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Binomial coe�cients

De�nition

Let r be a complex number and k an integer. The binomial coe�cient �r choose k� is
the complex number

(
r

k

)
=

 r · (r −1) · · ·(r −k +1)

k!
=

rk

k!
if k > 0 ,

0 if k < 0 .

If r = n is a natural number

In this case, (
n

k

)
=

n · (n−1) · · ·(n−k +1)

k!

is the number of ways we can choose k elements from a set of n elements, in any
order.
Consistently with this interpretation,

(
n

k

)
=


n!

k!(n−k)!
if 06 k 6 n ,

0 if k > n .



The binomial theorem

Theorem 1

(a+b)n =
n

∑
k=0

(
n

k

)
akbn−k

for any integer n > 0.

Proof. Expanding (a+b)n = (a+b)(a+b) · · ·(a+b) yields the sum of the
2n products of the form e1e2 · · ·en, where each ei is a or b. These
terms are composed by selecting from each factor (a+b) either a or
b. For example, if we select a k times, then we must choose b n−k
times. So, we can rearrange the sum as

(a+b)n =
n

∑
k=0

Cka
kbn−k ,

where the coe�cient Ck is the number of ways to select k elements
(k factors (a+b)) from a set of n elements (from the product of n
factors (a+b) · (a+b) · · ·(a+b)).
That is why the coe�cient Ck is called �(from) n choose k� and
denoted by

(n
k

)
. Q.E.D.



Binomial coe�cients and combinations

Theorem 2

The number of subsets with k elements of a set with n elements is:(
n

k

)
=

n!

k!(n−k)!

Proof:

To choose a sequence of k di�erent elements, we have n choices for the �rst
element, n−1 for the second, . . . , n−k +1 for the kth.

In other words, there are n(n−1) · · ·(n−k +1) = nk sequences of k di�erent
elements.

But two di�erent sequences with the same elements identify the same subsets.

And each such subsequence corresponds to one of the k! ways of sorting k

objects. In conclusion, we have
nk

k!
= n!

k!(n−k)! subsets with k elements of a set

with n elements. Q.E.D.

Some other notations used for the �n choose k� in literature:
Cn
k ,C(n,k), nCk ,

n
Ck .
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Properties of Binomial Coe�cients

1 ∑
n
k=0

(n
k

)
= 2n: A set of n elements has 2n subsets.

2 ∑
n
k=0

(−1)k
(n
k

)
= [n = 0]: In a nonempty set, the number of subsets with odd

cardinality is equal to the number of sets with even cardinality.

Proof:

Take a = b = 1 in the binomial theorem:

n

∑
k=0

(
n

k

)
=

n

∑
k=0

(
n

k

)
1k1n−k = (1+1)n = 2n

Take a =−1 and b = 1:

n

∑
k=0

(−1)k
(
n

k

)
=

n

∑
k=0

(
n

k

)
(−1)k1n−k = (−1+1)n = [n = 0]

Q.E.D.



Another Property For n > 0 Integer

Symmetry of binomial coe�cients

3
(n
k

)
=
( n
n−k
)
for every n > 0.

Proof. For 06 k 6 n direct conclusion from Theorem 2:(
n

k

)
=

n!

k!(n−k)!
=

(
n

n−k

)
;

otherwise, both sides vanish. Q.E.D.



Another Property For n > 0 Integer

Symmetry of binomial coe�cients

3
(n
k

)
=
( n
n−k
)
for every n > 0.

Proof. For 06 k 6 n direct conclusion from Theorem 2:(
n

k

)
=

n!

k!(n−k)!
=

(
n

n−k

)
;

otherwise, both sides vanish. Q.E.D.

Only if n is nonnegative!

For n =−1 and k > 0,

(
−1
k

)
=

(−1)k

k!
= (−1)k but

(
−1
−1−k

)
= 0 ;

while for k < 0, (
−1
k

)
= 0 but

(
−1
−1−k

)
= (−1)|k|−1 .



Yet Another Property

Recurrence formula

4 (
r

k

)
=

(
r −1
k

)
+

(
r −1
k−1

)
.



