Integer Functions ITT9132 Concrete Mathematics Lecture 6 – 1 March 2019

Chapter Three Floors and Ceilings Floor/Ceiling Applications Floor/Ceiling Recurrences 'mod': The Binary Operation Floor/Ceiling Sums

Contents

- 1 Floors and Ceilings
- 2 Floor/Ceiling Applications
- 3 Floor/Ceiling Recurrences
- 4 'mod': The Binary Operation
- 5 Floor/Ceiling Sums

Next section

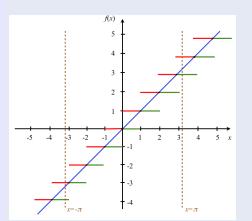
1 Floors and Ceilings

- 2 Floor/Ceiling Applications
- 3 Floor/Ceiling Recurrences
- 4 'mod': The Binary Operation
- 5 Floor/Ceiling Sums

Floors and Ceilings

Definition

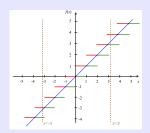
The floor [x] is the greatest integer not larger than x;
The ceiling [x] is the smallest integer not smaller than x.



 $\lfloor \pi \rfloor = 3 \quad \lfloor -\pi \rfloor = -4$ $\lceil \pi \rceil = 4 \quad \lceil -\pi \rceil = -3$

Properties of $\lfloor x \rfloor$ and $\lceil x \rceil$

For



every
$$x \in \mathbb{R}$$
:
(1) $\lfloor x \rfloor = x = \lceil x \rceil$ iff $x \in \mathbb{Z}$
(2) $x - 1 < \lfloor x \rfloor \le x \le \lceil x \rceil < x + 1$
(3) $\lfloor -x \rfloor = -\lceil x \rceil$ and $\lceil -x \rceil = -\lfloor x \rfloor$
(4) $\lceil x \rceil - \lfloor x \rfloor = \lfloor x \notin \mathbb{Z} \rfloor$

Warmup: Representing numbers

Problem

Let $n = 2^m + \ell$. What are closed formulas for m and ℓ ?

Warmup: Representing numbers

Problem

Let $n = 2^m + \ell$. What are closed formulas for m and ℓ ?

Solution

First, $2^m \leqslant n < 2^{m+1}$.

• As Ig, the logarithm in base 2, is an increasing function, $m \leq \lg n < m + 1$.

Then:

$$m = \lfloor \lg n \rfloor$$
.

Next, $\ell = n - 2^m$. Then:

$$\ell = n - 2^{\lfloor \lg n \rfloor}.$$

Warmup: the generalized Dirichlet box principle

Statement of the principle

Let m and n be positive integers. If n items are stored into m boxes, then:

- **at least one** box will contain at least $\lfloor n/m \rfloor$ objects, and
- at least one box will contain at most $\lfloor n/m \rfloor$ objects.

Statement of the principle

Let m and n be positive integers. If n items are stored into m boxes, then:

- **at least one box will contain at least** $\lceil n/m \rceil$ objects, and
- at least one box will contain at most $\lfloor n/m \rfloor$ objects.

Proof

By contradiction, assume each of the *m* boxes contains fewer than $\lceil n/m \rceil$ objects. Then

$$n \leq m \cdot \left(\left\lceil \frac{n}{m} \right\rceil - 1 \right)$$
 or equivalently, $\frac{n}{m} + 1 \leq \left\lceil \frac{n}{m} \right\rceil$

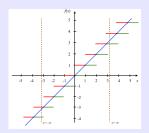
which is impossible.

Similarly, if each of the m boxes contained more than $\lfloor n/m \rfloor$ objects, we would have

$$n \ge m \cdot \left(\left\lfloor \frac{n}{m} \right\rfloor + 1 \right)$$
 or equivalently, $\frac{n}{m} - 1 \ge \left\lfloor \frac{n}{m} \right\rfloor$:

which is also impossible.

Properties of $\lfloor x \rfloor$ and $\lceil x \rceil$ (cont.)



