Number Theory
 ITT9132 Concrete Mathematics

```
Chapter Four
    'MOD': the Congruence Relation
    Independent Residues
    Additional Applications
    Phi and Mu
```


Contents

1 Modular arithmetic

2 Primality test

- Fermat's Little theorem
- Fermat's test
- The Rabin-Miller test

3 Phi and Mu

Next section

1 Modular arithmetic

2 Primality test
 - Fermat's Little theorem
 - Fermat's test
 - The Rabin-Miller test

3 Phi and Mu

Congruences

Definition

Let $a, b, c \in \mathbb{Z}$ with $m \geqslant 1$. a is congruent to b modulo m, written $a \equiv b(\bmod m)$, if a and b give the same remainder when divided by m.

Alternative definition: $a \equiv b(\bmod m)$ iff $m \backslash(b-a)$.

Congruence is an equivalence relation:
Reflexivity: $a \equiv a(\bmod m)$.
Symmetry: if $a \equiv b(\bmod m)$, then $b \equiv a(\bmod m)$.
Transitivity: if $a \equiv b(\bmod m)$ and $b \equiv c(\bmod m)$, then $a \equiv c(\bmod m)$.

Properties of the congruence relation

- If $a \equiv b(\bmod m)$ and $d \backslash m$, then $a \equiv b(\bmod d)$.
- If $a \equiv b\left(\bmod m_{1}\right), a \equiv b\left(\bmod m_{2}\right), \ldots, a \equiv b\left(\bmod m_{k}\right)$, then $a \equiv b$ $\left(\bmod \operatorname{lcm}\left(m_{1}, m_{2}, \ldots, m_{k}\right)\right)$.
- If $a \equiv b(\bmod m)$ and $c \equiv d(\bmod m)$, then $a+c \equiv b+d(\bmod m)$ and $a-c \equiv b-d(\bmod m)$.
- If $a \equiv b(\bmod m)$ and $c \equiv d(\bmod m)$, then $a c \equiv b d(\bmod m)$.
- If $a \equiv b(\bmod m)$, then $a c \equiv b c(\bmod m)$ for any integer c.
- If $a \equiv b(\bmod m)$ and $c \equiv d(\bmod m)$, then $a-c \equiv b-d(\bmod m)$.
- If $a \equiv b(\bmod m)$, then $a+u m \equiv b+v m(\bmod m)$ for every integers u and v
- If $k a \equiv k b(\bmod m)$ and $\operatorname{gcd}(k, m)=1$, then $a \equiv b(\bmod m)$.
- $a \equiv b(\bmod m)$ if and only if $a k \equiv b k(\bmod m k)$ for every natural number k.

Warmup: An impossible Josephus problem

The problem

Ten people are sitting in circle, and every m th person is executed.
Prove that, for every $k \geqslant 1$, the first, second, and third person executed cannot be 10 , k, and $k+1$, in this order.

Warmup: An impossible Josephus problem

The problem

Ten people are sitting in circle, and every m th person is executed.
Prove that, for every $k \geqslant 1$, the first, second, and third person executed cannot be 10 , k, and $k+1$, in this order.

Solution

- If 10 is the first to be executed, then $10 \mid m$.
- If k is the second to be executed, then $m \equiv k(\bmod 9)$.
- If $k+1$ is the third to be executed, then $m \equiv 1(\bmod 8)$, because $k+1$ is the first one after k.

But if $10 \mid m$, then m is even, and if $m \equiv 1(\bmod 8)$, then m is odd: it cannot be both at the same time.

Application of congruence relation

Example 1: Find the remainder of the division of $a=1395^{4} \cdot 675^{3}+12 \cdot 17 \cdot 22$ by 7.
As $1395 \equiv 2(\bmod 7), 675 \equiv 3(\bmod 7), 12 \equiv 5(\bmod 7), 17 \equiv 3(\bmod 7)$ and $22 \equiv 1$ $(\bmod 7)$, we have:

$$
a \equiv 2^{4} \cdot 3^{3}+5 \cdot 3 \cdot 1 \quad(\bmod 7)
$$

As $2^{4}=16 \equiv 2(\bmod 7), 3^{3}=27 \equiv 6(\bmod 7)$, and $5 \cdot 3 \cdot 1=15 \equiv 1(\bmod 7)$, it follows

$$
a \equiv 2 \cdot 6+1=13 \equiv 6 \quad(\bmod 7)
$$

Application of congruence relation

Example 2: Find the remainder of the division of $a=53 \cdot 47 \cdot 51 \cdot 43$ by 56 .
A. As $53 \cdot 47=2491 \equiv 27(\bmod 56)$ and $51 \cdot 43=2193 \equiv 9(\bmod 56)$,

$$
a \equiv 27 \cdot 9=243 \equiv 19 \quad(\bmod 56)
$$

B. As $53 \equiv-3(\bmod 56), 47 \equiv-9(\bmod 56), 51 \equiv-5(\bmod 56)$ and $43 \equiv-13(\bmod 56)$,

$$
a \equiv(-3) \cdot(-9) \cdot(-5) \cdot(-13)=1755 \equiv 19 \quad(\bmod 56)
$$

Application of congruence relation

Example 3: Find the remainder of the division of 45^{69} by 89
We make use of the method of squares:

$$
\begin{aligned}
45 & \equiv 45 \quad(\bmod 89) \\
45^{2}=2025 & \equiv 67 \quad(\bmod 89) \\
45^{4}=\left(45^{2}\right)^{2} & \equiv 67^{2}=4489 \equiv 39 \quad(\bmod 89) \\
45^{8}=\left(45^{4}\right)^{2} & \equiv 39^{2}=1521 \equiv 8 \quad(\bmod 89) \\
45^{16}=\left(45^{8}\right)^{2} & \equiv 8^{2}=64 \equiv 64 \quad(\bmod 89) \\
45^{32}=\left(45^{16}\right)^{2} & \equiv 64^{2}=4096 \equiv 2 \quad(\bmod 89) \\
45^{64}=\left(45^{32}\right)^{2} & \equiv 2^{2}=4 \equiv 4 \quad(\bmod 89)
\end{aligned}
$$

As $69=64+4+1$,

$$
45^{69}=45^{64} \cdot 45^{4} \cdot 45^{1} \equiv 4 \cdot 39 \cdot 45 \equiv 7020 \equiv 78 \quad(\bmod 89)
$$

Application of congruence relation

Let $n=a_{k} \cdot 10^{k}+a_{k-1} \cdot 10^{k-1}+\ldots+a_{1} \cdot 10+a_{0}$, where $a_{i} \in\{0,1, \ldots, 9\}$ are digits of its decimal representation.

