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Division (with remainder)

De�nition

Let a and b be integers and a> 0. Then division of b by a is �nding an integer
quotient q and a remainder r satisfying the condition

b = aq+ r with 06 r < a .

Here:

b � dividend

a � divider (=divisor) (=factor)

q = ba/bc � quotient

r = amodb � remainder (=residue)

Example

If a= 3 and b = 17, then the division of b by a yields:

17= 3 ·5+2.
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Negative dividends

If the divisor is positive, then the remainder is always non-negative.

For example

If a= 3 and b =−17, then the division of b by a yields:

−17= 3 · (−6)+1.

The integer b can be always represented as b = aq+ r with 06 r < a due to the
fact that b either coincides with a term of the sequence

. . . ,−3a,−2a,−a,0,a,2a,3a, . . .

or lies between two consecutive elements.
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NB! Division by a negative integer yields a negative
remainder

5mod3= 5−3b5/3c= 2

5mod −3= 5− (−3)b5/(−3)c=−1

−5mod3=−5−3b−5/3c= 1

−5mod −3=−5− (−3)b−5/(−3)c=−2

Be careful!

Some computer languages use another de�nition.

From now on, we assume a> 0.



Divisibility

De�nition

Let a and b be integers. We say that a divides b , or a is a divisor of b, or b is a
multiple of a, if there exists an integer m such that b = a ·m.

Notations:

a|b: a divides b

a | b: a divides b

b
...a: b is a multiple of a

For example

3 | 111 7 | −91 −7 | −91



Divisors

De�nition

If a | b, then:
a is called a divisor, or factor, or multiplier of b.

Properties

Every integer b 6= 0,1,−1 has at least four divisors: 1,−1,b,−b.
a | 0 for any integer a; reverse relation 0 | a is valid only for a= 0. So: 0 | 0.
1 | b for any integer b, whereas b | 1 i� b = 1 or b =−1.



More properties

1 If a | b, then ±a | ±b.

2 If a | b and a | c, then a | mb+nc for every m,n ∈ Z.
3 a | b i� ac | bc for every integer c.

Notes:

Property 1 allows to only study divisibility between positive integers.

By property 2, if a is a divisor of both b and c, then it is a divisor of both b+c
and b−c.
We then say that a is a common divisor of b and c (as well as of b+c, b−c,
b+2c etc.)



Next section

1 Prime and Composite Numbers

Divisibility

2 Greatest Common Divisor

De�nition

The Euclidean algorithm

3 Primes

The Fundamental Theorem of Arithmetic

Distribution of prime numbers



Next subsection

1 Prime and Composite Numbers

Divisibility

2 Greatest Common Divisor

De�nition

The Euclidean algorithm

3 Primes

The Fundamental Theorem of Arithmetic

Distribution of prime numbers



Greatest Common Divisor

De�nition

The greatest common divisor (gcd) of two or more nonzero integers is the largest
positive integer that divides the numbers without a remainder.

Example

The common divisors of 36 and 60 are 1, 2, 3, 4, 6, 12.
The greatest common divisor is gcd(36,60) = 12.

The greatest common divisor always exists, because the set of common divisors
of any two given integers is non-empty and �nite.
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The Euclidean algorithm

The algorithm to compute gcd(a,b) for positive integers a and b

Input: Positive integers a and b, assume that a> b
Output: gcd(a,b)

while b > 0 do

1 r := a mod b
2 a := b
3 b := r

done

return(a)



Example: compute gcd(2322,654)

a b

2322 654

654 360

360 294

294 66

66 30

30 6

6 0
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Important questions to answer:

Does the algorithm terminate for every input?

Is the result the greatest common divisor?

How long does it take?



Termination of the Euclidean algorithm

In any cycle, the pair of integers (a,b) is replaced by (b, r), where r
is the remainder of division of a by b.

Hence, r < b.

The second number of the pair decreases, but remains non-negative,
so the process cannot last in�nitely long.



Correctness of the Euclidean algorithm

Theorem

If r is a remainder of division of a by b, then

gcd(a,b) = gcd(b, r)

Proof. It follows from the equality a= bq+ r that:

1 if d |a and d |b, then d |r ;
2 if d |b and d |r , then d |a.