For every
$$x \in \mathbb{R}$$
 and $n \in \mathbb{Z}$:
(5) $\lfloor x \rfloor = n$ iff $n \leq x < n+1$
(6) $\lfloor x \rfloor = n$ iff $n-1 < n \leq x$
(5) $\lceil x \rceil = n$ iff $n-1 < x \leq n$
(8) $\lceil x \rceil = n$ iff $x \leq n < x+1$
(9) $\lfloor x+n \rfloor = \lfloor x \rfloor + n$ but, in general, $\lfloor nx \rfloor \neq n \lfloor x \rfloor$.
(10) $\lceil x+n \rceil = \lceil x \rceil + n$ but, in general, $\lceil nx \rceil \neq n \lceil x \rceil$.
(11) $x < n$ iff $\lfloor x \rfloor < n$
(12) $n < x$ iff $n < \lceil x \rceil$
(13) $x \leq n$ iff $\lceil x \rceil \leq n$
(14) $n \leq x$ iff $n \leq \lfloor x \rfloor$

Generalization of property #9

Theorem

$$\lfloor x+y \rfloor = \begin{cases} \lfloor x \rfloor + \lfloor y \rfloor & \text{if } 0 \leq \{x\} + \{y\} < 1, \\ \lfloor x \rfloor + \lfloor y \rfloor + 1 & \text{if } 1 \leq \{x\} + \{y\} < 2. \end{cases}$$

where $\{x\} = x - \lfloor x \rfloor$ is the fractional part of x.

Proof. Let $x = \lfloor x \rfloor + \{x\}$ and $y = \lfloor y \rfloor + \{y\}$. Then:

$$\lfloor x + y \rfloor = \lfloor \lfloor x \rfloor + \lfloor y \rfloor + \{x\} + \{y\} \rfloor$$
$$= \lfloor x \rfloor + \lfloor y \rfloor + \lfloor \{x\} + \{y\} \rfloor$$

and clearly

$$\lfloor \{x\} + \{y\} \rfloor = \begin{cases} 0 & \text{if } 0 \leq \{x\} + \{y\} < 1, \\ 1 & \text{if } 1 \leq \{x\} + \{y\} < 2. \end{cases}$$

Q.E.D.

Warmup: When is $\lfloor nx \rfloor = n \lfloor x \rfloor$?

The problem

Give a necessary and sufficient condition on n and x so that

$$\lfloor nx \rfloor = n \lfloor x \rfloor$$

where n is a positive integer.

Warmup: When is $\lfloor nx \rfloor = n \lfloor x \rfloor$?

The problem

Give a necessary and sufficient condition on n and x so that

$$\lfloor nx \rfloor = n \lfloor x \rfloor$$

where n is a positive integer.

The solution

Write $x = \lfloor x \rfloor + \{x\}$. Then

$$\lfloor nx \rfloor = \lfloor n \lfloor x \rfloor + n\{x\} \rfloor = n \lfloor x \rfloor + \lfloor n\{x\} \rfloor$$

As $\{x\}$ is nonnegative, so is $\lfloor n\{x\} \rfloor$. Then

 $\lfloor nx \rfloor = n \lfloor x \rfloor$ if and only if $\{x\} < 1/n$

Next section

1 Floors and Ceilings

- 2 Floor/Ceiling Applications
- 3 Floor/Ceiling Recurrences
- 4 'mod': The Binary Operation
- 5 Floor/Ceiling Sums

Floor/Ceiling Applications

Theorem

The binary representation of a natural number n > 0 has $m = \lfloor \log_2 n \rfloor + 1$ bits.

Proof.

$$n = \underbrace{a_{m-1}2^{m-1} + a_{m-2}2^{m-2} + \dots + a_12 + a_0}_{m \text{ bits}} \text{ where } a_{m-1} = 1$$

Thus, $2^{m-1} \le n < 2^m$, which gives $m-1 \le \log_2 n < m$. The last formula is valid if and only if $\lfloor \log_2 n \rfloor = m-1$. Q.E.D.

Example: *n* = 35 = 100011₂

$$m = \lfloor \log_2 35 \rfloor + 1 = 5 + 1 = 6$$

Floor/Ceiling Applications

Theorem

The binary representation of a natural number n > 0 has $m = \lfloor \log_2 n \rfloor + 1$ bits.

Proof.

$$n = \underbrace{a_{m-1}2^{m-1} + a_{m-2}2^{m-2} + \dots + a_12 + a_0}_{m \text{ bits}} \text{ where } a_{m-1} = 1$$

Thus, $2^{m-1} \le n < 2^m$, which gives $m-1 \le \log_2 n < m$. The last formula is valid if and only if $\lfloor \log_2 n \rfloor = m-1$. Q.E.D.