Theorem

An integer n is divisible by 11 iff the difference of the sums of the odd-numbered digits and the even-numbered digits is divisible by 11 :

$$
11 \mid\left(a_{0}+a_{2}+\ldots\right)-\left(a_{1}+a_{3}+\ldots\right)
$$

Proof:

- We observe that $10 \equiv-1(\bmod 11)$.
- Then, $10^{i} \equiv(-1)^{i}(\bmod 11)$ for every i.
- We can conclude:

$$
\begin{aligned}
n & =a_{k} \cdot 10^{k}+a_{k-1} \cdot 10^{k-1}+\ldots+a_{1} \cdot 10+a_{0} \\
& \equiv a_{k} \cdot(-1)^{k}+a_{k-1} \cdot(-1)^{k-1}+\ldots+a_{1} \cdot(-1)+a_{0} \\
& \equiv\left(a_{0}+a_{2}+\ldots\right)-\left(a_{1}+a_{3}+\ldots\right)(\bmod 11) \text { Q.E.D. }
\end{aligned}
$$

Example 4: 34425730438 is divisible by 11

Indeed: $8+4+3+5+4+3=27$ and $3+0+7+2+4=16$, with $27-16=11$.

Attention to the powers!

Replacing numbers with congruence classes does not work with exponents!

- Let $n=7, a=11$, and $e=17$.
- Then $a \equiv 4(\bmod n)$ and $e \equiv 3(\bmod n) 3$.
- Now, $4^{3}=64=9 \cdot 7+1$, so $(11 \bmod 7)^{17 \bmod 7} \equiv 1(\bmod 7)$.
- However, $11^{17} \equiv 2(\bmod 7)$, because $11^{17}=505447028499293771=72206718357041967 \cdot 7+2$.

Attention to the powers!

Replacing numbers with congruence classes does not work with exponents!

- Let $n=7, a=11$, and $e=17$.
- Then $a \equiv 4(\bmod n)$ and $e \equiv 3(\bmod n) 3$.
- Now, $4^{3}=64=9 \cdot 7+1$, so $(11 \bmod 7)^{17 \bmod 7} \equiv 1(\bmod 7)$.
- However, $11^{17} \equiv 2(\bmod 7)$, because $11^{17}=505447028499293771=72206718357041967 \cdot 7+2$.

Reason why:

- Among integers, exponentiation is not a basic operation:
- Instead, it is the result of a sequence of multiplications.
- If you change the number of factors of a multiplication you cannot, in general, be sure that the result will stay the same.

Attention to the powers!

Replacing numbers with congruence classes does not work with exponents!

- Let $n=7, a=11$, and $e=17$.
- Then $a \equiv 4(\bmod n)$ and $e \equiv 3(\bmod n) 3$.
- Now, $4^{3}=64=9 \cdot 7+1$, so $(11 \bmod 7)^{17 \bmod 7} \equiv 1(\bmod 7)$.
- However, $11^{17} \equiv 2(\bmod 7)$, because $11^{17}=505447028499293771=72206718357041967 \cdot 7+2$.

Reason why:

- Among integers, exponentiation is not a basic operation:
- Instead, it is the result of a sequence of multiplications.
- If you change the number of factors of a multiplication you cannot, in general, be sure that the result will stay the same.
Solution: use Fermat's little theorem and/or Euler's theorem.

Strange numbers: "arithmetic of days of the week"

Addition:

\oplus	Su	Mo	Tu	We	Th	Fr	Sa
Su	Su	Mo	Tu	We	Th	Fr	Sa
Mo	Mo	Tu	We	Th	Fr	Sa	Su
Tu	Tu	We	Th	Fr	Sa	Su	Mo
We	We	Th	Fr	Sa	Su	Mo	Tu
Th	Th	Fr	Sa	Su	Mo	Tu	We
Fr	Fr	Sa	Su	Mo	Tu	We	Th
Sa	Sa	Su	Mo	Tu	We	Th	Fr

Multiplication:

\odot	Su	Mo	Tu	We	Th	Fr	Sa
Su							
Mo	Su	Mo	Tu	We	Th	Fr	Sa
Tu	Su	Tu	Th	Sa	Mo	We	Fr
We	Su	We	Sa	Tu	Fr	Mo	Th
Th	Su	Th	Mo	Fr	Tu	Sa	We
Fr	Su	Fr	We	Mo	Sa	Th	Tu
Sa	Su	Sa	Fr	Th	We	Tu	Mo

Strange numbers: "arithmetic of days of the week"

Addition:

\oplus	Su	Mo	Tu	We	Th	Fr	Sa
Su	Su	Mo	Tu	We	Th	Fr	Sa
Mo	Mo	Tu	We	Th	Fr	Sa	Su
Tu	Tu	We	Th	Fr	Sa	Su	Mo
We	We	Th	Fr	Sa	Su	Mo	Tu
Th	Th	Fr	Sa	Su	Mo	Tu	We
Fr	Fr	Sa	Su	Mo	Tu	We	Th
Sa	Sa	Su	Mo	Tu	We	Th	Fr

Commutativity:

$$
T u+F r=F r+T u \quad T u \cdot F r=F r \cdot T u
$$

Strange numbers: "arithmetic of days of the week"

Addition:

\oplus	Su	Mo	Tu	We	Th	Fr	Sa
Su	Su	Mo	Tu	We	Th	Fr	Sa
Mo	Mo	Tu	We	Th	Fr	Sa	Su
Tu	Tu	We	Th	Fr	Sa	Su	Mo
We	We	Th	Fr	Sa	Su	Mo	Tu
Th	Th	Fr	Sa	Su	Mo	Tu	We
Fr	Fr	Sa	Su	Mo	Tu	We	Th
Sa	Sa	Su	Mo	Tu	We	Th	Fr

Associativity:

$$
(M o+W e)+F r=M o+(W e+F r) \quad(M o \cdot W e) \cdot F r=M o \cdot(W e \cdot F r)
$$

Multiplication:

\odot	Su	Mo	Tu	We	Th	Fr	Sa
Su							
Mo	Su	Mo	Tu	We	Th	Fr	Sa
Tu	Su	Tu	Th	Sa	Mo	We	Fr
We	Su	We	Sa	Tu	Fr	Mo	Th
Th	Su	Th	Mo	Fr	Tu	Sa	We
Fr	Su	Fr	We	Mo	Sa	Th	Tu
Sa	Su	Sa	Fr	Th	We	Tu	Mo

Strange numbers: "arithmetic of days of the week"

Addition:

\oplus	Su	Mo	Tu	We	Th	Fr	Sa
Su	Su	Mo	Tu	We	Th	Fr	Sa
Mo	Mo	Tu	We	Th	Fr	Sa	Su
Tu	Tu	We	Th	Fr	Sa	Su	Mo
We	We	Th	Fr	Sa	Su	Mo	Tu
Th	Th	Fr	Sa	Su	Mo	Tu	We
Fr	Fr	Sa	Su	Mo	Tu	We	Th
Sa	Sa	Su	Mo	Tu	We	Th	Fr