That is: the common divisors of a and b are precisely the common
divisors of b and r .

Then the greatest common divisors must also coincide. Q.E.D.



Complexity of the Euclidean algorithm

Theorem

The number of steps of the Euclidean algorithm applied to two positive integers a and
b is at most 1+lga+lgb.

Proof:

Let us consider the step where the pair (a,b) is replaced by (b, r).

Then r < b and b+ r 6 a

Hence, 2r < r +b 6 a, that is, br < ab/2. So the product of the two parameters
halves at each step.

If after k cycles the product is still positive, then ab/2k > 1, so:

k 6 lg(ab) = lga+lgb .

Q.E.D.



The numbers produced by the Euclidean algorithm

a= bq1+ r1 r1 can be expressed in terms of b and a

b = r1q2+ r2 r2 can be expressed in terms of r1 and b

r1 = r2q3+ r3 r3 can be expressed in terms of r2 and r1

· · · · · · · · · · · · · · · · · · · · · · · ·
rk−3 = rk−2qk−1+ rk−1 rk−1 can be expressed in terms of rk−2 and rk−3

rk−2 = rk−1qk + rk rk can be expressed in terms of rk−1 and rk−2

rk−1 = rkqk+1

Now, one can extract rk = gcd(a,b) from the second last equality and substitute there
step-by-step rk−1, rk−2, . . . using previous equations.
We obtain �nally that rk equals to a linear combination of a and b with (not
necessarily positive) integer coe�cients.



GCD as a linear combination

Theorem (Bézout's identity)

Let d = gcd(a,b). Then:

gcd(a,b) = min{n > 1 | ∃s,t ∈ Z : n= sa+ tb} .

For example: a= 360 and b = 294

gcd(a,b) = 294 · (−11)+360 ·9=−11a+9b



Proof of Bézout's identity

We may suppose a> b > 1. Call:

L ::= {m ∈ Z | ∃s,t ∈ Z .m= sa+ tb}

As a= 1a+0b and b = 0a+1b, L∩Z+ is nonempty:

Let `= sa+ tb be its minimum.

Then every common divisor of a and b is a divisor of `.

The proof is complete if we show that ` | a and ` | b.

Now, for q = ba/`c it is:

06 r = a− ` · ba/`c= a−q`= (1−qs)a+(−qt)b ∈ L .

As ` is the minimum positive integer in L, it must be r = 0: that is, ` | a.

The proof that ` | b is similar.



Application of EA: solving of linear Diophantine Equations

Corollary

Let a, b and c be positive integers. The equation ax+by = c has integer solutions if
and only if c is a multiple of gcd(a,b).

The method: Making use of Euclidean algorithm, compute s,t ∈ Z such that
sa+ tb = gcd(a,b). Then:

x =
cs

gcd(a,b)

y =
ct

gcd(a,b)



Linear Diophantine Equations (2)

Example: 92x+17y = 3

From EA:
a b Relation
92 17
17 7 92= 5 ·17+7
7 3 17= 2 ·7+3
3 1 7= 2 ·3+1
1 0

Transformations:

1= 7−2 ·3
= 7−2 · (17−7 ·2) = (−2) ·17+5 ·7=
= (−2) ·17+5 · (92−5 ·17) = 5 ·92+(−27) ·17

gcd(92,7)|3 yields a solution

x =
3 ·5

gcd(92,17)
= 3 ·5= 15

y =
3 · (−27)

gcd(92,17)
=−3 ·27=−81



Linear Diophantine Equations (3)

Example: 5x+3y = 2 has multiple solutions

gcd(5,3) = 1

As 1= 2 ·5+3 ·3, then one solution is:

x = 2 ·2= 4

y =−3 ·2=−6

As 1= (−10) ·5+17 ·3, then another
solution is:

x =−10 ·2=−20
y = 17 ·2= 34

Example: 15x+9y = 8 has no solutions

As gcd(15,9) = 3, the equation can be rewritten:

3 · (5x+3y) = 8.

The left-hand side of the equation is divisible by 3, but the right-hand side is not,
therefore the equality cannot be valid for any integer x and y .
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More about Linear Diophantine Equations (1)

The general solution of a Diophantine equation ax+by = c is{
x = x0+

kb
gcd(a,b)

y = y0− ka
gcd(a,b)

where x0 and y0 are particular solutions and k is an integer.