Example: $n = 35 = 100011_2$

$$m = \lfloor \log_2 35 \rfloor + 1 = 5 + 1 = 6$$

Floor/Ceiling Applications (2)

Theorem

Let $f: A \subseteq \mathbb{R} \to \mathbb{R}$ be a continuous, strictly increasing function with the property that, if $f(x) \in \mathbb{Z}$, then $x \in \mathbb{Z}$. Then:

```
\lfloor f(x) \rfloor = \lfloor f(\lfloor x \rfloor) \rfloor and \lceil f(x) \rceil = \lceil f(\lceil x \rceil) \rceil
```

whenever f(x), $f(\lfloor x \rfloor)$, and $f(\lceil x \rceil)$ are all defined.

Proof. (for the ceiling function)

- If $x \in \mathbb{Z}$, then $x = \lceil x \rceil$, and there is nothing to prove.
- If $x \notin \mathbb{Z}$, then $x < \lceil x \rceil$, so $f(x) < f(\lceil x \rceil) \leq \lceil f(\lceil x \rceil) \rceil$ as f is strictly increasing. Also, $f(x) \leq \lceil f(x) \rceil \leq \lceil f(\lceil x \rceil) \rceil$ since the ceiling function is non-decreasing.
- If $\lceil f(x) \rceil < \lceil f(\lceil x \rceil) \rceil$, by the intermediate value theorem there exists y such that $x \le y < \lceil x \rceil$ and $f(y) = \lceil f(x) \rceil$.
- Such y is an integer, because of f's special property, so actually $x < y < \lceil x \rceil$.
- But there are no integers strictly between x and [x]. This contradiction implies that we must have [f(x)] = [f([x])].

ΟΕΓ

Floor/Ceiling Applications (2a)

Example

•
$$\lfloor \frac{x+m}{n} \rfloor = \lfloor \frac{\lfloor x \rfloor + m}{n} \rfloor$$

• $\lceil \frac{x+m}{n} \rceil = \lceil \frac{\lceil x \rceil + m}{n} \rceil$
• $\lceil \frac{\lceil \frac{\lfloor x \rfloor / 10}{10}}{10} \rceil = \lceil x / 1000^{-1}$
• $\lfloor \sqrt{\lfloor x \rfloor} \rfloor = \lfloor \sqrt{x} \rfloor$

In contrast:

$$\left\lceil \sqrt{\lfloor x \rfloor} \right\rceil \neq \left\lceil \sqrt{x} \right\rceil$$

For example, $\left\lceil \sqrt{\lfloor 1/4 \rfloor} \right\rceil = 0$ but $\left\lceil \sqrt{1/4} \right\rceil = 1$.

Floor/Ceiling Applications (3) : Intervals

For Real numbers lpha eq eta

Range	Nr. of integer values of t	Restrictions
$\alpha \leqslant t \leqslant \beta$	$\lfloor \beta \rfloor - \lceil \alpha \rceil + 1$	$lpha\leqslanteta$
$\alpha \leqslant t < \beta$	$\lceil \beta \rceil - \lceil \alpha \rceil$	$lpha\leqslanteta$
$\alpha < t \leq \beta$	$\lfloor \beta \rfloor - \lfloor \alpha \rfloor$	$lpha\leqslanteta$
$\alpha < t < \beta$	$\lceil \beta \rceil - \lfloor \alpha \rfloor - 1$	$\alpha < \beta$

Floor/Ceiling Applications (3) : Intervals

For Real numbers lpha eq eta

Range	Nr. of integer values of t	Restrictions
$\alpha \leqslant t \leqslant \beta$	$\lfloor \beta floor - \lceil \alpha ceil + 1$	$lpha\leqslanteta$
$\alpha \leqslant t < \beta$	$\lceil \beta \rceil - \lceil \alpha \rceil$	$lpha\leqslanteta$
$\alpha < t \leqslant \beta$	$\lfloor \beta \rfloor - \lfloor \alpha \rfloor$	$lpha\leqslanteta$
$\alpha < t < \beta$	$\lceil \beta \rceil - \lfloor \alpha \rfloor - 1$	$\alpha < \beta$

This is because, if $t \in \mathbb{Z}$, then:

 $\begin{array}{ll} \alpha \leqslant t & \text{if and only if} \quad \lceil \alpha \rceil \leqslant t \\ \alpha < t & \text{if and only if} \quad \lfloor \alpha \rfloor < t & \text{if and only if} \quad \lfloor \alpha \rfloor + 1 \leqslant t \\ t \leqslant \beta & \text{if and only if} \quad t \leqslant \lfloor \beta \rfloor \\ t < \beta & \text{if and only if} \quad t < \lceil \beta \rceil & \text{if and only if} \quad t \leqslant \lceil \beta \rceil - 1 \end{array}$

and the slice $[m:n] = [m..n] \cap \mathbb{Z}$, $m \leq n$, has n-m+1 elements. (Note that, if $\alpha = \beta$ are both integers, then $\lceil \beta \rceil - \lfloor \alpha \rfloor - 1 = -1$.)

A Game-Theoretical Application

The Concrete Mathematics Club Roulette

The Concrete Mathematics Casino¹ has a special roulette game:

- The roulette itself has 1000 slots, numbered from 1 to 1000.
- A number *n* is a winner if and only if $\lfloor \sqrt[3]{n} \rfloor$ is a factor of *n*.
- There is a bet of 1 dollar to play one round.
- If the number is a winner, players earn 5 dollars.

¹Entrance reserved to book purchasers.

A Game-Theoretical Application

The Concrete Mathematics Club Roulette

The Concrete Mathematics Casino¹ has a special roulette game:

- The roulette itself has 1000 slots, numbered from 1 to 1000.
- A number *n* is a winner if and only if $|\sqrt[3]{n}|$ is a factor of *n*.
- There is a bet of 1 dollar to play one round.
- If the number is a winner, players earn 5 dollars.

Is it convenient to play?

If there are W winning numbers and L losing numbers, then the average win is:

$$\frac{5W - L}{1000} = \frac{5W - (1000 - W)}{1000} = \frac{6}{1000}W - 1$$

dollars, so:

The game is convenient if and only if
$$W \ge \left\lceil \frac{1000}{6} \right\rceil = 167$$
.

¹Entrance reserved to book purchasers.

Winning or Losing at the Concrete Maths Roulette

We have:

$$\begin{aligned} \mathcal{V} &= \sum_{n=1}^{1000} \left[\left\lfloor \sqrt[3]{n} \right\rfloor \mid n \right] \\ &= \sum_{k,n} \left[k = \left\lfloor \sqrt[3]{n} \right\rfloor \right] \left[k \mid n \right] \left[1 \leqslant n \leqslant 1000 \right] \\ &= \sum_{k,m,n} \left[k^3 \leqslant n < (k+1)^3 \right] \left[n = km \right] \left[1 \leqslant n \leqslant 1000 \right] \\ &= 1 + \sum_{k,m} \left[k^3 \leqslant km < (k+1)^3 \right] \left[1 \leqslant k < 10 \right] \\ &\text{because for } n = 1000 \text{ it is only } k = 10, m = 100 \\ &= 1 + \sum_{k,m} \left[k^2 \leqslant m < (k+1)^3/k \right] \left[1 \leqslant k < 10 \right] \\ &= 1 + \sum_{k,m} \left[k^2 \leqslant m < (k+1)^3/k \right] \left[1 \leqslant k < 10 \right] \\ &= 1 + \sum_{1 \leqslant k < 10} \left(\left\lceil k^2 + 3k + 3 + 1/k \right\rceil - \left\lceil k^2 \right\rceil \right) \\ &= 1 + \sum_{1 \leqslant k < 10} \left(3k + 3 + \left\lceil 1/k \right\rceil \right) \text{ but for } k \geqslant 1 \text{ it is } \lceil 1/k \rceil = 1 \\ &= 1 + 3 \cdot \frac{9 \cdot 10}{2} + 9 \cdot 4 = 1 + 135 + 36 = 172 > 167 \end{aligned}$$

Floor/Ceiling Applications (3) : Spectra

Definition

The spectrum of a real number α is an infinite *multiset* of integers

$$\operatorname{Spec}(\alpha) = \{ \lfloor \alpha \rfloor, \lfloor 2\alpha \rfloor, \lfloor 3\alpha \rfloor, \ldots \} = \{ \lfloor n\alpha \rfloor \mid n \ge 1 \}$$

An integer $m = \lfloor n\alpha \rfloor \in \operatorname{Spec}(\alpha)$ can appear for more than one value of n. For example, $\operatorname{Spec}(1/2) = \{0, 1, 1, 2, 2, 3, 3, 4, 4, \ldots\}$.