Multiplication:

\odot	Su	Mo	Tu	We	Th	Fr	Sa
Su							
Mo	Su	Mo	Tu	We	Th	Fr	Sa
Tu	Su	Tu	Th	Sa	Mo	We	Fr
We	Su	We	Sa	Tu	Fr	Mo	Th
Th	Su	Th	Mo	Fr	Tu	Sa	We
Fr	Su	Fr	We	Mo	Sa	Th	Tu
Sa	Su	Sa	Fr	Th	We	Tu	Mo

Subtraction is the inverse operation of addition:

$$
T h-W e=(M o+W e)-W e=M o
$$

Strange numbers: "arithmetic of days of the week"

Addition:

\oplus	Su	Mo	Tu	We	Th	Fr	Sa
Su	Su	Mo	Tu	We	Th	Fr	Sa
Mo	Mo	Tu	We	Th	Fr	Sa	Su
Tu	Tu	We	Th	Fr	Sa	Su	Mo
We	We	Th	Fr	Sa	Su	Mo	Tu
Th	Th	Fr	Sa	Su	Mo	Tu	We
Fr	Fr	Sa	Su	Mo	Tu	We	Th
Sa	Sa	Su	Mo	Tu	We	Th	Fr

$S u$ is the zero element:

$$
W e+S u=W e \quad W e \cdot S u=S u
$$

$|$| \odot | Su | Mo | Tu | We | Th | Fr | Sa |
| :---: | :---: | :---: | :--- | :--- | :--- | :--- | :--- |
| Su |
Mo	Su	Mo	Tu	We	Th	Fr	Sa
Tu	Su	Tu	Th	Sa	Mo	We	Fr
We	Su	We	Sa	Tu	Fr	Mo	Th
Th	Su	Th	Mo	Fr	Tu	Sa	We
Fr	Su	Fr	We	Mo	Sa	Th	Tu
Sa	Su	Sa	Fr	Th	We	Tu	Mo

Strange numbers: "arithmetic of days of the week"

Addition:

\oplus	Su	Mo	Tu	We	Th	Fr	Sa
Su	Su	Mo	Tu	We	Th	Fr	Sa
Mo	Mo	Tu	We	Th	Fr	Sa	Su
Tu	Tu	We	Th	Fr	Sa	Su	Mo
We	We	Th	Fr	Sa	Su	Mo	Tu
Th	Th	Fr	Sa	Su	Mo	Tu	We
Fr	Fr	Sa	Su	Mo	Tu	We	Th
Sa	Sa	Su	Mo	Tu	We	Th	Fr

Multiplication:

\bigcirc	Su	Mo	Tu	We	Th	Fr	Sa
Su							
Mo	Su	Mo	Tu	We	Th	Fr	Sa
Tu	Su	Tu	Th	Sa	Mo	We	Fr
We	Su	We	Sa	Tu	Fr	Mo	Th
Th	Su	Th	Mo	Fr	Tu	Sa	We
Fr	Su	Fr	We	Mo	Sa	Th	Tu
Sa	Su	Sa	Fr	Th	We	Tu	Mo

Mo is the unit:

$$
W e \cdot M o=W e
$$

Arithmetics modulo m

- Numbers are denoted by $\overline{0}, \overline{1}, \ldots, \overline{m-1}$, where \bar{a} represents the class of all integers that, divided by m, give remainder a.
- Operations are defined as follows:

$$
\begin{aligned}
\bar{a}+\bar{b}=\bar{c} \text { iff } a+b \equiv c \quad(\bmod m) \\
\bar{a} \cdot \bar{b}=\bar{c} \text { iff } a \cdot b \equiv c \quad(\bmod m)
\end{aligned}
$$

Examples

- "arithmetic of days of the week", with modulus 7.
- Boolean algebra, with modulus 2.

Division in modular arithmetic

- Dividing \bar{a} by \bar{b} means to find a quotient x, such that $\bar{b} \cdot x=\bar{a}$, that is, $\bar{a} / \bar{b}=x$

Division in modular arithmetic

- Dividing \bar{a} by \bar{b} means to find a quotient x, such that $\bar{b} \cdot x=\bar{a}$, that is, $\bar{a} / \bar{b}=x$

In "arithmetic of days of the week":

- Mo/Tu = Th and $T u / M o=T u$.

\odot	Su	Mo	Tu	We	Th	Fr	Sa
Su							
Mo	Su	Mo	Tu	We	Th	Fr	Sa
Tu	Su	Tu	Th	Sa	Mo	We	Fr
We	Su	We	Sa	Tu	Fr	Mo	Th
Th	Su	Th	Mo	Fr	Tu	Sa	We
Fr	Su	Fr	We	Mo	Sa	Th	Tu
Sa	Su	Sa	Fr	Th	We	Tu	Mo

Division in modular arithmetic

- Dividing \bar{a} by \bar{b} means to find a quotient x, such that $\bar{b} \cdot x=\bar{a}$, that is, $\bar{a} / \bar{b}=x$

In "arithmetic of days of the week":

- Mo/Tu = Th and $T u / M o=T u$.
- We cannot divide by $S u$, exceptionally $\mathrm{Su} / \mathrm{Su}$ could be any day.

\odot	Su	Mo	Tu	We	Th	Fr	Sa
Su							
Mo	Su	Mo	Tu	We	Th	Fr	Sa
Tu	Su	Tu	Th	Sa	Mo	We	Fr
We	Su	We	Sa	Tu	Fr	Mo	Th
Th	Su	Th	Mo	Fr	Tu	Sa	We
Fr	Su	Fr	We	Mo	Sa	Th	Tu
Sa	Su	Sa	Fr	Th	We	Tu	Mo

Division in modular arithmetic

- Dividing \bar{a} by \bar{b} means to find a quotient x, such that $\bar{b} \cdot x=\bar{a}$, that is, $\bar{a} / \bar{b}=x$

In "arithmetic of days of the week":

- Mo/Tu = Th and $T u / M o=T u$.
- We cannot divide by $S u$, exceptionally $\mathrm{Su} / \mathrm{Su}$ could be any day.
- A quotient is well defined for \bar{a} / \bar{b} for every $\bar{b} \neq \overline{0}$, if the modulus is a prime number.