Particular solutions can be found with the Euclidean algorithm:{
x0 = cs

gcd(a,b)

y0 = ct
gcd(a,b)

This equation has a solution with x and y integer if and only if gcd(a,b) | c.

The general solution above provides all integer solutions of the equation.

(see proof in http://en.wikipedia.org/wiki/Diophantine_equation )

http://en.wikipedia.org/wiki/Diophantine_{}equation


More about Linear Diophantine Equations (2)

Example: 5x+3y = 2

We have found that gcd(5,3) = 1 and its particular solutions are x0 = 4 and y0 =−6.

Thus, for any k ∈ Z: {
x = 4+3k
y = −6−5k

Solutions of the equation for k = . . . ,−3,−2,−1,0,1,2,3, . . . are in�nite sequences of
numbers:

x = . . . , −5, −2, 1, 4, 7, 10, 13, . . .
y = . . . , 9, 4, −1, −6, −11, −16, −21, . . .

Among others, if k =−8, then we get the solution x =−20,y = 34.



Next section

1 Prime and Composite Numbers
Divisibility

2 Greatest Common Divisor
De�nition
The Euclidean algorithm

3 Primes
The Fundamental Theorem of Arithmetic
Distribution of prime numbers



Prime and composite numbers

Every integer greater than 1 is either prime or composite, but not both:

A positive integer p is prime if it has only two positive divisors: namely, 1 and p.

By convention, 1 is not prime

Prime numbers: 2,3,5,7,11,13,17,19,23,29,31,37,41, . . .

An integer n > 2 that has three or more positive divisors is called composite.

Composite numbers: 4,6,8,9,10,12,14,15,16,18,20,21,22, . . .
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Another application of the Euclidean algorithm

The Fundamental Theorem of Arithmetic

Every positive integer n can be written uniquely as a (possibly empty for n= 1)
product of primes:

n= p1 · · ·pm =
m

∏
k=1

pk , p1 6 . . .6 pm

Proof:

Let n > 2 be the smallest integer with two di�erent prime factorizations:

n= p1 . . .pm = q1 · · ·qk , p1 6 . . .6 pm , q1 6 . . .6 qk

If p1 < q1, let s,t ∈ Z such that sp1+ tp2 = 1. Then:

sp1q2 · · ·qk + tq1q2 . . .qk = q2 · · ·qk

Now, as gcd(p1,q1) = 1 and p1 | q1q2 · · ·qk , it is p1 | q2 · · ·qk . But then,
n/p1 = q1q2 · · ·qk/p1 < n is an integer, despite p1 being smaller than any prime
factor of n: contradiction.

Similarly, it cannot be p1 > q1. Hence, p1 = q1. But then,
x = p2 · · ·pm = q2 · · ·qk < n has two di�erent prime factorizations, against n
being the smaller such positive integer: contradiction. Q.E.D.



Canonical form of integers

Every positive integer n can be represented uniquely as a product

n= pn1
1
pn2
2
· · ·pnkk = ∏

p

pnp , where np > 0∀p

For example:

600= 23 ·31 ·52 ·70 ·110 · · ·

35= 20 ·30 ·51 ·71 ·110 · · ·

5 251 400= 23 ·30 ·52 ·71 ·112 ·130 · · · ·290 ·311 ·370 · · ·



Prime-exponent representation of integers

The canonical form of an integer n= ∏p p
np provides a sequence of powers

〈n1,n2, . . .〉 as another representation.

For example:

600= 〈3,1,2,0,0,0, . . .〉
35= 〈0,0,1,1,0,0,0, . . .〉

5 251 400= 〈3,0,2,1,2,0,0,0,0,0,1,0,0, . . .〉



Prime-exponent representation and arithmetic operations

Multiplication

Let
m= pm1

1
pm2

2
· · ·pmk

k = ∏
p

pmp

n= pn1
1
pn2
2
· · ·pnkk = ∏

p

pnp

Then
mn= pm1+n1

1
pm2+n2
2

· · ·pmk+nk
k = ∏

p

pmp+np

Using prime-exponent representation:

mn= 〈m1+n1,m2+n2,m3+n3, . . .〉

For example

600 ·35= 〈3,1,2,0,0,0, . . .〉 · 〈0,0,1,1,0,0,0, . . .〉
= 〈3+0,1+0,2+1,0+1,0+0,0+0, . . .〉
= 〈3,1,3,1,0,0, . . .〉= 21 000
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Some other operations

