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Floors and Ceilings

Definition

m The floor | x| is the greatest integer not larger than x;

m The ceiling [x] is the smallest integer not smaller than x.

Sx)

5t H
4 + H
3 4 d




Properties of |x| and [x]

For every x e R:

e
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Warmup: Representing numbers

Let n=2"+/¢. What are closed formulas for m and ¢?
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Warmup: Representing numbers

Let n=2"+ /. What are closed formulas for m and ¢?

First, 2™ < n < 2m+1,
m As g, the logarithm in base 2, is an increasing function, m<lgn< m+1.

m Then:
m=|lgn| .

Next, £ =n—2". Then:
¢=n—2lenl
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Warmup: the generalized Dirichlet box principle

Statement of the principle

Let m and n be positive integers. If n items are stored into m boxes, then:
m at |east one box will contain at least [n/m]| objects, and

m at least one box will contain at most |n/m| objects.
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Warmup: the generalized Dirichlet box principle

Statement of the principle

Let m and n be positive integers. If n items are stored into m boxes, then:
m at least one box will contain at least [n/m]| objects, and
m at least one box will contain at most |n/m| objects.

Proof

By contradiction, assume each of the m boxes contains fewer than [n/m] objects.
Then

n<m- ([%-‘ —1) or equivalently , % +1< (%-‘ :

which is impossible.
Similarly, if each of the m boxes contained more than |n/m| objects, we would have

n>=m- QEJ +1) or equivalently , n —-1=> LEJ :
m m m

which is also impossible.
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Properties of |x| and [x] (cont.)

Y

For every x e R and ne Z:

[x]=niff n<x<n+1
[x]=niffx—1<n<x
[x]=niffn—1<x<n

[x]=niff x<n<x+1

|x—+n| = |x|+n but, in general, |nx]| # n|x].
[
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@ n < x iff n < [x]
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Generalization of property #9

C{ 4l) o< {d+ )<,
LX*”‘{ DIt D]+1 if1<ix+0)<2.

where {x} = x— |x] is the fractional part of x.
Proof. Let x=|x|+{x} and y = |y]+{y}. Then:

x+yl = LIx]+ L] +{x}+{y}]
= x|+ L)+ [{x} + {y}]

and clearly

0 if0<{x}+ L,
L{x}+{y}J={ 1 if1<}xi+g{z2'

Q.E.D.
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Warmup: When is | nx| =n|x]?

The problem

Give a necessary and sufficient condition on n and x so that

Lnx) = n|x]

where n is a positive integer.
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Warmup: When is | nx| =n|x]?

The problem

Give a necessary and sufficient condition on n and x so that
[nx] =n|x]

where n is a positive integer.

The solution
Write x = [x] 4+ {x}. Then

Lnx| = [n x| +n{x}| = n|x]+ [n{x}]
As {x} is nonnegative, so is |n{x}|. Then

lnx] = n|x]| if and only if {x} <1/n
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Next section

Floor/Ceiling Applications
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Floor/Ceiling Applications

The binary representation of a natural number n >0 has m = |logy n| +1 bits.

Proof.
n=am 12" +am 22" 2+ . 4212+ a9 where a,_1 =1

m bits

Thus, 21 < n< 2™, which gives m—1 < logy n < m. The last
formula is valid if and only if |log, n| = m—1. Q.E.D.
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Floor/Ceiling Applications

The binary representation of a natural number n >0 has m = |logy n| +1 bits.

Proof.
n=am 12" +am 22" 2+ . 4212+ a9 where a,_1 =1

m bits

Thus, 21 < n< 2™, which gives m—1 < logy n < m. The last
formula is valid if and only if |log, n| = m—1. Q.E.D.

Example: n=35=100011,

m=|log,35|+1=5+1=6
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Floor/Ceiling Applications (2)

Let f: ACR — R be a continuous, strictly increasing function with the property that,
if f(x) € Z, then x € Z. Then:

LFO)) = LF(x])) and [F(x)] = [F([x])]

whenever f(x), f(|x]). and f([x]) are all defined.