\odot	Su	Mo	Tu	We	Th	Fr	Sa
Su							
Mo	Su	Mo	Tu	We	Th	Fr	Sa
Tu	Su	Tu	Th	Sa	Mo	We	Fr
We	Su	We	Sa	Tu	Fr	Mo	Th
Th	Su	Th	Mo	Fr	Tu	Sa	We
Fr	Su	Fr	We	Mo	Sa	Th	Tu
Sa	Su	Sa	Fr	Th	We	Tu	Mo

Division modulo a prime p

Theorem

If x and m are positive integers and $\operatorname{gcd}(x, m)=1$, then the numbers

$$
\bar{x} \cdot \overline{0}, \bar{x} \cdot \overline{1}, \ldots, \bar{x} \cdot \overline{m-1}
$$

are pairwise different.
Proof:

- Suppose $0 \leqslant i \leqslant j<m$ are such that $x \cdot i \equiv x \cdot j(\bmod m)$.
- Then $m \backslash x \cdot(j-i):$ as $\operatorname{gcd}(m, x)=1$, it must be $m \backslash j-i$.
- But $j-i<m$, so it must be $j-i=0$, that is, $i=j$. Q.E.D.

Corollary

If m is prime, then the quotient $\bar{x}=\bar{a} / \bar{b}$ of the division of \bar{a} by \bar{b} modulo m is well defined for every $\bar{b} \neq \overline{0}$.

If the modulus is not prime ...

The quotient is not well defined, for example:

$$
\overline{1}=\overline{2} / \overline{2}=\overline{3}
$$

\odot	$\overline{0}$	$\overline{1}$	$\overline{2}$	$\overline{3}$
$\overline{0}$	$\overline{0}$	$\overline{0}$	$\overline{0}$	$\overline{0}$
$\overline{1}$	$\overline{0}$	$\overline{1}$	$\overline{2}$	$\overline{3}$
$\overline{2}$	$\overline{0}$	$\overline{2}$	$\overline{0}$	$\overline{2}$
$\overline{3}$	$\overline{0}$	$\overline{3}$	$\overline{2}$	$\overline{1}$

Computing $\bar{x}=\bar{a} / \bar{b}$ modulo a prime p

In two steps:
1 Compute $\bar{y}=\overline{1} / \bar{b}$.
2 Compute $\bar{x}=\bar{y} \cdot \bar{a}$.

How to compute $\bar{y}=\overline{1} / \bar{b}$, i.e. find \bar{y} such that $\bar{b} \cdot \bar{y}=\overline{1}$
Algorithm:
1 Using the Euclidean algorithm, compute $\operatorname{gcd}(p, b)=1$.
2 Find coefficients s and t such that $p s+b t=1$
3 if $t \geqslant p$ then
$t \leftarrow t \boldsymbol{\operatorname { m o d }} p$
endif
4 return t
\% Property: $\bar{t}=\overline{1} / \bar{b}$

Division modulo p

Example: compute $\overline{53} / \overline{2}$ modulo 234527

- At first, we find $\overline{1} / \overline{2}$. For that we compute GCD of the divisor and modulus:

$$
\operatorname{gcd}(234527,2)=\operatorname{gcd}(2,1)=1
$$

- The remainder can be expressed by modulus ad divisor as follows:

$$
\begin{aligned}
& 1=2 \cdot(-117263)+234527 \text { or } \\
& -117263 \cdot 2 \equiv 117264 \quad(\bmod 234527)
\end{aligned}
$$

Thus, $\overline{1} / \overline{2}=\overline{117264}(\bmod 234527)$

- As $x=53 \cdot 117264 \equiv 117290(\bmod 234527)$, we conclude:

$$
\bar{x}=\overline{53} \cdot \overline{117264}=\overline{117290} \quad(\bmod 234527) .
$$

Linear equations

Solve the equation $\overline{7} \bar{x}+\overline{3}=\overline{0}$ modulo 47
The solution can be written as $\bar{x}=-\overline{3} / \overline{7}$.

- Compute $\operatorname{gcd}(47,7)$ using the Euclidean algorithm:

$$
\operatorname{gcd}(47,7)=\operatorname{gcd}(7,5)=\operatorname{gcd}(5,2)=\operatorname{gcd}(2,1)=1
$$

that yields the relations

$$
1=5-2 \cdot 2 \quad 2=7-5 \quad 5=47-6 \cdot 7
$$

- Find coefficients of 47 and 7 :

$$
\begin{aligned}
1 & =5-2 \cdot 2= \\
& =(47-6 \cdot 7)-2 \cdot(7-5)= \\
& =47-8 \cdot 7+2 \cdot 5= \\
& =47-8 \cdot 7+2 \cdot(47-6 \cdot 7)= \\
& =3 \cdot 47-20 \cdot 7
\end{aligned}
$$

Continues on the next slide

Linear equations (2)

Solve the equation $\overline{7} \bar{x}+\overline{3}=\overline{0}$ modulo 47

- The previous expansion of $\operatorname{gcd}(47,7)$ shows that $-20 \cdot 7 \equiv 1(\bmod 47) \quad$ i.e. $27 \cdot 7 \equiv 1(\bmod 47)$ Hence, $\overline{1} / \overline{7}=\overline{-20}=\overline{27}(\bmod 47)$.
- The solution is then: $\bar{x}=\overline{-3} \cdot \overline{27}=\overline{13}$.

The latter equality follows from the congruence relation $44 \equiv-3(\bmod 47)$, whence $x=44 \cdot 27=1188 \equiv 13(\bmod 47)$.

Solving a system of equations using the elimination method

Example

Assuming modulus 127, find integers x and y such that:

$$
\left\{\begin{array}{l}
\overline{12} \bar{x}+\overline{31} \bar{y}=\overline{2} \\
\overline{2} \bar{x}+\overline{89} \bar{y}=\overline{23}
\end{array}\right.
$$

Accordingly to the elimination method, multiply the second equation by $-\overline{6}$ and add up the equations, we get:

$$
\bar{y}=\frac{\overline{2}-\overline{6} \cdot \overline{23}}{\overline{31}-\overline{6} \cdot \overline{89}}
$$

As $6 \cdot 23=138 \equiv 11(\bmod 127)$ and $6 \cdot 89=534 \equiv 26(\bmod 127)$, the latter equality can be transformed as follows:

$$
\bar{y}=\frac{\overline{2}-\overline{11}}{\overline{31}-\overline{26}}=\frac{-\overline{9}}{\overline{5}}
$$

Substituting \bar{y} into the second equation, express \bar{x} and transform it further considering that $5 \cdot 23=115 \equiv-12(\bmod 127)$ and $9 \cdot 89=801 \equiv 39(\bmod 127)$:

$$
\bar{x}=\frac{\overline{23}-\overline{89} \bar{y}}{\overline{2}}=\frac{\overline{23} \cdot \overline{5}-\overline{899}}{\overline{10}}=\frac{\overline{-12}+\overline{39}}{\overline{10}}=\frac{\overline{27}}{\overline{10}}
$$

Solving a system of equations using elimination method (2)

Continuation of the last example ...

