
Integer Functions
ITT9132 Concrete Mathematics

Lecture 6 � 1 March 2019

Chapter Three

Floors and Ceilings

Floor/Ceiling Applications

Floor/Ceiling Recurrences

`mod': The Binary Operation

Floor/Ceiling Sums



Contents

1 Floors and Ceilings

2 Floor/Ceiling Applications

3 Floor/Ceiling Recurrences

4 `mod': The Binary Operation

5 Floor/Ceiling Sums



Next section

1 Floors and Ceilings

2 Floor/Ceiling Applications

3 Floor/Ceiling Recurrences

4 `mod': The Binary Operation

5 Floor/Ceiling Sums



Floors and Ceilings

De�nition

The �oor bxc is the greatest integer not larger than x ;

The ceiling dxe is the smallest integer not smaller than x .

bπc= 3 b−πc=−4
dπe= 4 d−πe=−3



Properties of bxc and dxe

For every x ∈ R:
1 bxc= x = dxe iff x ∈ Z
2 x−1< bxc6 x 6 dxe< x+1

3 b−xc=−dxe and d−xe=−bxc
4 dxe−bxc= [x 6∈ Z]



Warmup: Representing numbers

Problem

Let n= 2m+ `. What are closed formulas for m and `?



Warmup: Representing numbers

Problem

Let n= 2m+ `. What are closed formulas for m and `?

Solution

First, 2m 6 n < 2m+1.

As lg, the logarithm in base 2, is an increasing function, m 6 lgn <m+1.

Then:
m= blgnc .

Next, `= n−2m. Then:
`= n−2blgnc .



Warmup: the generalized Dirichlet box principle

Statement of the principle

Let m and n be positive integers. If n items are stored into m boxes, then:

at least one box will contain at least dn/me objects, and
at least one box will contain at most bn/mc objects.



Warmup: the generalized Dirichlet box principle

Statement of the principle

Let m and n be positive integers. If n items are stored into m boxes, then:

at least one box will contain at least dn/me objects, and
at least one box will contain at most bn/mc objects.

Proof

By contradiction, assume each of the m boxes contains fewer than dn/me objects.
Then

n 6m ·
(⌈ n

m

⌉
−1
)

or equivalently ,
n

m
+16

⌈ n

m

⌉
:

which is impossible.
Similarly, if each of the m boxes contained more than bn/mc objects, we would have

n >m ·
(⌊ n

m

⌋
+1
)

or equivalently ,
n

m
−1>

⌊ n

m

⌋
:

which is also impossible.



Properties of bxc and dxe (cont.)

For every x ∈ R and n ∈ Z:
5 bxc= n i� n 6 x < n+1

6 bxc= n i� x−1< n 6 x

5 dxe= n i� n−1< x 6 n

8 dxe= n i� x 6 n < x+1

9 bx+nc= bxc+n but, in general, bnxc 6= nbxc.

10 dx+ne= dxe+n but, in general, dnxe 6= ndxe.

11 x < n i� bxc< n

12 n < x i� n < dxe

13 x 6 n i� dxe6 n

14 n 6 x i� n 6 bxc



Generalization of property #9

Theorem

bx+yc=
{
bxc+ byc if 06 {x}+{y}< 1 ,
bxc+ byc+1 if 16 {x}+{y}< 2 .

where {x}= x−bxc is the fractional part of x .

Proof. Let x = bxc+{x} and y = byc+{y}. Then:

bx+yc= bbxc+ byc+{x}+{y}c
= bxc+ byc+ b{x}+{y}c

and clearly

b{x}+{y}c=
{

0 if 06 {x}+{y}< 1 ,
1 if 16 {x}+{y}< 2 .

Q.E.D.



Warmup: When is bnxc= nbxc?

The problem

Give a necessary and su�cient condition on n and x so that

bnxc= nbxc

where n is a positive integer.



Warmup: When is bnxc= nbxc?

The problem

Give a necessary and su�cient condition on n and x so that

bnxc= nbxc

where n is a positive integer.

The solution

Write x = bxc+{x}. Then

bnxc= bnbxc+n{x}c= nbxc+ bn{x}c

As {x} is nonnegative, so is bn{x}c. Then

bnxc= nbxc if and only if {x}< 1/n
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Floor/Ceiling Applications

Theorem

The binary representation of a natural number n > 0 has m= blog2 nc+1 bits.

