Integer Functions
 ITT9132 Concrete Mathematics
 Lecture 6-1 March 2019

Chapter Three
Floors and Ceilings
Floor/Ceiling Applications
Floor/Ceiling Recurrences
'mod': The Binary Operation Floor/Ceiling Sums

Contents

1 Floors and Ceilings

2 Floor/Ceiling Applications

3 Floor/Ceiling Recurrences

4 'mod': The Binary Operation

5 Floor/Ceiling Sums

Next section

1 Floors and Ceilings

2 Floor/Ceiling Applications

3 Floor/Ceiling Recurrences

4 'mod': The Binary Operation

5 Floor/Ceiling Sums

抳

Floors and Ceilings

Definition

- The floor $\lfloor x\rfloor$ is the greatest integer not larger than x;
- The ceiling $\lceil x\rceil$ is the smallest integer not smaller than x.

$$
\begin{array}{ll}
\lfloor\pi\rfloor=3 & \lfloor-\pi\rfloor=-4 \\
\lceil\pi\rceil=4 & \lceil-\pi\rceil=-3
\end{array}
$$

Properties of $\lfloor x\rfloor$ and $\lceil x\rceil$

For every $x \in \mathbb{R}$:
(1) $\lfloor x\rfloor=x=\lceil x\rceil$ iff $x \in \mathbb{Z}$
(2) $x-1<\lfloor x\rfloor \leqslant x \leqslant\lceil x\rceil<x+1$
(3) $\lfloor-x\rfloor=-\lceil x\rceil$ and $\lceil-x\rceil=-\lfloor x\rfloor$
(4) $\lceil x\rceil-\lfloor x\rfloor=[x \notin \mathbb{Z}]$

Warmup: Representing numbers

Problem

Let $n=2^{m}+\ell$. What are closed formulas for m and ℓ ?

Warmup: Representing numbers

Problem

Let $n=2^{m}+\ell$. What are closed formulas for m and ℓ ?

Solution

First, $2^{m} \leqslant n<2^{m+1}$.

- As \lg, the logarithm in base 2 , is an increasing function, $m \leqslant \lg n<m+1$.
- Then:

$$
m=\lfloor\lg n\rfloor .
$$

Next, $\ell=n-2^{m}$. Then:

$$
\ell=n-2^{\lfloor\lg n\rfloor} .
$$

Warmup: the generalized Dirichlet box principle

Statement of the principle
Let m and n be positive integers. If n items are stored into m boxes, then:
■ at least one box will contain at least $\lceil n / m\rceil$ objects, and

- at least one box will contain at most $\lfloor n / m\rfloor$ objects.

Warmup: the generalized Dirichlet box principle

Statement of the principle

Let m and n be positive integers. If n items are stored into m boxes, then:

- at least one box will contain at least $\lceil n / m\rceil$ objects, and
- at least one box will contain at most $\lfloor n / m\rfloor$ objects.

Proof

By contradiction, assume each of the m boxes contains fewer than $\lceil n / m\rceil$ objects. Then

$$
n \leqslant m \cdot\left(\left\lceil\frac{n}{m}\right\rceil-1\right) \text { or equivalently, } \frac{n}{m}+1 \leqslant\left\lceil\frac{n}{m}\right\rceil:
$$

which is impossible.
Similarly, if each of the m boxes contained more than $\lfloor n / m\rfloor$ objects, we would have

$$
n \geqslant m \cdot\left(\left\lfloor\frac{n}{m}\right\rfloor+1\right) \text { or equivalently, } \frac{n}{m}-1 \geqslant\left\lfloor\frac{n}{m}\right\rfloor:
$$

which is also impossible.

Properties of $\lfloor x\rfloor$ and $\lceil x\rceil$ (cont.)

For every $x \in \mathbb{R}$ and $n \in \mathbb{Z}$:
(5) $\lfloor x\rfloor=n$ iff $n \leqslant x<n+1$
(6) $\lfloor x\rfloor=n$ iff $x-1<n \leqslant x$
(5) $\lceil x\rceil=n$ iff $n-1<x \leqslant n$
(8) $\lceil x\rceil=n$ iff $x \leqslant n<x+1$
(9) $\lfloor x+n\rfloor=\lfloor x\rfloor+n$ but, in general, $\lfloor n x\rfloor \neq n\lfloor x\rfloor$.
(10) $\lceil x+n\rceil=\lceil x\rceil+n$ but, in general, $\lceil n x\rceil \neq n\lceil x\rceil$.
(11) $x<n$ iff $\lfloor x\rfloor<n$
(12) $n<x$ iff $n<\lceil x\rceil$
(13) $x \leqslant n$ iff $\lceil x\rceil \leqslant n$
(14) $n \leqslant x$ iff $n \leqslant\lfloor x\rfloor$

