ,k

aj ,k .

Fubini's theorem is proved in the textbook.
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Theorem

For j ,k > 0 let aj ,k be real numbers.

Tonelli If aj ,k > 0 for every j and k, then:

∑
j>0

∑
k>0

aj ,k = ∑
k>0

∑
j>0

aj ,k = ∑
j ,k

aj ,k ,

regardless of the quantities above being �nite or in�nite.

Fubini If ∑j ,k |aj ,k |< +∞, then:

∑
j>0

∑
k>0

aj ,k = ∑
k>0

∑
j>0

aj ,k = ∑
j ,k

aj ,k .

Fubini's theorem is proved in the textbook. Again:

If we want to manipulate in�nite sums like �nite ones,
we must require absolute convergence.



Cesàro summation

Given a series ∑k ak , consider the sequence Sn = ∑
n
k=0

ak of the partial sums.

Put u(x) = ∑
x−1
k=0

Sk and v(x) = x . Then ∆u(x) = Sx and ∆v(x) = 1.

Suppose ∑k ak converges. Put L = ∑k>0 ak = limn→∞

Sn
1
.

We then have by the Stolz-Cesàro lemma: limn→∞

∑
n−1
k=0

Sk
n

= L.

Given a (not necessarily convergent) series ∑k ak , the quantity:

C∑
k

ak = lim
n→∞

∑
n−1
k=0

Sk
n

is called the Cesàro sum of the series ∑k ak .
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Given a series ∑k ak , consider the sequence Sn = ∑
n
k=0

ak of the partial sums.

Put u(x) = ∑
x−1
k=0

Sk and v(x) = x . Then ∆u(x) = Sx and ∆v(x) = 1.

Suppose ∑k ak converges. Put L = ∑k>0 ak = limn→∞

Sn
1
.

We then have by the Stolz-Cesàro lemma: limn→∞

∑
n−1
k=0

Sk
n

= L.

Given a (not necessarily convergent) series ∑k ak , the quantity:

C∑
k

ak = lim
n→∞

∑
n−1
k=0

Sk
n

is called the Cesàro sum of the series ∑k ak .
A series can have a Cesàro sum without being convergent. For example, if ak = (−1)k ,

then ∑
n−1
k=0

Sk =
n+ [n is odd]

2
, so C∑k (−1)k =

1

2
.

n 0 1 2 3 4 5 6 7 8 9
an 1 −1 1 −1 1 −1 1 −1 1 −1
Sn 1 0 1 0 1 0 1 0 1 0

∑
n−1
k=0

Sk 0 1 1 2 2 3 3 4 4 5
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