Example.

Spec
$$(\sqrt{2}) = \{1, 2, 4, 5, 7, 8, 9, 11, 12, 14, 15, 16, 18, 19, 21, 22, 24, ...\}$$

Spec $(2 + \sqrt{2}) = \{3, 6, 10, 13, 17, 20, 23, 27, 30, 34, 37, 40, 44, 47, 51, ...\}$

Note that $\lfloor n(2+\sqrt{2}) \rfloor = \lfloor n\sqrt{2} \rfloor + 2n$.

Floor/Ceiling Applications (3) : Spectra

Definition

The spectrum of a real number α is an infinite *multiset* of integers

$$\operatorname{Spec}(\alpha) = \{ \lfloor \alpha \rfloor, \lfloor 2\alpha \rfloor, \lfloor 3\alpha \rfloor, \ldots \} = \{ \lfloor n\alpha \rfloor \mid n \ge 1 \}$$

An integer $m = \lfloor n\alpha \rfloor \in \operatorname{Spec}(\alpha)$ can appear for more than one value of n. For example, $\operatorname{Spec}(1/2) = \{0, 1, 1, 2, 2, 3, 3, 4, 4, \ldots\}$.

Theorem

If $\alpha, \beta \ge 1$ and $\alpha < \beta$ then $\operatorname{Spec}(\alpha) \neq \operatorname{Spec}(\beta)$.

Proof. As $\alpha, \beta \ge 1$, Spec (α) and Spec (β) have no repetitions.

- Let $m \in \mathbb{Z}$ be so large that $m(\beta \alpha) \ge 1$.
- For such m, $m\beta m\alpha \ge 1$, hence $\lfloor m\beta \rfloor > \lfloor m\alpha \rfloor$.
- Thus $\operatorname{Spec}(\beta)$ has fewer than *m* elements which are $\leq \lfloor m\alpha \rfloor$, while $\operatorname{Spec}(\alpha)$ has at least *m* such elements. Q.E.D

Spectra and partitions of integers

Theorem

 $\operatorname{Spec}(\sqrt{2})$ and $\operatorname{Spec}(2+\sqrt{2})$ form a partition of the integers.

Spectra and partitions of integers

Theorem

 $\operatorname{Spec}(\sqrt{2})$ and $\operatorname{Spec}(2+\sqrt{2})$ form a partition of the integers.

Lemma

Spec(α) has $N(\alpha, n) = \lceil (n+1)/\alpha \rceil - 1$ elements not larger than n.

Indeed:

$$N(\alpha, n) = \sum_{k>0} \left[\lfloor k\alpha \rfloor \leqslant n \right] \quad \text{(recall that Spec}(\alpha) \text{ is a multiset} \text{)}$$
$$= \sum_{k>0} \left[\lfloor k\alpha \rfloor < n+1 \right]$$
$$= \sum_{k>0} \left[k\alpha < n+1 \right]$$
$$= \sum_{k} \left[0 < k < (n+1)/\alpha \right]$$
$$= \left[(n+1)/\alpha \right] - 1 \text{ by the formula in the "intervals" slide}$$

Spectra and partitions of integers

Theorem

 $\operatorname{Spec}(\sqrt{2})$ and $\operatorname{Spec}(2+\sqrt{2})$ form a partition of the integers.

Lemma

Spec(α) has $N(\alpha, n) = \lceil (n+1)/\alpha \rceil - 1$ elements not larger than n.