Generalization of property \#9

Theorem

$$
\lfloor x+y\rfloor= \begin{cases}\lfloor x\rfloor+\lfloor y\rfloor & \text { if } 0 \leqslant\{x\}+\{y\}<1 \\ \lfloor x\rfloor+\lfloor y\rfloor+1 & \text { if } 1 \leqslant\{x\}+\{y\}<2\end{cases}
$$

where $\{x\}=x-\lfloor x\rfloor$ is the fractional part of x.

Proof. Let $x=\lfloor x\rfloor+\{x\}$ and $y=\lfloor y\rfloor+\{y\}$. Then:

$$
\begin{aligned}
\lfloor x+y\rfloor & =\lfloor\lfloor x\rfloor+\lfloor y\rfloor+\{x\}+\{y\}\rfloor \\
& =\lfloor x\rfloor+\lfloor y\rfloor+\lfloor\{x\}+\{y\}\rfloor
\end{aligned}
$$

and clearly

$$
\lfloor\{x\}+\{y\}\rfloor= \begin{cases}0 & \text { if } 0 \leqslant\{x\}+\{y\}<1 \\ 1 & \text { if } 1 \leqslant\{x\}+\{y\}<2\end{cases}
$$

Q.E.D.

Warmup: When is $\lfloor n x\rfloor=n\lfloor x\rfloor$?

The problem

Give a necessary and sufficient condition on n and x so that

$$
\lfloor n x\rfloor=n\lfloor x\rfloor
$$

where n is a positive integer.

Warmup: When is $\lfloor n x\rfloor=n\lfloor x\rfloor$?

The problem

Give a necessary and sufficient condition on n and x so that

$$
\lfloor n x\rfloor=n\lfloor x\rfloor
$$

where n is a positive integer.

The solution

Write $x=\lfloor x\rfloor+\{x\}$. Then

$$
\lfloor n x\rfloor=\lfloor n\lfloor x\rfloor+n\{x\}\rfloor=n\lfloor x\rfloor+\lfloor n\{x\}\rfloor
$$

As $\{x\}$ is nonnegative, so is $\lfloor n\{x\}\rfloor$. Then

$$
\lfloor n x\rfloor=n\lfloor x\rfloor \text { if and only if }\{x\}<1 / n
$$

Next section

1 Floors and Ceilings

2 Floor/Ceiling Applications

3 Floor/Ceiling Recurrences

4 'mod': The Binary Operation

5 Floor/Ceiling Sums

㨦言

Floor/Ceiling Applications

Theorem

The binary representation of a natural number $n>0$ has $m=\left\lfloor\log _{2} n\right\rfloor+1$ bits.

Proof.

$$
n=\underbrace{a_{m-1} 2^{m-1}+a_{m-2} 2^{m-2}+\cdots+a_{1} 2+a_{0}}_{m \text { bits }} \text { where } a_{m-1}=1
$$

Thus, $2^{m-1} \leqslant n<2^{m}$, which gives $m-1 \leqslant \log _{2} n<m$. The last formula is valid if and only if $\left\lfloor\log _{2} n\right\rfloor=m-1$.

$$
m=\left\lfloor\log _{2} 35\right\rfloor+1=5+1=6
$$

Floor/Ceiling Applications

Theorem

The binary representation of a natural number $n>0$ has $m=\left\lfloor\log _{2} n\right\rfloor+1$ bits.

Proof.

$$
n=\underbrace{a_{m-1} 2^{m-1}+a_{m-2} 2^{m-2}+\cdots+a_{1} 2+a_{0}}_{m \text { bits }} \text { where } a_{m-1}=1
$$

Thus, $2^{m-1} \leqslant n<2^{m}$, which gives $m-1 \leqslant \log _{2} n<m$. The last formula is valid if and only if $\left\lfloor\log _{2} n\right\rfloor=m-1$.

Example: $n=35=100011_{2}$

$$
m=\left\lfloor\log _{2} 35\right\rfloor+1=5+1=6
$$

Floor/Ceiling Applications (2)

Theorem

Let $f: A \subseteq \mathbb{R} \rightarrow \mathbb{R}$ be a continuous, strictly increasing function with the property that, if $f(x) \in \mathbb{Z}$, then $x \in \mathbb{Z}$. Then:

$$
\lfloor f(x)\rfloor=\lfloor f(\lfloor x\rfloor)\rfloor \text { and }\lceil f(x)\rceil=\lceil f(\lceil x\rceil)\rceil
$$

whenever $f(x), f(\lfloor x\rfloor)$, and $f(\lceil x\rceil)$ are all defined.