Proof.

n= am−12
m−1+am−22

m−2+ · · ·+a12+a0︸ ︷︷ ︸
m bits

where am−1 = 1

Thus, 2m−1 6 n < 2m, which gives m−16 log2 n <m. The last
formula is valid if and only if blog2 nc=m−1. Q.E.D.

Example: n= 35= 1000112

m= blog2 35c+1= 5+1= 6



Floor/Ceiling Applications

Theorem

The binary representation of a natural number n > 0 has m= blog2 nc+1 bits.

Proof.

n= am−12
m−1+am−22

m−2+ · · ·+a12+a0︸ ︷︷ ︸
m bits

where am−1 = 1

Thus, 2m−1 6 n < 2m, which gives m−16 log2 n <m. The last
formula is valid if and only if blog2 nc=m−1. Q.E.D.

Example: n= 35= 1000112

m= blog2 35c+1= 5+1= 6



Floor/Ceiling Applications (2)

Theorem

Let f : A⊆ R→ R be a continuous, strictly increasing function with the property that,
if f (x) ∈ Z, then x ∈ Z. Then:

bf (x)c= bf (bxc)c and df (x)e= df (dxe)e

whenever f (x), f (bxc), and f (dxe) are all de�ned.

Proof. (for the ceiling function)

If x ∈ Z, then x = dxe, and there is nothing to prove.

If x 6∈ Z, then x < dxe, so f (x)< f (dxe)6 df (dxe)e as f is strictly increasing.
Also, f (x)6 df (x)e6 df (dxe)e since the ceiling function is non-decreasing.

If df (x)e< df (dxe)e, by the intermediate value theorem there exists y such that
x 6 y < dxe and f (y) = df (x)e.
Such y is an integer, because of f 's special property, so actually x < y < dxe.
But there are no integers strictly between x and dxe. This contradiction implies
that we must have df (x)e= df (dxe)e.

Q.E.D.



Floor/Ceiling Applications (2a)

Example⌊
x+m
n

⌋
=
⌊
bxc+m

n

⌋
⌈
x+m
n

⌉
=
⌈
dxe+m

n

⌉

⌈
dxe/10
10

⌉
10

= dx/1000e

⌊√
bxc
⌋
=
⌊√

x
⌋

In contrast: ⌈√
bxc
⌉
6=
⌈√

x
⌉

For example,
⌈√
b1/4c

⌉
= 0 but

⌈√
1/4
⌉
= 1.



Floor/Ceiling Applications (3) : Intervals

For Real numbers α 6= β

Range Nr. of integer values of t Restrictions
α 6 t 6 β bβc−dαe+1 α 6 β

α 6 t < β dβe−dαe α 6 β

α < t 6 β bβc−bαc α 6 β

α < t < β dβe−bαc−1 α < β



Floor/Ceiling Applications (3) : Intervals

For Real numbers α 6= β

Range Nr. of integer values of t Restrictions
α 6 t 6 β bβc−dαe+1 α 6 β

α 6 t < β dβe−dαe α 6 β

α < t 6 β bβc−bαc α 6 β

α < t < β dβe−bαc−1 α < β

This is because, if t ∈ Z, then:

α 6 t if and only if dαe6 t

α < t if and only if bαc< t if and only if bαc+16 t

t 6 β if and only if t 6 bβc
t < β if and only if t < dβe if and only if t 6 dβe−1

and the slice [m : n] = [m..n]∩Z, m 6 n, has n−m+1 elements.
(Note that, if α = β are both integers, then dβe−bαc−1=−1.)



A Game-Theoretical Application

The Concrete Mathematics Club Roulette

The Concrete Mathematics Casino1 has a special roulette game:

The roulette itself has 1000 slots, numbered from 1 to 1000.

A number n is a winner if and only if
⌊
3
√
n
⌋
is a factor of n.

There is a bet of 1 dollar to play one round.

If the number is a winner, players earn 5 dollars.

1Entrance reserved to book purchasers.



A Game-Theoretical Application

The Concrete Mathematics Club Roulette

The Concrete Mathematics Casino1 has a special roulette game:

The roulette itself has 1000 slots, numbered from 1 to 1000.

A number n is a winner if and only if
⌊
3
√
n
⌋
is a factor of n.

There is a bet of 1 dollar to play one round.

If the number is a winner, players earn 5 dollars.

Is it convenient to play?