Yet Another Property

Recurrence formula

4 (
r

k

)
=

(
r −1
k

)
+

(
r −1
k−1

)
.

Proof: if k 6 0 then both sides equal [k = 0]; if k > 0, then:

(
r −1
k

)
+

(
r −1
k−1

)
=

(r −1)k

k!
+

(r −1)k−1

(k−1)!

=
(r −1)k−1 · (r −k)

k!
+

(r −1)k−1 ·k
k!

=
(r −1)k−1 · (r −k +k)

k!

=
r · (r −1)k−1

k!

=
rk

k!
=

(
r

k

)
,

Q.E.D.



Pascal's Triangle

n
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0
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1

) (n
2

) (n
3

) (n
4

) (n
5

) (n
6

)
0 1
1 1 1
2 1 2 1
3 1 3 3 1
4 1 4 6 4 1
5 1 5 10 10 5 1
6 1 6 15 20 15 6 1

Blaise Pascal
(1623�1662)
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Warmup: The hexagon property

Statement

For every n > 2 and 0< k < n,(
n−1
k−1

)(
n

k +1

)(
n+1

k

)
=

(
n−1
k

)(
n

k−1

)(
n+1

k +1

)



Warmup: The hexagon property

Statement

For every n > 2 and 0< k < n,(
n−1
k−1

)(
n

k +1

)(
n+1

k

)
=

(
n−1
k

)(
n

k−1

)(
n+1

k +1

)

Interpretation

Looking at Pascal's triangle in the previous slide, the six numbers in the
expression above form a �hexagon� around

(n
k

)
.

Then the hexagon property says that the product of the odd-numbered corners
of the hexagon equals that of the even-numbered corners.



Warmup: The hexagon property

Statement

For every n > 2 and 0< k < n,(
n−1
k−1

)(
n

k +1

)(
n+1

k

)
=

(
n−1
k

)(
n

k−1

)(
n+1

k +1

)

Proof

Consider the expression of the binomial coe�cients as a ratio of products of primes.
At the numerator, both sides contribute with (n−1)! ·n! · (n+1)!
At the denominator:

The left hand side contributes with:

(k−1)! · (n−k)! · (k +1)! · (n−k−1)! ·k! · (n+1−k)!

The right-hand side contributes with:

k! · (n−1−k)! · (k−1)! · (n−k +1)! · (k +1)! · (n−k)!

The contributions of the two sides are thus equal, and the thesis follows.



The polynomial argument: Case study

Theorem

For every r complex and k integer,

(r −k)

(
r

k

)
= r

(
r −1
k

)



The polynomial argument: Case study

Theorem

For every r complex and k integer,

(r −k)

(
r

k

)
= r

(
r −1
k

)

Proof:

(r −k)

(
r

k

)
= (r −k)

(
r

r −k

)
= r

(
r −1

r −k−1

)
= r

(
r −1
k

)



The polynomial argument: Case study

Theorem

For every r complex and k integer,

(r −k)

(
r

k

)
= r

(
r −1
k

)

Proof:

(r −k)

(
r

k

)
= (r −k)

(
r

r −k

)
= r

(
r −1

r −k−1

)
= r

(
r −1
k

)

Wait! There's a problem:

We can have r appear in the lower index only if it is an integer!



The polynomial argument: Description

Lemma

If two polynomials with complex coe�cients of degree at most k take the same values
in more than k points, then they take the same values everywhere.



The polynomial argument: Description

Lemma

If two polynomials with complex coe�cients of degree at most k take the same values
in more than k points, then they take the same values everywhere.

Proof:

Suppose f (x) and g(x) are polynomials of degree at most k taking the same
values in the point x1,x2, . . . ,xk+1.

Then the polynomial p(x) = f (x)−g(x) vanishes at each of the points
x1,x2, . . . ,xk+1, so there exists a polynomial q(x) such that:

p(x) = (x−x1)(x−x2) · · ·(x−xk+1)q(x) .

But the left-hand side has degree at most k, while the right-hand side has
degree at least k +1 unless q(x) = 0 everywhere.