Proof. (for the ceiling function)

- If $x \in \mathbb{Z}$, then $x=\lceil x\rceil$, and there is nothing to prove.
- If $x \notin \mathbb{Z}$, then $x<\lceil x\rceil$, so $f(x)<f(\lceil x\rceil) \leqslant\lceil f(\lceil x\rceil)\rceil$ as f is strictly increasing. Also, $f(x) \leqslant\lceil f(x)\rceil \leqslant\lceil f(\lceil x\rceil)\rceil$ since the ceiling function is non-decreasing.
- If $\lceil f(x)\rceil<\lceil f(\lceil x\rceil)\rceil$, by the intermediate value theorem there exists y such that $x \leqslant y<\lceil x\rceil$ and $f(y)=\lceil f(x)\rceil$.
- Such y is an integer, because of f 's special property, so actually $x<y<\lceil x\rceil$.
- But there are no integers strictly between x and $\lceil x\rceil$. This contradiction implies that we must have $\lceil f(x)\rceil=\lceil f(\lceil x\rceil)\rceil$.

Floor/Ceiling Applications (2a)

Example

- $\left\lfloor\frac{x+m}{n}\right\rfloor=\left\lfloor\frac{\lfloor x\rfloor+m}{n}\right\rfloor$
- $\left\lceil\frac{x+m}{n}\right\rceil=\left\lceil\frac{\lceil x\rceil+m}{n}\right\rceil$
- $\left\lceil\frac{\left\lceil\frac{\lceil x\rceil / 10}{10}\right\rceil}{10}\right\rceil=\lceil x / 1000\rceil$
- $\lfloor\sqrt{\lfloor x\rfloor}\rfloor=\lfloor\sqrt{x}\rfloor$

In contrast:

$$
\lceil\sqrt{\lfloor x\rfloor}\rceil \neq\lceil\sqrt{x}\rceil
$$

For example, $\lceil\sqrt{\lfloor 1 / 4\rfloor}\rceil=0$ but $\lceil\sqrt{1 / 4}\rceil=1$.

Floor/Ceiling Applications (3): Intervals

For Real numbers $\alpha \neq \beta$

Range	Nr. of integer values of t	Restrictions
$\alpha \leqslant t \leqslant \beta$	$\lfloor\beta\rfloor-\lceil\alpha\rceil+1$	$\alpha \leqslant \beta$
$\alpha \leqslant t<\beta$	$\lceil\beta\rceil-\lceil\alpha\rceil$	$\alpha \leqslant \beta$
$\alpha<t \leqslant \beta$	$\lfloor\beta\rfloor-\lfloor\alpha\rfloor$	$\alpha \leqslant \beta$
$\alpha<t<\beta$	$\lceil\beta\rceil-\lfloor\alpha\rfloor-1$	$\alpha<\beta$

Floor/Ceiling Applications (3): Intervals

For Real numbers $\alpha \neq \beta$

Range	Nr. of integer values of t	Restrictions
$\alpha \leqslant t \leqslant \beta$	$\lfloor\beta\rfloor-\lceil\alpha\rceil+1$	$\alpha \leqslant \beta$
$\alpha \leqslant t<\beta$	$\lceil\beta\rceil-\lceil\alpha\rceil$	$\alpha \leqslant \beta$
$\alpha<t \leqslant \beta$	$\lfloor\beta\rfloor-\lfloor\alpha\rfloor$	$\alpha \leqslant \beta$
$\alpha<t<\beta$	$\lceil\beta\rceil-\lfloor\alpha\rfloor-1$	$\alpha<\beta$

This is because, if $t \in \mathbb{Z}$, then:

$$
\begin{array}{lll}
\alpha \leqslant t & \text { if and only if } & \lceil\alpha\rceil \leqslant t \\
\alpha<t & \text { if and only if } & \lfloor\alpha\rfloor<t \text { if and only if }\lfloor\alpha\rfloor+1 \leqslant t \\
t \leqslant \beta & \text { if and only if } & t \leqslant\lfloor\beta\rfloor \\
t<\beta & \text { if and only if } & t<\lceil\beta\rceil \text { if and only if } t \leqslant\lceil\beta\rceil-1
\end{array}
$$

and the slice $[m: n]=[m . . n] \cap \mathbb{Z}, m \leqslant n$, has $n-m+1$ elements.
(Note that, if $\alpha=\beta$ are both integers, then $\lceil\beta\rceil-\lfloor\alpha\rfloor-1=-1$.)