The greatest common divisor and the least common multiple (lcm)

gcd(m,n) = 〈min(m1,n1),min(m2,n2),min(m3,n3), . . .〉

Dually,
lcm(m,n) = 〈max(m1,n1),max(m2,n2),max(m3,n3), . . .〉

Example

120= 23 ·31 ·51 = 〈3,1,1,0,0, . . .〉

36= 22 ·32 = 〈2,2,0,0, . . .〉
gcd(120,36) = 〈min(3,2),min(1,2),min(1,0), . . .〉= 〈2,1,0,0, . . .〉= 12

lcm(120,36) = 〈max(3,2),max(1,2),max(1,0), . . .〉= 〈3,2,1,0,0, . . .〉= 360



Properties of the GCD

Homogeneity

gcd(na,nb) = n ·gcd(a,b) for every positive integer n.

Proof.

Let a= pα1
1
· · ·pαk

k , b = p
β1
1
· · ·pβk

k , and gcd(a,b) = p
γ1
1
· · ·pγk

k , where γi =min(αi ,βi ). If

n= pn1
1
· · ·pnkk , then

gcd(na,nb) = p
min(α1+n1 ,β1+n1)
1

· · ·pmin(αk+nk ,βk+nk )
k =

= p
min(α1 ,β1)
1

pn1
1
· · ·pmin(αk ,βk )

k p
nk
k =

= pn1
1
· · ·pnkk p

γ1
1
· · ·pγk

k = n ·gcd(a,b)

Q.E.D.



Properties of the GCD

GCD and LCM

gcd(a,b) · lcm(a,b) = ab for every two positive integers a and b

Proof.

gcd(a,b) · lcm(a,b) = p
min(α1 ,β1)
1

· · ·pmin(αk ,βk )
k ·pmax(α1 ,β1)

1
· · ·pmax(αk ,βk )

k =

= p
min(α1 ,β1)+max(α1 ,β1)
1

· · ·pmin(αk ,βk )+max(αk ,βk )
k =

= p
α1+β1
1

· · ·pαk+βk
k = ab

Q.E.D.



Relatively prime numbers

De�nition

Two integers a and b are coprime, or relatively prime, if gcd(a,b) = 1.

Notations used:

gcd(a,b) = 1

a⊥ b

For example

16⊥ 25 and 99⊥ 100

Some simple properties:

Dividing a and b by their GCD yields relatively prime numbers:

gcd

(
a

gcd(a,b)
,

b

gcd(a,b)

)
= 1

Any two positive integers a and b can be represented as a= a′d and b = b′d ,
where d = gcd(a,b) and a′ ⊥ b′
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Properties of relatively prime numbers

Theorem

If a⊥ b, then gcd(ac,b) = gcd(c,b) for every positive integer c.

Proof:

Write a= ∏p p
αp , b = ∏p p

βp , and c = ∏p p
γp .

Then for every prime p, either αp = 0 or βp = 0 (or both).

If αp = 0, then pmin(αp+γp ,βp) = pmin(γp ,βp).

If βp = 0, then pmin(αp+γp ,βp) = pmin(αp+γp ,0) = 1= pmin(γp ,0) = pmin(γp ,βp).

Hence, the common divisors of ac and b are the same as the common divisors of
c and b. Q.E.D.



Divisibility

Observation

Let a= ∏p p
αp and b = ∏p p

βp . Then:

a|b iff αp 6 βp for every prime p .

Consequently:

1 If a⊥ c and b ⊥ c, then ab ⊥ c

2 If a|bc and a⊥ b, then a|c

3 If a|c, b|c and a⊥ b, then ab|c



Divisibility

Observation

Let a= ∏p p
αp and b = ∏p p

βp . Then:

a|b iff αp 6 βp for every prime p .