So p(x) = 0 everywhere too, that is, f (x) = g(x) everywhere.



The polynomial argument: Description

Lemma

If two polynomials with complex coe�cients of degree at most k take the same values
in more than k points, then they take the same values everywhere.

So the proof in the previous slide was not too wrong . . .

(r −k)
(r
k

)
and r

(r−1
k

)
are polynomials in r of degree k +1.

The two polynomials take the same value on every integer n.

By the polynomial argument, they take the same value on every real number r .



Another application of the polynomial argument

Theorem

For every r ∈ C and k,m ∈ Z:(
r

m

)(
m

k

)
=

(
r

k

)(
r −k

m−k

)
.

Proof: If k < 0 or m < k then both sides vanish. If m > k > 0, then for every n >m
integer: (

n

m

)(
m

k

)
=

n!

m!(n−m)!
· m!

k!(m−k)!

=
n!

k!(n−k)!
· (n−k)!

(m−k)!((n−k)− (m−k))!

=

(
n

k

)(
n−k

m−k

)
,

whence the thesis by the polynomial argument.



Expanding the Addition Formula (1)

Summation on the upper index

For every r ∈ C and n ∈ Z:

∑
k6n

(
r +k

k

)
=

(
r +n+1

n

)



Expanding the Addition Formula (1)

Summation on the upper index

For every r ∈ C and n ∈ Z:

∑
k6n

(
r +k

k

)
=

(
r +n+1

n

)

Proof: if n < 0 then both sides are zero, otherwise we unfold:(
r +n+1

n

)
=

(
r +n

n

)
+

(
r +n

n−1

)
=

(
r +n

n

)
+

(
r +n−1
n−1

)
+

(
r −n−1
n−2

)
= . . .

=

(
r +n

n

)
+

(
r +n−1
n−1

)
+ . . .+

(
r +1

1

)
+

(
r +1

0

)
=

(
r +n

n

)
+

(
r +n−1
n−1

)
+ . . .+

(
r +1

1

)
+

(
r

0

)



Expanding the Addition Formula (2)

Summation on the upper index

For every n,m ∈ N,

∑
06k6n

(
k

m

)
=

(
n+1

m+1

)



Expanding the Addition Formula (2)

Summation on the upper index

For every n,m ∈ N,

∑
06k6n

(
k

m

)
=

(
n+1

m+1

)

Proof: (
n+1

m+1

)
=

(
n

m+1

)
+

(
n

m

)
=

(
n−1
m+1

)
+

(
n−1
m

)
+

(
n

m

)
= . . .

=

(
0

m+1

)
+

(
0

m

)
+

(
1

m

)
+ . . .+

(
n−1
m

)
+

(
n

m

)
=

(
0

m

)
+

(
1

m

)
+ . . .+

(
n

m

)

because m+1> 1, so surely
(

0

m+1

)
= 0.



Generalizing the Binomial Theorem

Generalized Binomial Theorem

Let either r ∈ N or |x/y |< 1. Then:

(x +y)r = ∑
k

(
r

k

)
xky r−k

For if r is arbitrary but z = x/y is such that |z |< 1, then the Taylor series of (1+ z)r

in a neighborhood of the origin converges absolutely:

(1+ z)r = 1+ r(1+0)r−1z +
r2(1+0)r−2

2!
z2 +

r3(1+0)r−3

3!
z3 +

r4(1+0)r−4

4!
z4 + · · ·

= ∑
k

(
r

k

)
zk = ∑

k

(
r

k

)(
x

y

)k

,

and multiplying both sides by y r we get the thesis.



Generalizing the Binomial Theorem

Generalized Binomial Theorem

Let either r ∈ N or |x/y |< 1. Then:

(x +y)r = ∑
k

(
r

k

)
xky r−k

For if r is arbitrary but z = x/y is such that |z |< 1, then the Taylor series of (1+ z)r

in a neighborhood of the origin converges absolutely:

(1+ z)r = 1+ r(1+0)r−1z +
r2(1+0)r−2

2!
z2 +

r3(1+0)r−3

3!
z3 +

r4(1+0)r−4

4!
z4 + · · ·

= ∑
k

(
r

k

)
zk = ∑

k

(
r

k

)(
x

y

)k

,

and multiplying both sides by y r we get the thesis.