A Game-Theoretical Application

The Concrete Mathematics Club Roulette

The Concrete Mathematics Casino ${ }^{1}$ has a special roulette game:

- The roulette itself has 1000 slots, numbered from 1 to 1000 .
- A number n is a winner if and only if $\lfloor\sqrt[3]{n}\rfloor$ is a factor of n.
- There is a bet of 1 dollar to play one round.
- If the number is a winner, players earn 5 dollars.
${ }^{1}$ Entrance reserved to book purchasers.

A Game-Theoretical Application

The Concrete Mathematics Club Roulette

The Concrete Mathematics Casino ${ }^{1}$ has a special roulette game:

- The roulette itself has 1000 slots, numbered from 1 to 1000 .
- A number n is a winner if and only if $\lfloor\sqrt[3]{n}\rfloor$ is a factor of n.
- There is a bet of 1 dollar to play one round.
- If the number is a winner, players earn 5 dollars.

Is it convenient to play?

If there are W winning numbers and L losing numbers, then the average win is:

$$
\frac{5 W-L}{1000}=\frac{5 W-(1000-W)}{1000}=\frac{6}{1000} W-1
$$

dollars, so:
The game is convenient if and only if $W \geqslant\left\lceil\frac{1000}{6}\right\rceil=167$.

[^0]
Winning or Losing at the Concrete Maths Roulette

We have:

$$
\begin{aligned}
W & =\sum_{n=1}^{1000}[\lfloor\sqrt[3]{n}\rfloor \mid n] \\
& =\sum_{k, n}[k=\lfloor\sqrt[3]{n}\rfloor][k \mid n][1 \leqslant n \leqslant 1000] \\
& =\sum_{k, m, n}\left[k^{3} \leqslant n<(k+1)^{3}\right][n=k m][1 \leqslant n \leqslant 1000] \\
& =1+\sum_{k, m}\left[k^{3} \leqslant k m<(k+1)^{3}\right][1 \leqslant k<10]
\end{aligned}
$$

because for $n=1000$ it is only $k=10, m=100$

$$
\begin{aligned}
& =1+\sum_{k, m}\left[k^{2} \leqslant m<(k+1)^{3} / k\right][1 \leqslant k<10] \\
& =1+\sum_{1 \leqslant k<10}\left(\left\lceil k^{2}+3 k+3+1 / k\right\rceil-\left\lceil k^{2}\right\rceil\right) \\
& =1+\sum_{1 \leqslant k<10}(3 k+3+\lceil 1 / k\rceil) \text { but for } k \geqslant 1 \text { it is }\lceil 1 / k\rceil=1 \\
& =1+3 \cdot \frac{9 \cdot 10}{2}+9 \cdot 4=1+135+36=172>167
\end{aligned}
$$

Floor/Ceiling Applications (3) : Spectra

Definition

The spectrum of a real number α is an infinite multiset of integers

$$
\operatorname{Spec}(\alpha)=\{\lfloor\alpha\rfloor,\lfloor 2 \alpha\rfloor,\lfloor 3 \alpha\rfloor, \ldots\}=\{\lfloor n \alpha\rfloor \mid n \geqslant 1\}
$$

An integer $m=\lfloor n \alpha\rfloor \in \operatorname{Spec}(\alpha)$ can appear for more than one value of n.
For example, $\operatorname{Spec}(1 / 2)=\{0,1,1,2,2,3,3,4,4, \ldots\}$.

Example.

$$
\begin{aligned}
\operatorname{Spec}(\sqrt{2}) & =\{1,2,4,5,7,8,9,11,12,14,15,16,18,19,21,22,24, \ldots\} \\
\operatorname{Spec}(2+\sqrt{2}) & =\{3,6,10,13,17,20,23,27,30,34,37,40,44,47,51, \ldots\}
\end{aligned}
$$

Note that $\lfloor n(2+\sqrt{2})\rfloor=\lfloor n \sqrt{2}\rfloor+2 n$.

Floor/Ceiling Applications (3) : Spectra

Definition

The spectrum of a real number α is an infinite multiset of integers

$$
\operatorname{Spec}(\alpha)=\{\lfloor\alpha\rfloor,\lfloor 2 \alpha\rfloor,\lfloor 3 \alpha\rfloor, \ldots\}=\{\lfloor n \alpha\rfloor \mid n \geqslant 1\}
$$

An integer $m=\lfloor n \alpha\rfloor \in \operatorname{Spec}(\alpha)$ can appear for more than one value of n.
For example, $\operatorname{Spec}(1 / 2)=\{0,1,1,2,2,3,3,4,4, \ldots\}$.