Proof. (for the ceiling function)

m If x € Z, then x = [x], and there is nothing to prove.

m If x¢Z, then x < [x], so f(x) < f([x]) < [f([x])] as f is strictly increasing.
Also, f(x) < [f(x)] < [f([x])] since the ceiling function is non-decreasing.

m If [f(x)] < [f([x])], by the intermediate value theorem there exists y such that
x<y<[x]and f(y)=[f(x)].
m Such y is an integer, because of f's special property, so actually x <y < [x].

m But there are no integers strictly between x and [x]. This contradiction implies
that we must have [f(x)] = [f([x])].
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Floor/Ceiling Applications (2a)

Example

In contrast:

For example, [ [1/4J“ =0 but [ 1/4

il
Il
i
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Floor/Ceiling Applications (3) : Intervals

For Real numbers o # 3

Range | Nr. of integer values of t | Restrictions
a<t<B| [B]-[a]+l a<p
ast<p [B] - [a] a<p
a<t<P 1B — ] a<p
oa<t<pf [B]— || —1 oa<p
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Floor/Ceiling Applications (3) : Intervals

For Real numbers o # 3

Range | Nr. of integer values of t | Restrictions
a<t<B| [Bl-[a]+] a<p
ast<p [B] - [a] a<p
a<t<p 1B] - o] a<p
oa<t<pf [B]—|o]—1 oa<p

This is because, if t € Z, then:
o<t ifandonlyif [o] <t
o<t ifandonlyif |a]<t ifandonlyif o] +1<t
t<B ifandonlyif t<[B]
t<p ifandonlyif t<[B] ifandonlyift<[f]—1

and the slice [m: n] = [m..n)NZ, m < n, has n—m+1 elements.

TAL
(Note that, if & =8 are both integers, then [f]—|a|—-1=-1.) TECH



A Game-Theoretical Application

The Concrete Mathematics Club Roulette

The Concrete Mathematics Casino! has a special roulette game:
m The roulette itself has 1000 slots, numbered from 1 to 1000.
m A number n is a winner if and only if Hﬁj is a factor of n.
m There is a bet of 1 dollar to play one round.

m If the number is a winner, players earn 5 dollars.
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A Game-Theoretical Application

The Concrete Mathematics Club Roulette

The Concrete Mathematics Casino! has a special roulette game:
m The roulette itself has 1000 slots, numbered from 1 to 1000.
m A number n is a winner if and only if \_%/Ej is a factor of n.
m There is a bet of 1 dollar to play one round.

m If the number is a winner, players earn 5 dollars.
Is it convenient to play?
If there are W winning numbers and L losing numbers, then the average win is:

5W—L 5W-—(1000—W) 6
1000 1000 "~ 1000

1
dollars, so:

= 167.

The game is convenient if and only if W > F%ﬂ—‘
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Winning or Losing at the Concrete Maths Roulette

We have:

1000
w= Y [[¥n]|n]
n=1
=Y [k=|¥n]] [k | n][1 < n<1000]
k,n
= Y [K®<n<(k+1)3][n=km][l < n<1000]
k,m,n
=1+ Y [k <km < (k+1)*][1 < k< 10]
k,m
because for n = 1000 it is only k =10, m = 100
=1+ Y [KP<m<(k+1)*/k][1< k< 10]
k,m
=1+ Y ([K®+3k+3+1/k|—[K*])
1<k<10
=1+ Y (3k+3+[1/k]) butfor k >1itis [1/k] =1

1<k<10

-1
=1+3-¥+9-4=1+135+36:172>167
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Floor/Ceiling Applications (3) : Spectra

The spectrum of a real number ¢ is an infinite multiset of integers

Spec(a) ={|a],|2a],|3cx],...} ={|nc] | n>1}

An integer m = |na| € Spec(a) can appear for more than one value of n.
For example, Spec(1/2) ={0,1,1,2,2,3,3,4,4,...}.

Example.

Spec(v2) = {1,2,4,5,7,8,9,11,12,14,15,16,18,19,21,22,24,...}
Spec(2 +v/2) = {3,6,10,13,17,20,23,27,30,34,37,40,44,47,51,...}

Note that [n(2++v/2)| = [nv2]|+2n. fAL
TECH



Floor/Ceiling Applications (3) : Spectra

The spectrum of a real number ¢ is an infinite multiset of integers

Spec(a) = {la],[2a],[3a],...} = {[na| [ n>1}

An integer m = |na| € Spec(a) can appear for more than one value of n.
For example, Spec(1/2) ={0,1,1,2,2,3,3,4,4,...}.

Theorem
If &, >1 and o < 8 then Spec(cr) # Spec(f3).