This is actually our �rst use of a generating function.



Warmup: The binomial inversion formula

Theorem (Binomial inversion formula)

Let f and g be two complex- functions de�ned on N. The following are equivalent:

1 For every n > 0, g(n) = ∑
n
k=0

(n
k

)
(−1)k f (k).

2 For every n > 0, f (n) = ∑
n
k=0

(n
k

)
(−1)kg(k).

Note that the role of f and g is symmetrical.



Warmup: The binomial inversion formula

Theorem (Binomial inversion formula)

Let f and g be two complex- functions de�ned on N. The following are equivalent:

1 For every n > 0, g(n) = ∑
n
k=0

(n
k

)
(−1)k f (k).

2 For every n > 0, f (n) = ∑
n
k=0

(n
k

)
(−1)kg(k).

Note that the role of f and g is symmetrical.

Proof

If g(n) = ∑
n
k=0

(n
k

)
(−1)k f (k) for every n > 0, then for every n > 0 also:

n

∑
k=0

(
n

k

)
(−1)kg(k) =

n

∑
k=0

(
n

k

)
(−1)k

k

∑
m=0

(
k

m

)
(−1)mf (m)

=

= ∑
06m6k6m

nm(n−m)k−m

k!

k!

m!(k−m)!
(−1)k−mf (m)

=
n

∑
m=0

(
n

m

)( n

∑
k=m

(−1)k−m
(
n−m

k−m

))
f (m)

=
n

∑
m=0

(
n

m

)
[m = n] f (m) = f (n) .



Binomial identities cheat sheet

(r
0

)
= 1 for every r complex.(r

1

)
= r for every r complex.(n

n

)
= [n > 0] for every n integer.(

0

k

)
= [k = 0] for every k integer.(r

k

)
= r

k

(r−1
k−1
)
for every r complex and k 6= 0 integer.

k
(r
k

)
= r
(r−1
k−1
)
for every r complex and k integer (also 0).(r

k

)
=
(r−1

k

)
+
(r−1
k−1
)
for every r complex and k integer.

∑
n
k=0

(n
k

)
= 2n for every n > 0 integer.

∑
n
k=0

(−1)k
(n
k

)
= [n = 0] for every n > 0 integer.

∑k6n

(r+k
k

)
=
(r+n+1

n

)
for every r complex and n integer.

∑06k6n

(k
m

)
=
(n+1

m+1

)
for every n,m ∈ N.
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A Sum of Ratios

Problem

Compute ∑
m
k=0

(m
k

)
/
(n
k

)
, where n >m > 0 are integers.



A Sum of Ratios

Problem

Compute ∑
m
k=0

(m
k

)
/
(n
k

)
, where n >m > 0 are integers.

Let us work on the summand:(m
k

)(n
k

) =

(n
m

)(m
k

)(n
k

)(n
m

) =

(n
k

)(n−k
m−k

)(n
k

)(n
m

) =

(n−k
m−k

)(n
m

)
which depends on k in the numerator, but not the denominator. Now:

n

∑
k=0

(
n−k

m−k

)
= ∑

k>0

(
n−k

m−k

)
= ∑

k6m

(
n−m+k

k

)
=

(
(n−m) +m+1

m

)
=

(
n+1

m

)

by renaming k as m−k. In conclusion:

m

∑
k=0

(
m

k

)
/

(
n

k

)
=

(n+1

m

)(n
m

) =
(n+1)!

m!(n+1−m)!
· m!(n−m)!

n!
=

n+1

n+1−m
.
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Power series of functions

Example: Functions expanded as power series

ex =
∞

∑
n=0

xn

n!
= 1+x +

x2

2
+

x3

6
+

x4

24
+ · · ·

sin(x) =
∞

∑
n=0

(−1)nx2n+1

(2n+1)!
= x− x3

3
+

x5

120
− x7

5040
+ · · ·

1

1−x
=

∞

∑
n=0

xn = 1+x +x2 +x3 +x4 + · · ·



Power series of functions (2)