Consequently:

1 If a⊥ c and b ⊥ c, then ab ⊥ c

2 If a|bc and a⊥ b, then a|c

3 If a|c, b|c and a⊥ b, then ab|c

Example: compute gcd(560,315)

gcd(560,315) = gcd(5 ·112,5 ·63)
= 5 ·gcd(112,63) by the observation

= 5 ·gcd(24 ·7,63)
= 5 ·gcd(7,63) by the theorem

= 5 ·7= 35



The number of divisors

The canonic form of a positive integer allows to compute the number of its factors
without factorization:

Let n= pn1
1
· · ·pnkk .

Then any positive divisor of n has the form:

m=
k

∏
j=1

p
mj

j with 06mj 6 nj for every 16 j 6 k .

Then the number of divisors of n is: (n1+1) · (n2+1) · · ·(nk +1).

Example

694575= 34 ·52 ·73 has (4+1) · (2+1) · (3+1) = 5 ·3 ·4= 60 positive factors.
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The number of prime numbers

Euclid's theorem

There are in�nitely many prime numbers.

Proof. Suppose there are only �nitely many primes:

p1,p2,p3, . . . ,pk .

Consider then the number:

n= p1p2p3 · · ·pk +1

By the Fundamental Theorem of Arithmetics, n is a product of
powers of primes. But:

n mod pi = 1 for every i = 1,2,3, . . . ,k .

So there must exist some other prime number (possibly n itself)
which is not in the list p1, . . . ,pk . Q.E.D.



The number of prime numbers (another proof)

Theorem

For every positive integer n there exists a prime p > n.

Proof:

Let p be the smallest nontrivial divisor of m= n!+1.

Then p must be prime, because any divisor q of p is also a divisor of n.

But every integer 16 k 6 n is a factor of n!, so the division of m by k gives
remainder 1. Q.E.D.



The number of prime numbers: A proof by Paul Erd®s

Theorem

∑
p prime

1

p
=+∞ .



Primes are distributed �very irregularly�

Since all primes except 2 are odd, the di�erence between two primes must be at
least two, except 2 and 3.

Two primes whose di�erence is two are called twin primes. For example, (17,19)
or (3557,3559).

There is no proof of the conjecture that there are in�nitely many twin primes.

Theorem

For every positive integer k, there exist k consecutive composite integers.

Proof. Let n= k+1 and consider the numbers n!+2,n!+3, . . . ,n!+n. All
these numbers are composite because of i | n!+ i for every
i = 2,3, . . . ,n. Q.E.D.



Distribution diagrams for primes



The prime counting function π(n)

De�nition:
π(n) = number of primes in the set {1,2, . . . ,n}

The �rst values:

π(1) = 0 ;π(2) = 1 ; π(3) = 2 ;π(4) = 2 ;

π(5) = 3 ;π(6) = 3 ; π(7) = 4 ;π(8) = 4



The Prime Number Theorem

Theorem

π(n)∼ n

lnn
, that is, lim

n→∞

π(n) · lnn
n

= 1 .

Studying prime tables, Carl-Friedrich Gauss came up with the formula in 1791.

Jacques Hadamard and Charles de la Vallée Poussin proved the theorem
independently from each other in 1896.



The Prime Number Theorem (2)

Example: How many primes are with 200 digits?

The total number of positive integers with 200 digits is:

10200−10199 = 9 ·10199

The approximate number of primes with 200 digits is then:

π(10200)−π(10199)≈ 10200

200 ln10
− 10199

199 ln10
≈ 1.95 ·10197

The proportion of 200-digit numbers which are prime is thus:

1,95 ·10197

9 ·10199
≈ 1

460
= 0.22%



Warmup: Extending π(x) to positive reals

Problem

Let π(x) be the number of primes which are not larger than x ∈ R.
Prove or disprove: π(x)−π(x−1) = [x is prime].
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The formula is true if x is integer: but x is real . . .



Warmup: Extending π(x) to positive reals

Problem

Let π(x) be the number of primes which are not larger than x ∈ R.
Prove or disprove: π(x)−π(x−1) = [x is prime].

Solution

The formula is true if x is integer: but x is real . . .

But clearly π(x) = π(bxc): then

π(x)−π(x−1) = π(bxc)−π(bx−1c)
= π(bxc)−π(bxc−1)
= [bxc is prime] ,

which is the correct form of the thesis.
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