Computing:

$$
\left\{\begin{array}{l}
\bar{x}=\overline{27} / \overline{10} \\
\bar{y}=-\overline{9} / \overline{5}
\end{array}\right.
$$

if the modulus is 127 .
Apply the Euclidean algorithm:

$$
\begin{aligned}
\operatorname{gcd}(127,5) & =\operatorname{gcd}(5,2)=\operatorname{gcd}(2,1)=1 \\
\operatorname{gcd}(127,10) & =\operatorname{gcd}(10,7)=\operatorname{gcd}(7,3)=\operatorname{gcd}(3,1)=1
\end{aligned}
$$

That gives the equalities:

$$
\begin{aligned}
& 1=5-2 \cdot 2=5-2(127-25 \cdot 5)=(-2) 127+51 \cdot 5 \\
& 1=7-2 \cdot 3=127-12 \cdot 10-2(10-127+12 \cdot 10)=3 \cdot 127-38 \cdot 10
\end{aligned}
$$

Hence, division by $\overline{5}$ is equivalent to multiplication by $\overline{51}$ and division by $\overline{10}$ to multiplication to $-\overline{38}$. Then the solution of the system is:

$$
\left\{\begin{array}{l}
\bar{x}=\overline{27} / \overline{10}=-\overline{27} \cdot \overline{38}=-\overline{1026}=\overline{117} \\
\bar{y}=-\overline{9} / \overline{5}=-\overline{9} \cdot \overline{51}=-\overline{459}=\overline{49}
\end{array}\right.
$$

Next section

1 Modular arithmetic

2 Primality test
Fermat's Little theorem

- Fermat's test
- The Rabin-Miller test

3 Phi and Mu

To determine whether a number n is prime.

Options available:

- Try all numbers $2, \ldots, n-1$. If n is not divisible by any of them, then it is prime.
- Same as above, only try $2, \ldots, \sqrt{n}$. Exercise: why?
- Probabilistic algorithms with polynomial complexity (Fermat's test, the Miller-Rabin test, etc.).
- Deterministic primality-proving algorithm by Agrawal, Kayal and Saxena (2002).

Next subsection

1 Modular arithmetic

2 Primality test

- Fermat's Little theorem
- Fermat's test - The Rabin-Miller test

3 Phi and Mu

Fermat's Little Theorem: Statement

Fermat's Little Theorem

If p is prime and a is an integer not divisible by p, then

$$
p \backslash a^{p-1}-1, \text { that is, } a^{p-1} \equiv 1 \quad(\bmod p)
$$

Pierre de
Fermat
(1601-1665)

Fermat's Little Theorem: Statement

Fermat's Little Theorem

Lemma

Proof:

If p is prime and a is an integer not divisible by p, then

$$
p \backslash a^{p-1}-1, \text { that is, } a^{p-1} \equiv 1 \quad(\bmod p) .
$$

The following lemma will be useful for the proof of FLT:

If p is prime and $0<k<p$, then $p \backslash\binom{p}{k}$

Pierre de Fermat

- Clearly, $\left.\binom{p}{k}=\frac{p^{k}}{k!}=\frac{p \cdot(p-1}{k!}\right)^{k-1}$ whenever $0<k<p$.
- Then p appears once in the numerator, and never in the denominator.

Another formulation of the theorem

Fermat's Little Theorem (equivalent statement)

If p is prime, and a is any integer, then

$$
p \backslash a^{p}-a, \text { that is, } a^{p} \equiv a \quad(\bmod p) .
$$

Proof by induction on $a \geqslant 0$ with arbitrary p :

- If $p \backslash a$ then $p \backslash a^{p}$ too, and both a and a^{p} are congruent to 0 modulo p. In particular, FLT is true for $a=0$.
- Suppose then that FLT is true for $a \geqslant 0$. Then by the binomial theorem:

$$
\begin{aligned}
(a+1)^{p}-(a+1) & =\sum_{k=0}^{p}\binom{p}{k} a^{p-k}-a-1 \\
& =\left(a^{p}-a\right)+\sum_{k=1}^{p-1}\binom{p}{k} a^{p-k}
\end{aligned}
$$

Each summand on the last line is divisible by p, the first one by induction, the others by the lemma. Then FLT is also true for $a+1$.

Application of the Fermat's theorem

Example: Find the remainder of the division of 3^{4565} by 13.
Fermat's little theorem gives $3^{12} \equiv 1(\bmod 13)$. Let's divide 4565 by 12 and compute the remainder: $4565=380 \cdot 12+5$. Then:

$$
3^{4565}=\left(3^{12}\right)^{380} \cdot 3^{5} \equiv 1^{380} \cdot 3^{5}=81 \cdot 3 \equiv 3 \cdot 3=9 \quad(\bmod 13)
$$

Application of Fermat's theorem (2)

Prove that $n^{18}+n^{17}-n^{2}-n$ is divisible by 51 for any positive integer n.
Let's factorize:

$$
\begin{aligned}
A & =n^{18}+n^{17}-n^{2}-n \\
& =n\left(n^{17}-n\right)+n^{17}-n \\
& =(n+1)\left(n^{17}-n\right) \\
& =(n+1) n\left(n^{16}-1\right) \\
& =(n+1) n\left(n^{8}-1\right)\left(n^{8}+1\right) \\
& =(n+1) n\left(n^{4}-1\right)\left(n^{4}+1\right)\left(n^{8}+1\right) \\
& =(n+1) n\left(n^{2}-1\right)\left(n^{2}+1\right)\left(n^{4}+1\right)\left(n^{8}+1\right) \\
& =(n+1) n(n-1)(n+1)\left(n^{2}+1\right)\left(n^{4}+1\right)\left(n^{8}+1\right)
\end{aligned}
$$

By the third line, A is divisible by 17 ; by the last line, A is divisible by 3 . Hence, A is divisible by $17 \cdot 3=51$.

Pseudoprimes

A pseudoprime is a composite number which has some properties also satisfied by all prime numbers.

- The thesis of FLT is also true for some composite numbers.
- For instance, if $p=341=11.31$ and $a=2$, then dividing

$$
2^{340}=\left(2^{10}\right)^{34}=1024^{34}
$$

by 341 yields the remainder 1, because $341 \cdot 3=1023$.

- The integer 341 is a Fermat pseudoprime for base 2.
- However, 341 is not a Fermat pseudoprime for base 3, because the thesis of FLT is not satisfied for $a=341$ and $p=3$: dividing 3^{340} by 341 gives remainder 56 .

Carmichael numbers

Definition

A Carmichael number is an integer n that is a Fermat pseudoprime for every base a coprime to n.