Power series of a function

The power series expansion of the function f in a neighborhood of a point c is
an expression of the form:

f (x) =
∞

∑
n=0

an(x−c)n = a0 +a1(x−c) +a2(x−c)2 +a3(x−c)3 + · · · ,

where c,a0,a1, . . . are constants. (Taylor series)

The special case c = 0 provide the Maclaurin series:

f (x) =
∞

∑
n=0

anx
n = a0 +a1x +a2x

2 +a3x
3 + · · ·

The coe�cients are de�ned as

an =
f (n)(c)

n!



Power series of functions (3)

Example: Generating functions

ex = 1+x + x2

2
+ x3

6
+ x4

24
+ · · ·

sin(x) = x− x3

3
+ x5

120
− x7

5040
+ · · ·

1

1−x = 1+x +x2 +x3 +x4 + · · ·

Generating functions ... ... of the sequences

〈1,1,1,1, · · ·〉

〈
0,1,− 1

3
,0, 1

120
,0,− 1

5040
, · · ·
〉

〈
1,1, 1

2
, 1
6
, 1

24
, · · ·
〉



Generating Functions

De�nition

The generating function of the sequence 〈g0,g1,g2, . . .〉 is the power series

G(x) = g0 +g1x +g2x
2 +g3x

3 + · · ·=
∞

∑
n=0

gnx
n

Some simple examples

〈0,0,0,0, . . .〉 ←→ 0+0x +0x2 +0x3 + · · ·= 0

〈1,0,0,0, . . .〉 ←→ 1+0x +0x2 +0x3 + · · ·= 1

〈2,3,1,0, . . .〉 ←→ 2+3x +1x2 +0x3 + · · ·= 2+3x +1x2



More examples (1)

〈1,1,1,1, . . .〉 ←→ 1+x +x2 +x3 + · · ·= 1

1−x

S = 1+x +x2 +x3 + · · ·
xS = x +x2 +x3 + · · ·

Subtracting:

(1−x)S = 1 , that is, S =
1

1−x



More examples (1)

〈1,1,1,1, . . .〉 ←→ 1+x +x2 +x3 + · · ·= 1

1−x

S = 1+x +x2 +x3 + · · ·
xS = x +x2 +x3 + · · ·

Subtracting:

(1−x)S = 1 , that is, S =
1

1−x

NB! This formula converges only for −1< x < 1.

We will see that we don't need to worry about convergence issues.



More examples (2)

〈
a,ab,ab2,ab3, . . .

〉
←→ a+abx +ab2x2 +ab3x3 + · · ·= a

1−bx

Like in the previous example:

S = a+abx +ab2x2 +ab3x3 + · · ·
bxS = abx +ab2x2 +ab3x3 + · · ·

Subtract and get:

(1−bx)S = a , that is, S =
a

1−bx



More examples (3)

Taking in the last example a = 0,5 and b = 1 yields

0,5+0,5x +0,5x2 +0,5x3 + · · ·= 0,5

1−x
(1)

Taking a = 0,5 and b =−1, gives

0,5−0,5x +0,5x2−0,5x3 + · · ·= 0,5

1+x
(2)

Adding equations (1) and (2), we get the generating function of the sequence
〈1,0,1,0,1,0, . . .〉:

1+x2 +x4 +x6 + · · ·= 0,5

1−x
+

0,5

1+x
=

1

(1−x)(1+x)
=

1

1−x2
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2 Basic Practice

3 Generating Functions

Intermezzo: Analytic functions



The complex derivative

Let A⊆ C, f : A→ C, and z an internal point of A.
The complex derivative of f in z is (if exists) the quantity

f ′(z) = lim
∆z→0

f (z + ∆z)− f (z)

∆z

Complex di�erentiation follows the same rules as real di�erentiation:

(af (z) +bg(z))′ = af ′(z) +bg ′(z).

(f (z)g(z))′ = f ′(z)g(z) + f (z)g ′(z).

(f (g(z)))′ = f ′(g(z))g ′(z).