Theorem

If $\alpha, \beta \geqslant 1$ and $\alpha<\beta$ then $\operatorname{Spec}(\alpha) \neq \operatorname{Spec}(\beta)$.

Proof. As $\alpha, \beta \geqslant 1, \operatorname{Spec}(\alpha)$ and $\operatorname{Spec}(\beta)$ have no repetitions.

- Let $m \in \mathbb{Z}$ be so large that $m(\beta-\alpha) \geqslant 1$.
- For such $m, m \beta-m \alpha \geqslant 1$, hence $\lfloor m \beta\rfloor>\lfloor m \alpha\rfloor$.
- Thus $\operatorname{Spec}(\beta)$ has fewer than m elements which are $\leqslant\lfloor m \alpha\rfloor$, while $\operatorname{Spec}(\alpha)$ has at least m such elements.

Spectra and partitions of integers

Theorem

$\operatorname{Spec}(\sqrt{2})$ and $\operatorname{Spec}(2+\sqrt{2})$ form a partition of the integers.

Spectra and partitions of integers

Theorem

$\operatorname{Spec}(\sqrt{2})$ and $\operatorname{Spec}(2+\sqrt{2})$ form a partition of the integers.

Lemma

$\operatorname{Spec}(\alpha)$ has $N(\alpha, n)=\lceil(n+1) / \alpha\rceil-1$ elements not larger than n.
Indeed:

$$
\begin{aligned}
N(\alpha, n) & =\sum_{k>0}[\lfloor k \alpha\rfloor \leqslant n] \quad \text { (recall that } \operatorname{Spec}(\alpha) \text { is a multiset) } \\
& =\sum_{k>0}[\lfloor k \alpha\rfloor<n+1] \\
& =\sum_{k>0}[k \alpha<n+1] \\
& =\sum_{k}[0<k<(n+1) / \alpha] \\
& =\lceil(n+1) / \alpha\rceil-1 \text { by the formula in the "intervals" slide }
\end{aligned}
$$

Spectra and partitions of integers

Theorem

$\operatorname{Spec}(\sqrt{2})$ and $\operatorname{Spec}(2+\sqrt{2})$ form a partition of the integers.

Lemma

$\operatorname{Spec}(\alpha)$ has $N(\alpha, n)=\lceil(n+1) / \alpha\rceil-1$ elements not larger than n.
As $\operatorname{Spec}(\sqrt{2})$ and $\operatorname{Spec}(2+\sqrt{2})$ have no repetitions, we only need to prove that $N(\sqrt{2}, n)+N(2+\sqrt{2}, n)=n:$

$$
\begin{aligned}
N(\sqrt{2}, n)+N(2+\sqrt{2}, n) & =\left[\frac{n+1}{\sqrt{2}}\right\rceil-1+\left\lceil\left.\frac{n+1}{2+\sqrt{2}} \right\rvert\,-1\right. \\
& =\left\lfloor\frac{n+1}{\sqrt{2}} \left\lvert\,+\left\lfloor\left.\frac{n+1}{2+\sqrt{2}} \right\rvert\,\right. \text { because both are noninteger }\right.\right. \\
& =\frac{n+1}{\sqrt{2}}-\left\{\frac{n+1}{\sqrt{2}}\right\}+\frac{n+1}{2+\sqrt{2}}-\left\{\frac{n+1}{2+\sqrt{2}}\right\} \\
& =(n+1) \underbrace{\left(\frac{1}{\sqrt{2}}+\frac{1}{2+\sqrt{2}}\right)}_{=1}-\underbrace{\left(\left\{\frac{n+1}{\sqrt{2}}\right\}+\left\{\frac{n+1}{2+\sqrt{2}}\right\}\right)}_{=1} \\
& =n+1-1=n
\end{aligned}
$$

because if x and y are both noninteger but $x+y$ is integer, then $\{x\}+\{y\}=1$.