Example: let $n=561=3 \cdot 11 \cdot 17$ and $\operatorname{gcd}(a, n)=1$.

$$
\begin{aligned}
& a^{560}=\left(a^{2}\right)^{280} \text { gives remainder } 1 \text { if divided by } 3 \\
& a^{560}=\left(a^{10}\right)^{56} \text { gives remainder } 1 \text { if divided by } 11 \\
& a^{560}=\left(a^{16}\right)^{35} \text { gives remainder } 1 \text { if divided by } 17
\end{aligned}
$$

Hence, $a^{560}-1$ is divisible by 3 , by 11 and by 17 -thus also by 561 .

- See http://oeis.org/search?q=Carmichael, sequence nr A002997

Next subsection

1 Modular arithmetic

2 Primality test

- Fermat's Little theorem
- Fermat's test
- The Rabin-Miller test

3 Phi and Mu

Fermat's test

Fermat's theorem: If p is prime and $1 \leqslant a<p$ is integer, then

$$
a^{p-1} \equiv 1 \quad(\bmod p)
$$

Example: is 221 prime?

$$
\begin{aligned}
2^{220} & =\left(2^{11}\right)^{20} \equiv 59^{20}=\left(59^{4}\right)^{5} \equiv 152^{5}= \\
& =152 \cdot\left(152^{2}\right)^{2} \equiv 152 \cdot 120^{2} \equiv 152 \cdot 35=5320 \equiv 16 \quad(\bmod 221)
\end{aligned}
$$

Hence, 221 is a composite number. Indeed, $221=13 \cdot 17$

Fermat's test

Fermat's theorem: If p is prime and $1 \leqslant a<p$ is integer, then

$$
a^{p-1} \equiv 1 \quad(\bmod p)
$$

To test, whether n is prime or composite:

- Check if $a^{n-1} \equiv 1(\bmod n)$ for every $a=2,3, \ldots, n-1$.
- If the condtion is not satisfied for some a, then n is composite.
- Otherwise, n might be prime.

Example: is 221 prime?

$$
\begin{aligned}
2^{220} & =\left(2^{11}\right)^{20} \equiv 59^{20}=\left(59^{4}\right)^{5} \equiv 152^{5}= \\
& =152 \cdot\left(152^{2}\right)^{2} \equiv 152 \cdot 120^{2} \equiv 152 \cdot 35=5320 \equiv 16 \quad(\bmod 221)
\end{aligned}
$$

Hence, 221 is a composite number. Indeed, $221=13 \cdot 17$

Problems with Fermat's test

- Computing of large powers is problematic.

Possible solution: method of squares for fast exponentiation.
Computing with large numbers in general is expensive. Possible turnaround: modular arithmetic. n might be a pseudoprime,
Possible solution: repeat the test for many randomly chosen values of a. Solutions: use another method!, for example, the Rabin-Miller test:

Problems with Fermat's test

- Computing of large powers is problematic.

Possible solution: method of squares for fast exponentiation.

- Computing with large numbers in general is expensive. Possible turnaround: modular arithmetic.
\qquad
\qquad

Problems with Fermat's test

- Computing of large powers is problematic.

Possible solution: method of squares for fast exponentiation.

- Computing with large numbers in general is expensive. Possible turnaround: modular arithmetic.
- n might be a pseudoprime.

Possible solution: repeat the test for many randomly chosen values of a.

Problems with Fermat's test

- Computing of large powers is problematic. Possible solution: method of squares for fast exponentiation.
- Computing with large numbers in general is expensive. Possible turnaround: modular arithmetic.
- n might be a pseudoprime.

Possible solution: repeat the test for many randomly chosen values of a.

- n might be a Carmichael number. Solutions: use another method!, for example, the Rabin-Miller test.

Modified Fermat's test

Input: n - a value to test for primality
k - the number of times to test for primality
Output: " n is composite" or " n is probably prime".

- for i in $[1: k$ do
- pick a random $1<a<n$

■ if $a^{n-1} \not \equiv 1(\bmod n)$ then return(" n is composite") endif
done

- return(" n is probably prime")

Modified Fermat＇s test

Input：n－a value to test for primality
k－the number of times to test for primality
Output：＂n is composite＂or＂n is probably prime＂．
－for i in $[1: k$ ］do
－pick a random $1<a<n$
■ if $a^{n-1} \not \equiv 1(\bmod n)$ then return（＂n is composite＂）
endif
done
－return（＂n is probably prime＂）

Example，$n=221$ ，randomly picked values for a are 38 and 26

$$
\begin{array}{rlrl}
a^{n-1} & =38^{220} & \equiv 1 \quad(\bmod 221) & \rightsquigarrow 38 \text { is pseudoprime } \\
a^{n-1} & =26^{220} \equiv 169 \not \equiv 1 \quad(\bmod 221) & \rightsquigarrow 221 \text { is composite }
\end{array}
$$

Modified Fermat's test

Input: n - a value to test for primality
k - the number of times to test for primality
Output: " n is composite" or " n is probably prime".

- for i in $[1: k]$ do
- pick a random $1<a<n$
- if $a^{n-1} \not \equiv 1(\bmod n)$ then
return(" n is composite")
endif
done
- return(" n is probably prime")

Does not work, if n is a Carmichael number: $561,1105,1729,2465,2821,6601,8911, \ldots$

Next subsection

1 Modular arithmetic

2 Primality test

- Fermat's Little theorem
- Fermat's test
- The Rabin-Miller test

3 Phi and Mu

㻆言

An idea on how to neutralize Carmichael numbers

- Let n be an odd positive integer to be tested for primality.
- Randomly pick an integer a from the interval $0<a<n$.
- Consider the expression $a^{n}-a=a\left(a^{n-1}-1\right)$ and until possible, transform it applying the identity $x^{2}-1=(x-1)(x+1)$.
- If the expression $a^{n}-a$ is not divisible by n, then none of its divisors is divisible by n either.
- If at least one divisor of $a^{n}-a$ is divisible by n, then n is probably prime.

The test is made more effective by being repeated many times on randomly chosen values of a.

Example: $n=221$

- Let's factorize:

$$
\begin{aligned}
a^{221}-a & =a\left(a^{220}-1\right)= \\
& =a\left(a^{110}-1\right)\left(a^{110}+1\right)= \\
& =a\left(a^{55}-1\right)\left(a^{55}+1\right)\left(a^{110}+1\right)
\end{aligned}
$$

- If $a=174$, then
$174^{110}=\left(174^{2}\right)^{55} \equiv(220)^{55}=220 \cdot\left(220^{2}\right)^{27} \equiv 220 \cdot 1^{27} \equiv 220 \equiv-1(\bmod 221)$.
Thus 221 is either prime or pseudoprime to the base 174 .
- If $a=137$, then $221 \times a, 221 \times\left(a^{55}-1\right), 221 \times\left(a^{55}+1\right), 221 \times\left(a^{110}+1\right)$.