If g(z) = f −1(z), then g ′(z) = 1/f ′(g(z)).

If A is open and f has complex derivative in every point of A, e say that f is
holomophic in A.



The complex derivative and the partial derivatives

Let f (z) = u(z) + iv(z). If f ′(z) exists, then:

For ∆z = ∆x ,
∂ f

∂x
(z) = lim

∆x→0

f (z + ∆x)− f (z)

∆x
= f ′(z)

For ∆z = i∆y ,

∂ f

∂y
(z) = i lim

∆x→0

f (z + i∆y)− f (z)

i∆y
= i f ′(z)

As i · i =−1, we get the Cauchy-Riemann conditions:

∂ f

∂x
+ i

∂ f

∂y
= 0 , that is, ux = vy and uy =−vx .

Vice versa, if f has continuous partial derivatives and satis�es the Cauchy-Riemann
conditions, then f has a complex derivative.



Elementary holomorphic functions

f (z) holomorphic in defined as f ′(z)

zm , m ∈ N z ∈ C ∏
m
i=1

z mzm−1

zm , m ∈ Z , m < 0 z ∈ C\{0} ∏
m
i=1

z−1 mzm−1

ez z ∈ C ex (cosy + i siny) where z = x + iy ez

sinz z ∈ C
e iz −e−iz

2i
cosz

cosz z ∈ C
e iz +e−iz

2
−sinz

logz z ∈ C\ (−∞,0] ln |z |+ i argz
1

z

where argz is the unique θ ∈ (−π,π] such that z = |z | · (cosθ + i sinθ).



Warmup: The complex exponential

Idea

We look for a solution f : C→ C to the Cauchy problem:{
f ′(z) = f (z) ∀z ∈ C ,
f (0) = 1 .



Warmup: The complex exponential

Idea

We look for a solution f : C→ C to the Cauchy problem:{
f ′(z) = f (z) ∀z ∈ C ,
f (0) = 1 .

As f ′ = ∂ f /∂x when the left-hand side exists, we can search:

f (z) = ex ·g(y) where x + iy = z .

The Cauchy-Riemann conditions and the hypothesis tell us that:

exg ′(y) = if ′(z) = if (z) .

Consequently, exg ′′(y) =−f (z), and by dividing both sides by ex ,

g ′′(y) =−g(y) ∀y ∈ R .

Then it must be g(y) = Acosy +B siny for suitable A,B ∈ C.



Warmup: The complex exponential

Idea

We look for a solution f : C→ C to the Cauchy problem:{
f ′(z) = f (z) ∀z ∈ C ,
f (0) = 1 .

Summarizing:

f (z) = ex (Acosy +B siny) where z = x + iy .

f (0) = 1 yields A = 1; f ′(0) = 1 yields B = i .

We conclude:
ez = ex (cosy + i siny) where z = x + iy .



Warmup: The complex exponential

Idea

We look for a solution f : C→ C to the Cauchy problem:{
f ′(z) = f (z) ∀z ∈ C ,
f (0) = 1 .

Remark

Similarly, the complex cosine and sine are the solutions of the Cauchy problems: g ′′(z) = −v(z) ∀z ∈ C ,
g(0) = 1 ,
g ′(0) = 0 ;

 h′′(z) = −w(z) ∀z ∈ C ,
h(0) = 0 ,
h′(0) = 1 .

As e iz and e−iz both satisfy f ′′ =−f in C, setting the initial conditions yields:

g(z) = cosz =
e iz +e−iz

2
and h(z) = sinz =

e iz −e−iz

2i
.



Warmup: The complex exponential

Idea

We look for a solution f : C→ C to the Cauchy problem:{
f ′(z) = f (z) ∀z ∈ C ,
f (0) = 1 .

Remark

As e iz and e−iz both satisfy f ′′ =−f in C, setting the initial conditions yields:

g(z) = cosz =
e iz +e−iz

2
and h(z) = sinz =

e iz −e−iz

2i
.

We then recover Euler's equation:

e iz = cosz + i sinz for every z ∈ C .