Proof. As a,B >1, Spec(c) and Spec(f) have no repetitions.
m Let m€Z be so large that m( —a) > 1.
m For such m, mp —ma > 1, hence |[mB| > |ma].
m Thus Spec(f) has fewer than m elements which are < |ma],
while Spec(a) has at least m such elements. Q.E.D.
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Spectra and partitions of integers

Spec(v/2) and Spec(2++/2) form a partition of the integers.
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Spectra and partitions of integers

Spec(v/2) and Spec(2++/2) form a partition of the integers.

Spec(a) has N(a,n)=[(n+1)/a] —1 elements not larger than n.

Indeed:

N(a,n) =Y [lko] < n] (recall that Spec(a) is a multiset)
k>0

=Y [lka] <n+1]

k>0

=Y [ka<n+1]
k>0

=Y [0<k<(n+1)/0]
k

=[(n+1)/a]—1 by the formula in the “intervals” slide
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Spectra and partitions of integers

Spec(v/2) and Spec(2++/2) form a partition of the integers.

Lemma
Spec(@) has N(o,n) = [(n+1)/a] —1 elements not larger than n.

As Spec(v/2) and Spec(2++/2) have no repetitions, we only need to prove that
N(v2,n)+ N(2++/2,n) = n:
—‘ [ n+1 —‘
2+ V2

because both are noninteger
J {2 +V2 J

N(V2,n)+N(2+V2,n) =

ke
|
- nﬂl {n;}Jr 2,7:% 7{2":%}

-on(Grms) - (Ve {5

-1 =1
=n+1-1=n

because if x and y are both noninteger but x+ y is integer, then {x} +{y}=1. TECH



Next section

Floor/Ceiling Recurrences
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Floor/Ceiling Recurrences: Examples

The Knuth numbers:

Ko=1;
Kny1=1 +min(2K[n/2J’3KLn/3J) forn>0.

The sequence begins with:

K=(1,3,3,4,7,7,7,9,9,10,13,...)

Merge sort n= [n/2]+ |n/2] records, number of comparisons:

fi=0;
foy1 =1 (ln/2]))+f([n/2])+n—1 forn>1.

The sequence begins with:

TAL
f=1(0,1,3,5,8,11,14,17,21,25,29,33...) FECH



Floor/Ceiling Recurrences: More Examples

The Josephus problem numbers:

J(l) =1;
J(n)=2J(|n/2])+(=1)"* forn>1.

The sequence begins as
J=(1,1,3,1,3,5,7,1,3,5,...)
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Generalization of Josephus problem

Josephus problem in general: from n elements, every g-th is circularly
eliminated. The element with number J,(n) will survive.

Jg(n) =qn+1— Dy

where k is the smallest integer such that Dy > (g —1)n and Dy is computed using the
following recurrence relation:

Dy = [q;zl Dk_l—‘ for every k > 0.
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Generalization of Josephus problem

Josephus problem in general: from n elements, every g-th is circularly
eliminated. The element with number J;(n) will survive.

Jg(n) =qn+1— Dy

where k is the smallest integer such that Dy > (¢ —1)n and Dy is computed using the
following recurrence relation:

Do =1;

Dy = "%1 Dk,l-‘ for every k > 0.

|

For example, if g=5 and n=12

D=(1,2,3,4,5,7,9,12,15,19,24,30,38,48,60,75....)
Then (g—1)n=4-12 = 48, the proper Dy is D14 = 60, and

fecH
Js(12) =5-1241—Dyy =60+1—-60=1



Generalization of Josephus problem

Josephus problem in general: from n elements, every g-th is circularly
eliminated. The element with number J;(n) will survive.

Jg(n) =qn+1— Dy

where k is the smallest integer such that Dy > (¢ —1)n and Dy is computed using the
following recurrence relation:

Do =1;
_ q
Dy = "ﬁ Dk,l-‘ for every k > 0.

Sanity check: g =2

—
|
JE—

2
Then Dy = ﬁDk—l = 2Dy, for every k >1, so D, =2k,
If n=2"+¢, then k=m+1 and:

DH(n)=2-2M+0)+1-2" =2041 Ir_lE\‘L:H



Proof of the Theorem

Whenever a person is passed over, we can assign a new number, as in the
example below fo n=12,q=5
1 2 3 4 5 6 7 8 9 10 11 12
13 14 15 16 17 18 19 20 21 22
23 24 25 26 27 28 29 30
31 32 33 34 35 36
37 38 39 40 41
42 43 44 45
46 47 48
49 50 51
52 53
54 b5
56
57
58
59
60