Next section

1 Floors and Ceilings

2 Floor/Ceiling Applications

3 Floor/Ceiling Recurrences

4 'mod': The Binary Operation

5 Floor/Ceiling Sums

㨦言

Floor/Ceiling Recurrences: Examples

The Knuth numbers:

$$
\begin{aligned}
K_{0} & =1 ; \\
K_{n+1} & =1+\min \left(2 K_{\lfloor n / 2\rfloor}, 3 K_{\lfloor n / 3\rfloor}\right) \text { for } n \geqslant 0 .
\end{aligned}
$$

The sequence begins with:

$$
K=\langle 1,3,3,4,7,7,7,9,9,10,13, \ldots\rangle
$$

Merge sort $n=\lceil n / 2\rceil+\lfloor n / 2\rfloor$ records, number of comparisons:

$$
\begin{aligned}
f_{1} & =0 ; \\
f_{n+1} & =f(\lfloor n / 2\rfloor)+f(\lceil n / 2\rceil)+n-1 \text { for } n>1 .
\end{aligned}
$$

The sequence begins with:

$$
f=\langle 0,1,3,5,8,11,14,17,21,25,29,33 \ldots\rangle
$$

Floor/Ceiling Recurrences: More Examples

The Josephus problem numbers:

$$
\begin{aligned}
& J(1)=1 \\
& J(n)=2 J(\lfloor n / 2\rfloor)+(-1)^{n+1} \text { for } n>1 .
\end{aligned}
$$

The sequence begins as

$$
J=\langle 1,1,3,1,3,5,7,1,3,5, \ldots\rangle
$$

Generalization of Josephus problem

Josephus problem in general: from n elements, every q-th is circularly eliminated. The element with number $J_{q}(n)$ will survive.

Theorem

$$
J_{q}(n)=q n+1-D_{k}
$$

where k is the smallest integer such that $D_{k}>(q-1) n$ and D_{k} is computed using the following recurrence relation:

$$
\begin{aligned}
D_{0} & =1 \\
D_{k} & =\left\lceil\frac{q}{q-1} D_{k-1}\right\rceil \text { for every } k>0 .
\end{aligned}
$$

Generalization of Josephus problem

Josephus problem in general: from n elements, every q-th is circularly eliminated. The element with number $J_{q}(n)$ will survive.

Theorem

$$
J_{q}(n)=q n+1-D_{k}
$$

where k is the smallest integer such that $D_{k}>(q-1) n$ and D_{k} is computed using the following recurrence relation:

$$
\begin{aligned}
D_{0} & =1 \\
D_{k} & =\left\lceil\frac{q}{q-1} D_{k-1}\right\rceil \text { for every } k>0 .
\end{aligned}
$$

For example, if $q=5$ and $n=12$

$$
D=\langle 1,2,3,4,5,7,9,12,15,19,24,30,38,48,60,75 \ldots\rangle
$$

Then $(q-1) n=4 \cdot 12=48$, the proper D_{k} is $D_{14}=60$, and

$$
J_{5}(12)=5 \cdot 12+1-D_{14}=60+1-60=1
$$

Generalization of Josephus problem

Josephus problem in general: from n elements, every q-th is circularly eliminated. The element with number $J_{q}(n)$ will survive.

Theorem

$$
J_{q}(n)=q n+1-D_{k}
$$

where k is the smallest integer such that $D_{k}>(q-1) n$ and D_{k} is computed using the following recurrence relation:

$$
\begin{aligned}
& D_{0}=1 ; \\
& D_{k}=\left\lceil\frac{q}{q-1} D_{k-1}\right\rceil \text { for every } k>0 .
\end{aligned}
$$

Sanity check: $q=2$

Then $D_{k}=\left\lceil\frac{2}{2-1} D_{k-1}\right\rceil=2 D_{k-1}$ for every $k \geqslant 1$, so $D_{k}=2^{k}$.
If $n=2^{m}+\ell$, then $k=m+1$ and:

$$
J_{2}(n)=2 \cdot\left(2^{m}+\ell\right)+1-2^{m+1}=2 \ell+1
$$

Proof of the Theorem

Whenever a person is passed over, we can assign a new number, as in the example below fo $n=12, q=5$

1	2	3	4	5	6	7	8	9	10	11	12
13	14	15	16		17	18	19	20		21	22
23	24		25		26	27	28			29	30
31	32				33	34	35			36	
37	38			39	40			41			
42	43				44				45		

$46 \quad 47$

48
$49 \quad 50 \quad 51$
$52 \quad 53$
54 55
56
57
58
59
60
Denoting by N and N^{\prime} the current and previous element in a column, we get:

$$
N=\left\lfloor\frac{N^{\prime}-n-1}{q-1}\right\rfloor+N^{\prime}-n
$$

Proof of the Theorem (2)