As Spec($\sqrt{2}$) and Spec($2 + \sqrt{2}$) have no repetitions, we only need to prove that $N(\sqrt{2}, n) + N(2 + \sqrt{2}, n) = n$:

$$N(\sqrt{2}, n) + N(2 + \sqrt{2}, n) = \left[\frac{n+1}{\sqrt{2}}\right] - 1 + \left[\frac{n+1}{2 + \sqrt{2}}\right] - 1$$

= $\left\lfloor \frac{n+1}{\sqrt{2}} \right\rfloor + \left\lfloor \frac{n+1}{2 + \sqrt{2}} \right\rfloor$ because both are noninteger
= $\frac{n+1}{\sqrt{2}} - \left\{\frac{n+1}{\sqrt{2}}\right\} + \frac{n+1}{2 + \sqrt{2}} - \left\{\frac{n+1}{2 + \sqrt{2}}\right\}$
= $(n+1) \underbrace{\left(\frac{1}{\sqrt{2}} + \frac{1}{2 + \sqrt{2}}\right)}_{=1} - \underbrace{\left(\left\{\frac{n+1}{\sqrt{2}}\right\} + \left\{\frac{n+1}{2 + \sqrt{2}}\right\}\right)}_{=1}$
= $n+1-1 = n$

because if x and y are both noninteger but x + y is integer, then $\{x\} + \{y\} = 1$.

Next section

1 Floors and Ceilings

- 2 Floor/Ceiling Applications
- 3 Floor/Ceiling Recurrences
- 4 'mod': The Binary Operation
- 5 Floor/Ceiling Sums

Floor/Ceiling Recurrences: Examples

The Knuth numbers:

$$K_0 = 1;$$

$$K_{n+1} = 1 + \min(2K_{\lfloor n/2 \rfloor}, 3K_{\lfloor n/3 \rfloor}) \text{ for } n \ge 0.$$

The sequence begins with:

$$K = \langle 1, 3, 3, 4, 7, 7, 7, 9, 9, 10, 13, \ldots \rangle$$

Merge sort $n = \lceil n/2 \rceil + \lfloor n/2 \rfloor$ records, number of comparisons:

$$f_1 = 0;$$

$$f_{n+1} = f(\lfloor n/2 \rfloor) + f(\lceil n/2 \rceil) + n - 1 \text{ for } n > 1.$$

The sequence begins with:

 $f = \langle 0, 1, 3, 5, 8, 11, 14, 17, 21, 25, 29, 33 \dots \rangle$

Floor/Ceiling Recurrences: More Examples

The Josephus problem numbers:

$$J(1) = 1;$$

 $J(n) = 2J(\lfloor n/2 \rfloor) + (-1)^{n+1}$ for $n > 1.$

The sequence begins as

 $J = \langle 1, 1, 3, 1, 3, 5, 7, 1, 3, 5, \ldots \rangle$

Generalization of Josephus problem

Josephus problem in general: from *n* elements, every *q*-th is circularly eliminated. The element with number $J_q(n)$ will survive.

Theorem

$$J_q(n) = qn + 1 - D_k$$

where k is the smallest integer such that $D_k > (q-1)n$ and D_k is computed using the following recurrence relation:

$$D_0 = 1;$$

 $D_k = \left[\frac{q}{q-1}D_{k-1}\right] \text{ for every } k > 0.$

Generalization of Josephus problem

Josephus problem in general: from *n* elements, every *q*-th is circularly eliminated. The element with number $J_q(n)$ will survive.

Theorem

$$J_q(n) = qn + 1 - D_k$$

where k is the smallest integer such that $D_k > (q-1)n$ and D_k is computed using the following recurrence relation:

$$D_0 = 1;$$

 $D_k = \left[\frac{q}{q-1}D_{k-1}\right] \text{ for every } k > 0.$

For example, if q = 5 and n = 12

 $D = \langle 1, 2, 3, 4, 5, 7, 9, 12, 15, 19, 24, 30, 38, 48, 60, 75 \dots \rangle$

Then $(q-1)n = 4 \cdot 12 = 48$, the proper D_k is $D_{14} = 60$, and

 $J_5(12) = 5 \cdot 12 + 1 - D_{14} = 60 + 1 - 60 = 1$

Generalization of Josephus problem

Josephus problem in general: from *n* elements, every *q*-th is circularly eliminated. The element with number $J_q(n)$ will survive.