If there are W winning numbers and L losing numbers, then the average win is:

5W −L

1000
=

5W − (1000−W )

1000
=

6

1000
W −1

dollars, so:

The game is convenient if and only if W >

⌈
1000

6

⌉
= 167.

1Entrance reserved to book purchasers.



Winning or Losing at the Concrete Maths Roulette

We have:

W =
1000

∑
n=1

[⌊
3
√
n
⌋
| n
]

= ∑
k,n

[
k =

⌊
3
√
n
⌋]
[k | n] [16 n 6 1000]

= ∑
k,m,n

[
k3 6 n < (k+1)3

]
[n= km] [16 n 6 1000]

= 1+ ∑
k,m

[
k3 6 km < (k+1)3

]
[16 k< 10]

because for n= 1000 it is only k = 10,m= 100

= 1+ ∑
k,m

[
k2 6m < (k+1)3/k

]
[16 k < 10]

= 1+ ∑
16k<10

(⌈
k2+3k+3+1/k

⌉
−
⌈
k2
⌉)

= 1+ ∑
16k<10

(3k+3+ d1/ke) but for k > 1 it is d1/ke= 1

= 1+3 · 9 ·10
2

+9 ·4= 1+135+36= 172> 167



Floor/Ceiling Applications (3) : Spectra

De�nition

The spectrum of a real number α is an in�nite multiset of integers

Spec(α) = {bαc ,b2αc ,b3αc , . . .}= {bnαc | n > 1}

An integer m= bnαc ∈ Spec(α) can appear for more than one value of n.
For example, Spec(1/2) = {0,1,1,2,2,3,3,4,4, . . .}.

Example.

Spec(
√
2) = {1,2,4,5,7,8,9,11,12,14,15,16,18,19,21,22,24, . . .}

Spec(2+
√
2) = {3,6,10,13,17,20,23,27,30,34,37,40,44,47,51, . . .}

Note that
⌊
n(2+

√
2)
⌋
=
⌊
n
√
2
⌋
+2n.



Floor/Ceiling Applications (3) : Spectra

De�nition

The spectrum of a real number α is an in�nite multiset of integers

Spec(α) = {bαc ,b2αc ,b3αc , . . .}= {bnαc | n > 1}

An integer m= bnαc ∈ Spec(α) can appear for more than one value of n.
For example, Spec(1/2) = {0,1,1,2,2,3,3,4,4, . . .}.

Theorem

If α,β > 1 and α < β then Spec(α) 6= Spec(β).

Proof. As α,β > 1, Spec(α) and Spec(β) have no repetitions.

Let m ∈ Z be so large that m(β −α)> 1.
For such m, mβ −mα > 1, hence bmβc> bmαc.
Thus Spec(β) has fewer than m elements which are 6 bmαc,
while Spec(α) has at least m such elements. Q.E.D.



Spectra and partitions of integers

Theorem

Spec(
√
2) and Spec(2+

√
2) form a partition of the integers.



Spectra and partitions of integers

Theorem

Spec(
√
2) and Spec(2+

√
2) form a partition of the integers.

Lemma

Spec(α) has N(α,n) = d(n+1)/αe−1 elements not larger than n.

Indeed:

N(α,n) = ∑
k>0

[bkαc6 n] (recall that Spec(α) is a multiset)

= ∑
k>0

[bkαc< n+1]

= ∑
k>0

[kα < n+1]

= ∑
k

[0< k < (n+1)/α]

= d(n+1)/αe−1 by the formula in the “intervals” slide



Spectra and partitions of integers

Theorem

Spec(
√
2) and Spec(2+

√
2) form a partition of the integers.

Lemma

Spec(α) has N(α,n) = d(n+1)/αe−1 elements not larger than n.

As Spec(
√
2) and Spec(2+

√
2) have no repetitions, we only need to prove that

N(
√
2,n)+N(2+

√
2,n) = n:

N(
√
2,n)+N(2+

√
2,n) =

⌈
n+1√

2

⌉
−1+

⌈
n+1

2+
√
2

⌉
−1

=

⌊
n+1√

2

⌋
+

⌊
n+1

2+
√
2

⌋
because both are noninteger

=
n+1√

2
−
{
n+1√

2

}
+

n+1

2+
√
2
−
{

n+1

2+
√
2

}
= (n+1)

(
1√
2
+

1

2+
√
2

)
︸ ︷︷ ︸

=1

−
({

n+1√
2

}
+

{
n+1

2+
√
2

})
︸ ︷︷ ︸

=1

= n+1−1= n

because if x and y are both noninteger but x+y is integer, then {x}+{y}= 1.
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Floor/Ceiling Recurrences: Examples

The Knuth numbers:

K0 = 1 ;

Kn+1 = 1+min(2Kbn/2c,3Kbn/3c) for n > 0 .