Denoting by $D=q n+1-N$ and $D^{\prime}=q n+1-N^{\prime}$, we rewrite:

$$
N=\left\lfloor\frac{N^{\prime}-n-1}{q-1}\right\rfloor+N^{\prime}-n
$$

as:

$$
q n+1-D=\left\lfloor\frac{q n+1-D^{\prime}-n-1}{q-1}\right\rfloor+q n+1-D^{\prime}-n
$$

Let us transform this:

$$
\begin{aligned}
D & =q n+1-\left\lfloor\frac{q n+1-D^{\prime}-n-1}{q-1}\right\rfloor-q n-1+D^{\prime}+n \\
& =D^{\prime}+n-\left\lfloor\frac{n(q-1)-D^{\prime}}{q-1}\right\rfloor=D^{\prime}+n-\left\lfloor n-\frac{D^{\prime}}{q-1}\right\rfloor \\
& =D^{\prime}-\left\lfloor\frac{-D^{\prime}}{q-1}\right\rfloor \\
& =D^{\prime}+\left[\frac{D^{\prime}}{q-1}\right\rceil \\
& =\left\lceil\left.\frac{q}{q-1} D^{\prime} \right\rvert\,\right.
\end{aligned}
$$

Next section

1 Floors and Ceilings

2 Floor/Ceiling Applications

3 Floor/Ceiling Recurrences

4 'mod': The Binary Operation

5 Floor/Ceiling Sums

抳

'mod': The Binary Operation

If n and m are positive integers

Write $n=q \cdot m+r$ with $q, r \in \mathbb{N}$ and $0 \leqslant r<m$. Then:

$$
q=\lfloor n / m\rfloor \text { and } r=n-m \cdot\lfloor n / m\rfloor=n \bmod m
$$

If x and y are real numbers

We follow the same idea and set:

$$
x \bmod y=x-y \cdot\lfloor x / y\rfloor \forall x, y \in \mathbb{R}, y \neq 0
$$

Note that, with this definition:

$$
\begin{array}{llll}
5 \bmod 3 & =5-3 \cdot\lfloor 5 / 3\rfloor & & 5-3 \cdot 1 \\
5 \bmod -3 & =5-(-3) \cdot\lfloor 5 /(-3)\rfloor & =5+3 \cdot(-2) & =2 \\
-5 \bmod 3 & =-5-3 \cdot\lfloor-5 / 3\rfloor & & =-5-3 \cdot(-2) \\
-5 \bmod -3 & =-5-(-3) \cdot\lfloor-5 /(-3)\rfloor & =-5+3 \cdot 1 & =-2
\end{array}
$$

For $y=0$ we want to respect the general rule that $x-(x \bmod y) \in y \mathbb{Z}=\{y k \mid k \in \mathbb{Z}\}$. This is done by:

$$
x \bmod 0=x
$$

Properties of the mod operation

$x=\lfloor x\rfloor+x \bmod 1$
For $y=1$ it is $x \bmod 1=x-1 \cdot\lfloor x / 1\rfloor=x-\lfloor x\rfloor$.
In other words: $x \bmod 1=\{x\}$.
The distributive law: $c(x \bmod y)=c x \bmod c y$
If $c=0$ both sides vanish; if $y=0$ both sides equal $c x$. Otherwise:

$$
c(x \bmod y)=c(x-y\lfloor x / y\rfloor)=c x-c y\lfloor c x / c y\rfloor=c x \bmod c y
$$

Warmup: Solve the following recurrence

$$
\begin{array}{ll}
X_{n}=n & \text { for } 0 \leqslant n<m, \\
X_{n}=X_{n-m}+1 & \text { for } n \geqslant m .
\end{array}
$$

Warmup: Solve the following recurrence

$$
\begin{array}{ll}
X_{n}=n & \text { for } 0 \leqslant n<m, \\
X_{n}=X_{n-m}+1 & \text { for } n \geqslant m .
\end{array}
$$

Solution

We plot the first values when $m=4$:

n	0	1	2	3	4	5	6	7	8	9
X_{n}	0	1	2	3	1	2	3	4	2	3

We conjecture that:

$$
\text { if } n=q m+r \text { with } q, r \in \mathbb{N} \text { and } 0 \leqslant r<m \text { then } X_{n}=q+r \text { : }
$$

which clearly yields $X_{n}=\lfloor n / m\rfloor+n \bmod m$.