Theorem

$$J_q(n) = qn + 1 - D_k$$

where k is the smallest integer such that $D_k > (q-1)n$ and D_k is computed using the following recurrence relation:

$$D_0 = 1;$$

 $D_k = \left\lceil \frac{q}{q-1} D_{k-1} \right\rceil$ for every $k > 0.$

Sanity check: q = 2

Then
$$D_k = \left\lceil \frac{2}{2-1} D_{k-1} \right\rceil = 2D_{k-1}$$
 for every $k \ge 1$, so $D_k = 2^k$.
If $n = 2^m + \ell$, then $k = m+1$ and:

$$J_2(n) = 2 \cdot (2^m + \ell) + 1 - 2^{m+1} = 2\ell + 1$$

Proof of the Theorem

example below fo $n = 12, q = 5$ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 60	Whenever a person is passed over, we can assign a new number, as in the												
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	example below fo $n = 12, q = 5$												
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 45 49 50 51 55 52 53 55 55 56 57 55 55 58 59 59 51	1	2	3	4	5	6	7	8	9	10	11	12	
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 45 49 50 51 55 56 55 55 55 56 57 58 59	13	14	15	16		17	18	19	20		21	22	
37 38 39 40 41 42 43 44 45 46 47 48 45 49 50 51 52 52 53 55 56 56 57 58 59	23	24		25		26	27	28			29	30	
42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59	31	32				33	34	35			36		
46 47 48 49 50 51 52 53 54 55 56 57 58 59	37	38				39	40				41		
49 50 51 52 53 54 55 56 57 58 59	42	43				44					45		
52 53 54 55 56 57 58 59	46	47				48							
54 55 56 57 58 59	49	50				51							
56 57 58 59	52					53							
57 58 59	54					55							
58 59	56												
59	57												
	58												
60	59												
	60												

Denoting by N and N' the current and previous element in a column, we get:

$$N = \left\lfloor \frac{N' - n - 1}{q - 1} \right\rfloor + N' - n$$

Proof of the Theorem (2)

Denoting by D = qn + 1 - N and D' = qn + 1 - N', we rewrite:

$$N = \left\lfloor \frac{N' - n - 1}{q - 1} \right\rfloor + N' - n$$

as:

$$qn+1-D = \left\lfloor \frac{qn+1-D'-n-1}{q-1} \right\rfloor + qn+1-D'-n$$

Let us transform this:

$$D = qn + 1 - \left\lfloor \frac{qn + 1 - D' - n - 1}{q - 1} \right\rfloor - qn - 1 + D' + n$$
$$= D' + n - \left\lfloor \frac{n(q - 1) - D'}{q - 1} \right\rfloor = D' + n - \left\lfloor n - \frac{D'}{q - 1} \right\rfloor$$
$$= D' - \left\lfloor \frac{-D'}{q - 1} \right\rfloor$$
$$= D' + \left\lceil \frac{D'}{q - 1} \right\rceil$$
$$= \left\lceil \frac{q}{q - 1} D' \right\rceil$$

Next section

1 Floors and Ceilings

- 2 Floor/Ceiling Applications
- 3 Floor/Ceiling Recurrences
- 4 'mod': The Binary Operation
- 5 Floor/Ceiling Sums

'mod': The Binary Operation

If n and m are positive integers

Write $n = q \cdot m + r$ with $q, r \in \mathbb{N}$ and $0 \leq r < m$. Then:

$$q = \lfloor n/m \rfloor$$
 and $r = n - m \cdot \lfloor n/m \rfloor = n \mod m$

If x and y are real numbers

We follow the same idea and set:

$$x \mod y = x - y \cdot \lfloor x/y \rfloor \quad \forall x, y \in \mathbb{R}, \ y \neq 0$$

Note that, with this definition:

For y = 0 we want to respect the general rule that $x - (x \mod y) \in y\mathbb{Z} = \{yk \mid k \in \mathbb{Z}\}$. This is done by:

Properties of the mod operation

$x = \lfloor x \rfloor + x \mod 1$

For y = 1 it is $x \mod 1 = x - 1 \cdot \lfloor x/1 \rfloor = x - \lfloor x \rfloor$.

In other words: $x \mod 1 = \{x\}$.

The distributive law: $c(x \mod y) = cx \mod cy$

If c = 0 both sides vanish; if y = 0 both sides equal cx. Otherwise:

$$c(x \bmod y) = c(x - y \lfloor x/y \rfloor) = cx - cy \lfloor cx/cy \rfloor = cx \bmod cy$$

Warmup: Solve the following recurrence

$$\begin{array}{ll} X_n = n & \text{for } 0 \leq n < m, \\ X_n = X_{n-m} + 1 & \text{for } n \geq m. \end{array}$$

Warmup: Solve the following recurrence

$$\begin{aligned} X_n &= n & \text{for } 0 \leqslant n < m, \\ X_n &= X_{n-m} + 1 & \text{for } n \geqslant m. \end{aligned}$$

Solution

We plot the first values when m = 4:

We conjecture that:

if
$$n = qm + r$$
 with $q, r \in \mathbb{N}$ and $0 \leq r < m$ then $X_n = q + r$:

which clearly yields $X_n = \lfloor n/m \rfloor + n \mod m$.