Denoting by N and N’ the current and previous element in a column, we get:

N —n—1
N= | Nond| TAL
{ g-1 J* 4 TECH



Proof of the Theorem (2)

Denoting by D=gn+1—N and D' = gn+1— N, we rewrite:

as:
gn+1—-D'—n—1

qn+1—D:{
g—1

J +qgn+1-D'—n
Let us transform this:

—qgn—1+D"+n

R
D

g1 {qn—l—l—D’—n—lJ

TAL
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Next section

‘mod’: The Binary Operation
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‘mod’: The Binary Operation

If n and m are positive integers

Write n=q-m+r with g,r e N and 0 <r < m. Then:

g=|n/m| and r=n—m-|n/m|=nmod m

If x and y are real numbers

We follow the same idea and set:

xmody =x—y-|x/y] ¥x,y eR, y #0

Note that, with this definition:

5mod 3 = 5-3.|5/3 = 5-3.1 = 2
5mod -3 = 5-—(-3)-|5/(—3)] = 5+43.(-2) = -1
—5mod3 = -5-3.|-5/3] = —5-3.(-2) = 1
—5mod -3 = -5-(-3)-|-5/(-3)] = -5+3-1 = -2

For y =0 we want to respect the general rule that x — (xmod y) € yZ = {yk | k € Z}.

This is done by: AL
xmod 0 = x FECH



Properties of the mod operation

x = | x| +xmod 1
Fory=1itis xmodl=x—1-|x/1] =x—|x].

In other words: x mod 1 = {x}.

The distributive law: ¢(x mod y) = cx mod cy

If ¢ =0 both sides vanish; if y = 0 both sides equal cx. Otherwise:

c(xmody) =c(x—y|x/y]) = cx—cy|ex/cy| = cxmod cy
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Warmup: Solve the following recurrence

=n for0<n<m,
Xpn=Xn-m+1 forn>m.
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Warmup: Solve the following recurrence

Xn=n for0<n<m,
Xn=Xn-m+1 forn>m.

We plot the first values when m = 4:

n_|
X: |

1 2 3 4 5 6
1

0
01 2 3

We conjecture that:

if n=qgm+rwithg,r e Nand0 < r <m then X, =q+r :

which clearly yields X, = [n/m| + nmod m.
m Induction base: True for n=0,1,...,m—1.

= Inductive step: Let n>m. If X,y =q'+ ' for every ' =¢'m+r' <n=qgm-+r,
then: TAL
Xo=Xn-m+1=Xg-1ymr+1=q-1+r+1l=q+r TECH



Next section

Floor/Ceiling Sums
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Floor/Ceiling Sums

Example: Find a closed form for Yoy L\/EJ

E [Vi]= 5 mte<ri[m= V]

0<k<n k,m=0
= ¥ mik<nl[m<vk<m+1]
k,m=0
= Z m[k<n][m2<k<(m+1)2]
k,m>0
= Y m[m®<k<(m+1)><n
k,m>0
=&
+ Z m[m2<k<n<(m+1)2]
k,m>0
=&
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Floor/Ceiling Sums

Example: Find a closed form for ¥ o<y, {\/EJ

Case n= a2, for a value ae N

Then S, =0, while:

S1= Z m[m2 <k<(m+1)2< az]
k,m=0
= Z m((m+1)% —m?)[m+1 < 4]
m=0
= Z m(2m+1)[m < a]
m=0

= Z (2m(m—1)+3m)[m < 3]

m=0

I
3
Mgl

2m*+3mY)[m < a] = Z(2mg+ 3mt)dm
0

a 2 3
= ga(a— 1)(a—2)+ Ea(a— 1)

1
a= ca(a-1)(4a+1) IT_IE\‘L;H



Floor/Ceiling Sums

Example: Find a closed form for }, n {\/EJ

Case n# b?, for any integer b
Let a=|/n|. Then:
m For 0< k<a®wegetS;=32a%>—122—1aand S, =0, as before.

m For a2 < k<n, itis S; =0 and:
S= Y m[m? < k< n<(m+1)3?]
k,m=0

:Za[azgk<n}

_az k<n

:a(n—az):an—a3
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Floor/Ceiling Sums

Example: Find a closed form for Yo<x<p L\/EJ

To summarize:

2 1 1
Z {\/EJ =-a*——-a2—_—atan—a°
0<k<n 3 2 6
1 1 1
:an—§a3—§az—ga where a = |v/n]
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