- Induction base: True for $n=0,1, \ldots, m-1$.
- Inductive step: Let $n \geqslant m$. If $X_{n^{\prime}}=q^{\prime}+r^{\prime}$ for every $n^{\prime}=q^{\prime} m+r^{\prime}<n=q m+r$, then:

$$
X_{n}=X_{n-m}+1=X_{(q-1) m+r}+1=q-1+r+1=q+r
$$

Next section

1 Floors and Ceilings

2 Floor/Ceiling Applications

3 Floor/Ceiling Recurrences

4 'mod': The Binary Operation

5 Floor/Ceiling Sums

㻆言

Floor/Ceiling Sums

Example: Find a closed form for $\sum_{0 \leqslant k<n}[\sqrt{k}]$

$$
\begin{aligned}
\left.\sum_{0 \leqslant k<n} \mid \sqrt{k}\right] & =\sum_{k, m \geqslant 0} m[k<n][m=\lfloor\sqrt{k} \mid] \\
& =\underbrace{\sum_{k} m[k<n][m \leqslant \sqrt{k}<m+1]}_{k, m \geqslant 0} \\
& =\underbrace{\sum_{k, m} m[k<n]\left[m^{2} \leqslant k<(m+1)^{2}\right]}_{k, m \geqslant 0} \\
& =\underbrace{\sum_{k, m \geqslant 0} m\left[m^{2} \leqslant k<(m+1)^{2} \leqslant n\right]}_{=S_{2}} \\
& +\underbrace{\sum_{1} m\left[m^{2} \leqslant k<n<(m+1)^{2}\right]}_{k, m \geqslant 0}
\end{aligned}
$$

Floor/Ceiling Sums

Example: Find a closed form for $\left.\sum_{0 \leqslant k<n} \mid \sqrt{k}\right]$
Case $n=a^{2}$, for a value $a \in \mathbb{N}$
Then $S_{2}=0$, while:

$$
\begin{aligned}
S_{1} & =\sum_{k, m \geqslant 0} m\left[m^{2} \leqslant k<(m+1)^{2} \leqslant a^{2}\right] \\
& =\sum_{m \geqslant 0} m\left((m+1)^{2}-m^{2}\right)[m+1 \leqslant a] \\
& =\sum_{m \geqslant 0} m(2 m+1)[m<a] \\
& =\sum_{m \geqslant 0}(2 m(m-1)+3 m)[m<a] \\
& =\sum_{m \geqslant 0}\left(2 m^{2}+3 m^{-1}\right)[m<a]=\sum_{0}^{a}\left(2 m^{2}+3 m^{\frac{1}{2}}\right) \delta m \\
& =\left.\left(\frac{2}{3} m^{3}+\frac{3}{2} m^{2}\right)\right|_{0} ^{a}=\frac{2}{3} a(a-1)(a-2)+\frac{3}{2} a(a-1) \\
& =\frac{2}{3} a^{3}-\frac{1}{2} a^{2}-\frac{1}{6} a=\frac{1}{6} a(a-1)(4 a+1)
\end{aligned}
$$

Floor/Ceiling Sums

Example: Find a closed form for $\sum_{0 \leqslant k<n}\lfloor\sqrt{k}\rfloor$
Case $n \neq b^{2}$, for any integer b
Let $a=\lfloor\sqrt{n}\rfloor$. Then:

- For $0 \leqslant k<a^{2}$ we get $S_{1}=\frac{2}{3} a^{3}-\frac{1}{2} a^{2}-\frac{1}{6} a$ and $S_{2}=0$, as before.
- For $a^{2} \leqslant k<n$, it is $S_{1}=0$ and:

$$
\begin{aligned}
S_{2} & =\sum_{k, m \geqslant 0} m\left[m^{2} \leqslant k<n<(m+1)^{2}\right] \\
& =\sum_{k} a\left[a^{2} \leqslant k<n\right] \\
& =a \sum_{k}\left[a^{2} \leqslant k<n\right] \\
& =a\left(n-a^{2}\right)=a n-a^{3}
\end{aligned}
$$

Floor/Ceiling Sums

Example: Find a closed form for $\sum_{0 \leqslant k<n}\lfloor\sqrt{k}]$
To summarize:

$$
\begin{aligned}
\sum_{0 \leqslant k<n}\lfloor\sqrt{k}\rfloor & =\frac{2}{3} a^{3}-\frac{1}{2} a^{2}-\frac{1}{6} a+a n-a^{3} \\
& =a n-\frac{1}{3} a^{3}-\frac{1}{2} a^{2}-\frac{1}{6} a \text { where } a=\lfloor\sqrt{n}\rfloor
\end{aligned}
$$

[^0]: ${ }^{1}$ Entrance reserved to book purchasers.