The sequence begins with:

K = 〈1,3,3,4,7,7,7,9,9,10,13, . . .〉

Merge sort n= dn/2e+ bn/2c records, number of comparisons:

f1 = 0 ;

fn+1 = f (bn/2c)+ f (dn/2e)+n−1 for n > 1 .

The sequence begins with:

f = 〈0,1,3,5,8,11,14,17,21,25,29,33 . . .〉



Floor/Ceiling Recurrences: More Examples

The Josephus problem numbers:

J(1) = 1 ;

J(n) = 2J(bn/2c)+(−1)n+1 for n > 1 .

The sequence begins as
J = 〈1,1,3,1,3,5,7,1,3,5, . . .〉



Generalization of Josephus problem

Josephus problem in general: from n elements, every q-th is circularly
eliminated. The element with number Jq(n) will survive.

Theorem

Jq(n) = qn+1−Dk

where k is the smallest integer such that Dk > (q−1)n and Dk is computed using the
following recurrence relation:

D0 = 1 ;

Dk =

⌈
q

q−1
Dk−1

⌉
for every k > 0 .



Generalization of Josephus problem

Josephus problem in general: from n elements, every q-th is circularly
eliminated. The element with number Jq(n) will survive.

Theorem

Jq(n) = qn+1−Dk

where k is the smallest integer such that Dk > (q−1)n and Dk is computed using the
following recurrence relation:

D0 = 1 ;

Dk =

⌈
q

q−1
Dk−1

⌉
for every k > 0 .

For example, if q = 5 and n= 12

D = 〈1,2,3,4,5,7,9,12,15,19,24,30,38,48,60,75 . . .〉

Then (q−1)n= 4 ·12= 48, the proper Dk is D14 = 60, and

J5(12) = 5 ·12+1−D14 = 60+1−60= 1



Generalization of Josephus problem

Josephus problem in general: from n elements, every q-th is circularly
eliminated. The element with number Jq(n) will survive.

Theorem

Jq(n) = qn+1−Dk

where k is the smallest integer such that Dk > (q−1)n and Dk is computed using the
following recurrence relation:

D0 = 1 ;

Dk =

⌈
q

q−1
Dk−1

⌉
for every k > 0 .

Sanity check: q = 2

Then Dk =

⌈
2

2−1
Dk−1

⌉
= 2Dk−1 for every k > 1, so Dk = 2k .

If n= 2m+ `, then k =m+1 and:

J2(n) = 2 · (2m+ `)+1−2m+1 = 2`+1



Proof of the Theorem

Whenever a person is passed over, we can assign a new number, as in the
example below fo n= 12,q = 5
1 2 3 4 5 6 7 8 9 10 11 12
13 14 15 16 17 18 19 20 21 22
23 24 25 26 27 28 29 30
31 32 33 34 35 36
37 38 39 40 41
42 43 44 45
46 47 48
49 50 51
52 53
54 55
56
57
58
59
60

Denoting by N and N ′ the current and previous element in a column, we get:

N =

⌊
N ′−n−1

q−1

⌋
+N ′−n



Proof of the Theorem (2)

Denoting by D = qn+1−N and D ′ = qn+1−N ′, we rewrite:

N =

⌊
N ′−n−1

q−1

⌋
+N ′−n

as:

qn+1−D =

⌊
qn+1−D ′−n−1

q−1

⌋
+qn+1−D ′−n

Let us transform this:

D = qn+1−
⌊
qn+1−D ′−n−1

q−1

⌋
−qn−1+D ′+n

=D ′+n−
⌊
n(q−1)−D ′

q−1

⌋
=D ′+n−

⌊
n− D ′

q−1

⌋
=D ′−

⌊
−D ′

q−1

⌋
=D ′+

⌈
D ′

q−1

⌉
=

⌈
q

q−1
D ′
⌉

Q.E.D.
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`mod': The Binary Operation

If n and m are positive integers

Write n= q ·m+ r with q, r ∈ N and 06 r <m. Then:

q = bn/mc and r = n−m · bn/mc= n mod m

If x and y are real numbers

We follow the same idea and set:

x mod y = x−y · bx/yc ∀x ,y ∈ R , y 6= 0

Note that, with this de�nition:

5 mod 3 = 5−3 · b5/3c = 5−3 ·1 = 2
5 mod −3 = 5− (−3) · b5/(−3)c = 5+3 · (−2) = −1
−5 mod 3 = −5−3 · b−5/3c = −5−3 · (−2) = 1
−5 mod −3 = −5− (−3) · b−5/(−3)c = −5+3 ·1 = −2

For y = 0 we want to respect the general rule that x− (x mod y) ∈ yZ= {yk | k ∈ Z}.
This is done by:

x mod 0= x



Properties of the mod operation

x = bxc+x mod 1

For y = 1 it is x mod 1= x−1 · bx/1c= x−bxc.

In other words: x mod 1= {x}.

The distributive law: c(x mod y) = cx mod cy

If c = 0 both sides vanish; if y = 0 both sides equal cx . Otherwise:

c(x mod y) = c(x−y bx/yc) = cx−cy bcx/cyc= cx mod cy



Warmup: Solve the following recurrence

Xn = n for 06 n <m ,
Xn = Xn−m+1 for n >m .



Warmup: Solve the following recurrence

Xn = n for 06 n <m ,
Xn = Xn−m+1 for n >m .

Solution

We plot the �rst values when m= 4:

n 0 1 2 3 4 5 6 7 8 9
Xn 0 1 2 3 1 2 3 4 2 3

We conjecture that:

if n= qm+ r with q, r ∈ N and 06 r <m then Xn = q+ r :

which clearly yields Xn = bn/mc+n mod m.

Induction base: True for n= 0,1, . . . ,m−1.
Inductive step: Let n >m. If Xn′ = q′+ r ′ for every n′ = q′m+ r ′ < n= qm+ r ,
then:

Xn = Xn−m+1= X(q−1)m+r +1= q−1+ r +1= q+ r
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Floor/Ceiling Sums

Example: Find a closed form for ∑06k<n

⌊√
k
⌋

∑
06k<n

⌊√
k
⌋
= ∑

k,m>0

m [k < n]
[
m=

⌊√
k
⌋]

= ∑
k,m>0

m [k < n]
[
m 6

√
k <m+1

]
= ∑

k,m>0

m [k < n]
[
m2 6 k < (m+1)2

]
= ∑

k,m>0

m
[
m2 6 k < (m+1)2 6 n

]
︸ ︷︷ ︸

=S1

+ ∑
k,m>0

m
[
m2 6 k < n < (m+1)2

]
︸ ︷︷ ︸

=S2



Floor/Ceiling Sums

Example: Find a closed form for ∑06k<n

⌊√
k
⌋

Case n= a2, for a value a ∈ N
Then S2 = 0, while:

S1 = ∑
k,m>0

m
[
m2 6 k < (m+1)2 6 a2

]
= ∑

m>0
m((m+1)2−m2) [m+16 a]

= ∑
m>0

m(2m+1) [m < a]

= ∑
m>0

(2m(m−1)+3m) [m < a]

= ∑
m>0

(2m2+3m1) [m < a] =
a

∑
0

(2m2+3m1)δm

=

(
2

3
m3+

3

2
m2

)∣∣∣a
0
=

2

3
a(a−1)(a−2)+ 3

2
a(a−1)

=
2

3
a3− 1

2
a2− 1

6
a=

1

6
a(a−1)(4a+1)



Floor/Ceiling Sums

Example: Find a closed form for ∑06k<n

⌊√
k
⌋

Case n 6= b2, for any integer b

Let a=
⌊√

n
⌋
. Then:

For 06 k < a2 we get S1 = 2

3
a3− 1

2
a2− 1

6
a and S2 = 0, as before.

For a2 6 k < n, it is S1 = 0 and:

S2 = ∑
k,m>0

m
[
m2 6 k < n < (m+1)2

]
= ∑

k

a
[
a2 6 k < n

]
= a∑

k

[
a2 6 k < n

]
= a(n−a2) = an−a3



Floor/Ceiling Sums

Example: Find a closed form for ∑06k<n

⌊√
k
⌋

To summarize:

∑
06k<n

⌊√
k
⌋
=

2

3
a3− 1

2
a2− 1

6
a+an−a3

= an− 1

3
a3− 1

2
a2− 1

6
a where a=

⌊√
n
⌋
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