Consequently, 221 is a composite number

The Rabin-Miller test

Input: $n>3$ - a value to test for primality
k - the number of times to test for primality
Output: " n is composite" or " n is probably prime"

- Factorize $n-1=2^{s} \cdot d$, where d is an odd number
- for i in $[1: k]$ do
- Randomly pick $a \in[2: n-1]$
- $x \leftarrow a^{d} \bmod n$

■ if $x=1$ or $x=n-1$ then $\%$ either $n \backslash a^{d}-1$ or $n \backslash a^{d}+1$
continue
endif

- for r in $[1: s-1]$ do
- $x \leftarrow x^{2} \bmod n$
- if $x=1$ then return(" n is composite") endif

■ if $x=n-1$ then break endif

done

- return(" n is composite")
done
- return(" n is probably prime");

The complexity of the algorithm is $O\left(k \lg ^{3} n\right)$

Next section

1 Modular arithmetic

2 Primality test

- Fermat's Little theorem
- Fermat's test
- The Rabin-Miller test

3 Phi and Mu

层合

Euler's totient function ϕ

Euler's totient function

Euler's totient function ϕ is defined for $m \geqslant 2$ as

$$
\phi(m)=|\{n \in\{0, \ldots, m-1\} \mid \operatorname{gcd}(m, n)=1\}|
$$

Equivalently: $\frac{\phi(m)}{m}$ is the probability that an integer taken at random between 0 and $m-1$ is relatively prime with m.

m	2	3	4	5	6	7	8	9	10	11	12	13
$\phi(m)$	1	2	2	4	2	6	4	6	4	10	4	12

We can use $[1: m]$ in place of $[0: m-1]$ if convenient.

Computing Euler's function

Lemma

1 If $p \geqslant 2$ is prime and $k \geqslant 1$, then $\phi\left(p^{k}\right)=p^{k}(1-1 / p)=p^{k-1} \cdot(p-1)$.
2 If $m, n \geqslant 1$ are relatively prime, then $\phi(m \cdot n)=\phi(m) \cdot \phi(n)$.

Proof

1 Exactly every p th integer n, starting from 0 , has $\operatorname{gcd}\left(p^{k}, n\right) \geqslant p>1$.
Then $\phi\left(p^{k}\right)=p^{k}-p^{k} / p=p^{k} \cdot(1-1 / p)$.
2 If $m \perp n$, then for every $k \geqslant 1$ it is $k \perp m n$ if and only if both $m \perp k$ and $n \perp k$.

We have then:

Theorem

$$
\phi(m)=m \cdot \prod_{p \text { prime, } p \backslash m}\left(1-\frac{1}{p}\right)
$$

Warmup: ϕ (999)

Problem (Exercise 4.10)
Compute $\phi(999)$.

Warmup: ϕ (999)

Problem (Exercise 4.10)

Compute ϕ (999).

Solution

We factor 999 into a product of primes:

$$
999=9 \cdot 111=9 \cdot 3 \cdot 37=3^{3} \cdot 37
$$

Then:

$$
\begin{aligned}
\phi(999) & =999 \cdot\left(1-\frac{1}{3}\right) \cdot\left(1-\frac{1}{37}\right) \\
& =3^{3} \cdot 37 \cdot \frac{2}{3} \cdot \frac{36}{37} \\
& =3^{2} \cdot 2 \cdot 2^{2} \cdot 3^{2} \\
& =2^{3} \cdot 3^{4}=8 \cdot 81=648 .
\end{aligned}
$$

Multiplicative functions

Definition

$f: \mathbb{N}^{+} \rightarrow \mathbb{N}^{+}$is multiplicative if it satisfies the following condition:
For every $m, n \geqslant 1$, if $m \perp n$, then $f(m \cdot n)=f(m) \cdot f(n)$

Theorem

If $g(m)=\sum_{d \backslash m} f(d)$ is multiplicative, then so is $f(m)$.

- $g(1)=g(1) \cdot g(1)=f(1)$ must be either 0 or 1 .
- If $m=m_{1} m_{2}$ with $m_{1} \perp m_{2}$, then every factor d of $m_{1} m_{2}$ is the product of a factor d_{1} of m_{1} and a factor d_{2} of m_{2} in a unique way. Then:

$$
\begin{aligned}
g\left(m_{1} m_{2}\right) & =\sum_{d_{1} d_{2} \backslash m_{1} m_{2}} f\left(d_{1} d_{2}\right) \\
& =\left(\sum_{d_{1} \backslash m_{1}} f\left(d_{1}\right)\right)\left(\sum_{d_{2} \backslash m_{2}} f\left(d_{2}\right)\right)-f\left(m_{1}\right) f\left(m_{2}\right)+f\left(m_{1} m_{2}\right) \\
& =g\left(m_{1}\right) g\left(m_{2}\right)-f\left(m_{1}\right) f\left(m_{2}\right)+f\left(m_{1} m_{2}\right)
\end{aligned}
$$

- As $g\left(m_{1} m_{2}\right)=g\left(m_{1}\right) g\left(m_{2}\right)$, we conclude: $f\left(m_{1} m_{2}\right)=f\left(m_{1}\right) f\left(m_{2}\right)$

$\sum_{d \backslash m} \phi(d)=m$: Example

The fractions

$$
\frac{0}{12}, \frac{1}{12}, \frac{2}{12}, \frac{3}{12}, \frac{4}{12}, \frac{5}{12}, \frac{6}{12}, \frac{7}{12}, \frac{8}{12}, \frac{9}{12}, \frac{10}{12}, \frac{11}{12}
$$

are simplified into:

$$
\frac{0}{1}, \frac{1}{12}, \frac{1}{6}, \frac{1}{4}, \frac{1}{3}, \frac{5}{12}, \frac{1}{2}, \frac{7}{12}, \frac{2}{3}, \frac{3}{4}, \frac{15}{6}, \frac{11}{12} .
$$

The divisors of 12 are $1,2,3,4,6$, and 12 . Of these:

- The denominator 1 appears $\phi(1)=1$ time: $0 / 1$.
- The denominator 2 appears $\phi(2)=1$ time: $1 / 2$.
- The denominator 3 appears $\phi(3)=2$ times: $1 / 3,2 / 3$.
- The denominator 4 appears $\phi(4)=2$ times: $1 / 4,3 / 4$.
- The denominator 6 appears $\phi(6)=2$ times: $1 / 6,5 / 6$.
- The denominator 12 appears $\phi(12)=4$ times: $1 / 12,5 / 12,7 / 12,11 / 12$.

We have thus found: $\phi(1)+\phi(2)+\phi(3)+\phi(4)+\phi(6)+\phi(12)=12$.