- Induction base: True for $n = 0, 1, \dots, m-1$.
- Inductive step: Let $n \ge m$. If $X_{n'} = q' + r'$ for every n' = q'm + r' < n = qm + r, then:

$$X_n = X_{n-m} + 1 = X_{(q-1)m+r} + 1 = q - 1 + r + 1 = q + r$$

Next section

1 Floors and Ceilings

- 2 Floor/Ceiling Applications
- 3 Floor/Ceiling Recurrences
- 4 'mod': The Binary Operation
- 5 Floor/Ceiling Sums

Example: Find a closed form for $\sum_{0 \le k < n} \left| \sqrt{k} \right|$

0≤

$$\sum_{k,k
$$= \sum_{\substack{k,m \ge 0}} m[k < n] \left[m \leqslant \sqrt{k} < m+1 \right]$$
$$= \sum_{\substack{k,m \ge 0}} m[k < n] \left[m^2 \leqslant k < (m+1)^2 \right]$$
$$= \underbrace{\sum_{\substack{k,m \ge 0}} m \left[m^2 \leqslant k < (m+1)^2 \leqslant n \right]}_{=S_1}$$
$$+ \underbrace{\sum_{\substack{k,m \ge 0}} m \left[m^2 \leqslant k < n < (m+1)^2 \right]}_{=S_2}$$$$

Example: Find a closed form for $\sum_{0 \le k < n} \left| \sqrt{k} \right|$

Case
$$n = a^2$$
, for a value $a \in \mathbb{N}$

Then $S_2 = 0$, while:

$$\begin{split} S_1 &= \sum_{k,m \ge 0} m \left[m^2 \leqslant k < (m+1)^2 \leqslant a^2 \right] \\ &= \sum_{m \ge 0} m ((m+1)^2 - m^2) \left[m + 1 \leqslant a \right] \\ &= \sum_{m \ge 0} m (2m+1) \left[m < a \right] \\ &= \sum_{m \ge 0} (2m(m-1) + 3m) \left[m < a \right] \\ &= \sum_{m \ge 0} (2m^2 + 3m^1) \left[m < a \right] = \sum_{0}^{a} (2m^2 + 3m^1) \delta m \\ &= \left(\frac{2}{3}m^3 + \frac{3}{2}m^2 \right) \Big|_{0}^{a} = \frac{2}{3}a(a-1)(a-2) + \frac{3}{2}a(a-1) \\ &= \frac{2}{3}a^3 - \frac{1}{2}a^2 - \frac{1}{6}a = \frac{1}{6}a(a-1)(4a+1) \end{split}$$

Example: Find a closed form for $\sum_{0 \leq k < n} \left| \sqrt{k} \right|$

Case $n \neq b^2$, for any integer b

Let $a = \lfloor \sqrt{n} \rfloor$. Then:

• For $0 \leqslant k < a^2$ we get $S_1 = \frac{2}{3}a^3 - \frac{1}{2}a^2 - \frac{1}{6}a$ and $S_2 = 0$, as before.

For
$$a^2 \leqslant k < n$$
, it is $S_1 = 0$ and:

$$S_2 = \sum_{k,m \ge 0} m \left[m^2 \le k < n < (m+1)^2 \right]$$
$$= \sum_k a \left[a^2 \le k < n \right]$$
$$= a \sum_k \left[a^2 \le k < n \right]$$
$$= a(n-a^2) = an-a^3$$

Example: Find a closed form for $\sum_{0 \le k < n} \left| \sqrt{k} \right|$

To summarize:

$$\sum_{0 \le k < n} \left\lfloor \sqrt{k} \right\rfloor = \frac{2}{3}a^3 - \frac{1}{2}a^2 - \frac{1}{6}a + an - a^3$$
$$= an - \frac{1}{3}a^3 - \frac{1}{2}a^2 - \frac{1}{6}a \text{ where } a = \lfloor \sqrt{n} \rfloor$$