$\sum_{d \backslash m} \phi(d)=m$: Proof

Call a fraction a / b basic if $0 \leqslant a<b$.
After simplifying any of the m basic fractions with denominator m, the denominator d of the resulting fraction must be a divisor of m.

Lemma

In the simplification of the m basic fractions with denominator m, for every divisor d of m, the denominator d appears exactly $\phi(d)$ times.

It follows immediately that $\sum_{d \mid m} \phi(d)=m$.

Proof

- After simplification, the fraction k / d only appears if $\operatorname{gcd}(k, d)=1$: for every d there are at most $\phi(d)$ such k.
- But each such k appears in the fraction $k h / n$, where $h \cdot d=n$.

$\sum_{d \backslash m} \phi(d)=m$: Proof

Call a fraction a / b basic if $0 \leqslant a<b$.
After simplifying any of the m basic fractions with denominator m, the denominator d of the resulting fraction must be a divisor of m.

Lemma

In the simplification of the m basic fractions with denominator m, for every divisor d of m, the denominator d appears exactly $\phi(d)$ times.

It follows immediately that $\sum_{d \mid m} \phi(d)=m$.

Proof

- After simplification, the fraction k / d only appears if $\operatorname{gcd}(k, d)=1$: for every d there are at most $\phi(d)$ such k.
- But each such k appears in the fraction $k h / n$, where $h \cdot d=n$.

As $g(m)=m$ is clearly multiplicative, so is ϕ !

Euler's theorem

Statement

If m and n are positive integers and $n \perp m$, then $n^{\phi(m)} \equiv 1(\bmod m)$.
Note: Fermat's little theorem is a special case of Euler's theorem for $m=p$ prime.

Euler's theorem

Statement

If m and n are positive integers and $n \perp m$, then $n^{\phi(m)} \equiv 1(\bmod m)$.
Note: Fermat's little theorem is a special case of Euler's theorem for $m=p$ prime.

Proof with $m \geqslant 2$ (cf. Exercise 4.32)

Let $U_{m}=\{0 \leqslant a<m \mid a \perp m\}=\left\{a_{1}, \ldots, a_{\phi(m)}\right\}$ in increasing order.

- The function $f(a)=n a(\bmod m)$ is a permutation of U_{m} : If $f\left(a_{i}\right)=f\left(a_{j}\right)$, then $m \backslash n\left(a_{i}-a_{j}\right)$, which is only possible if $a_{i}=a_{j}$.
- Consequently,

$$
n^{\phi(m)} \prod_{i=1}^{\phi(m)} a_{i} \equiv \prod_{i=1}^{\phi(m)} a_{i} \quad(\bmod m)
$$

- But by construction, $\prod_{i=1}^{\phi(m)} a_{i} \perp m$: we can thus simplify and obtain the thesis.

Warmup: $\left(3^{77}-1\right) / 2$ is odd and composite

Problem (Exercise 4.9)
Prove that $\frac{3^{77}-1}{2}$ is odd and composite. Hint: What is $3^{77} \bmod 4$?

Warmup: $\left(3^{77}-1\right) / 2$ is odd and composite

Problem (Exercise 4.9)

Prove that $\frac{3^{77}-1}{2}$ is odd and composite. Hint: What is $3^{77} \bmod 4$?

Solution

We follow the hint.

- $\phi(4)=2$, so by Euler's theorem:

$$
3^{77}=3^{76} \cdot 3 \equiv 1 \cdot 3=3 \quad(\bmod 4)
$$

- Then $3^{77}-1 \equiv 3-1=2(\bmod 4)$, so $3^{77}-1$ is even but not divisible by 4 .
- As $3^{7}-1 \backslash 3^{77}-1$ and $3^{7} \equiv 3(\bmod 4), \frac{3^{7}-1}{2}$ is a factor of $\frac{3^{77}-1}{2}$

The Möbius function μ

Möbius function

The Möbius function μ is defined for $m \geqslant 1$ by the formula:

$$
\sum_{d \mid m} \mu(d)=[m=1]
$$

$$
\begin{array}{c|ccccccccccccc}
m & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 \\
\hline \mu(m) & 1 & -1 & -1 & 0 & -1 & 1 & -1 & 0 & 0 & 1 & -1 & 0 & -1
\end{array}
$$

The Möbius function μ

Möbius function

The Möbius function μ is defined for $m \geqslant 1$ by the formula:

\[

\]

As $[m=1]$ is clearly multiplicative, so is μ !

Computing the Möbius function

Theorem

For every $m \geqslant 1$,

$$
\mu(m)= \begin{cases}(-1)^{k} & \text { if } m=p_{1} p_{2} \cdots p_{k} \text { distinct primes } \\ 0 & \text { if } p^{2} \backslash m \text { for some prime } p\end{cases}
$$

Indeed, let p be prime. Then, as $\mu(1)=1$:

- $\mu(1)+\mu(p)=0$, hence $\mu(p)=-1$.

The first formula then follows by multiplicativity.

- $\mu(1)+\mu(p)+\mu\left(p^{2}\right)=0$, hence $\mu\left(p^{2}\right)=0$. The second formula then follows, again by multiplicativity.

Möbius inversion formula

Theorem

Let $f, g: \mathbb{Z}^{+} \rightarrow \mathbb{Z}^{+}$. The following are equivalent:
1 For every $m \geqslant 1, g(m)=\sum_{d \backslash m} f(d)$.
2 For every $m \geqslant 1, f(m)=\sum_{d \backslash m} \mu(d) g\left(\frac{m}{d}\right)$.

Corollary

For every $m \geqslant 1$,

$$
\phi(m)=\sum_{d \backslash m} \mu(d) \cdot \frac{m}{d}:
$$

because we know that $\sum_{d \backslash m} \phi(d)=m$.

Proof of Möbius inversion formula

Suppose $g(m)=\sum_{d \backslash m} f(d)$ for every $m \geqslant 1$. Then for every $m \geqslant 1$:

$$
\begin{aligned}
\sum_{d \backslash m} \mu(d) g\left(\frac{m}{d}\right) & =\sum_{d \backslash m} \mu\left(\frac{m}{d}\right) g(d) \\
& =\sum_{d \backslash m} \mu\left(\frac{m}{d}\right) \sum_{k \backslash d} f(k) \\
& =\sum_{k \backslash m}\left(\sum_{d \backslash(m / k)} \mu\left(\frac{m}{k d}\right)\right) f(k) \\
& =\sum_{k \backslash m}\left(\sum_{d \backslash(m / k)} \mu(d)\right) f(k) \\
& =\sum_{k \backslash m}\left[\frac{m}{k}=1\right] f(k) \\
& =f(m)
\end{aligned}
$$

The converse implication is proved similarly.