Convergence of sequences of functions

Pointwise convergence

Let fn : A→ C be functions. The (pointwise) limit of the sequence {fn}n>0 is the
function de�ned by

f (z) = lim
n→∞

fn(z)

for every z ∈ A where the limit exists.

For power series: ∑n>0 anz
n = limN→∞ ∑

N
n=0

anz
n.



Convergence of sequences of functions

Pointwise convergence

Let fn : A→ C be functions. The (pointwise) limit of the sequence {fn}n>0 is the
function de�ned by

f (z) = lim
n→∞

fn(z)

for every z ∈ A where the limit exists.

For power series: ∑n>0 anz
n = limN→∞ ∑

N
n=0

anz
n.

Uniform convergence

The sequence of functions {fn}n>0 of functions converges uniformly to f in A if:

∀ε > 0 ∃nε > 0 such that ∀n > nε ∀z ∈ A . |fn(z)− f (z)|< ε :

that is, if pointwise convergence is independent of the point.

The sequence fn(x) = e−x
2

[|x |6 n] converges to f (x) = e−x
2

uniformly in R.
The sequence fn(x) = [x > n] converges to zero in R, but not uniformly.



Consequences of uniform convergence

Continuity of the limit

Uniform limit of continuous functions is continuous.

Not true for simply pointwise convergence:

if fn(x) =

{
1−nx if 06 x 6 1/n ,
0 if 1/n 6 x 6 1 ,

then lim
n→∞

fn(x) = [x = 0] .

Swap limits

If fn converges uniformly in A, then:

lim
z→z0

lim
n→∞

fn(z) = lim
n→∞

lim
z→z0

fn(z) ∀z0 ∈ A

Swap limit with di�erentiation

If fn→ f uniformly in A, all the fn are di�erentiable, and f ′n converges uniformly, then
f is di�erentiable and:

f ′(z) = lim
n→∞

f ′n(z)



Total convergence

De�nition

A series of functions ∑k fk (z) converges totally in a set A if there exists a convergent
series ∑k bk with nonnegative coe�cients such that

|fk (z)|6 bk for every z ∈ A

Total convergence is the strongest form of convergence for series of functions:

total

��
uniform absolute

ww ''
absolute

''

uniform

ww
pointwise



The convergence radius of a power series

De�nition

The convergence radius of the power series

S(z) = ∑
n>0

an(z−c)n

is:

R =
1

limsupn>0
n
√
|an|

,

with the conventions 1/0 = ∞, 1/∞ = 0.

Examples

For α ∈ C, ∑n>0 αnzn has convergence radius 1/|α|.

∑n>1
zn

n
has convergence radius 1.

∑n>0
zn

n!
has in�nite convergence radius.



The Abel-Hadamard theorem

Statement

Let S(z) be a power series of center c and convergence radius R.

1 If R > 0, then S(z) converges totally on every closed and bounded subset of the
open disk of center c and radius R.

2 If R < ∞, then S(z) does not converge at any point z such that |z−c|> R.



The Abel-Hadamard theorem

Statement

Let S(z) be a power series of center c and convergence radius R.

1 If R > 0, then S(z) converges totally on every closed and bounded subset of the
open disk of center c and radius R.

2 If R < ∞, then S(z) does not converge at any point z such that |z−c|> R.

Examples

∑n>0
(−1)n

2n(n+1)
zn converges totally in {|z |6 1}.

∑n>0
(2i)n

n+1
does not exist.

If |z−z0|= R then �all bets are equal�:

∑n>1
zn

n
has R = 1 and does not converge at z = 1.

∑n>1
zn

n2
has R = 1 and converges totally on the closed unit disk.



The Abel-Hadamard theorem

Statement

Let S(z) be a power series of center c and convergence radius R.

1 If R > 0, then S(z) converges totally on every closed and bounded subset of the
open disk of center c and radius R.

2 If R < ∞, then S(z) does not converge at any point z such that |z−c|> R.

Consequence for generating functions

If limsupn>0
n
√
|gn|< ∞,

then the generating function of gn is well de�ned in a neighborhood of 0.



Exploiting power series

Let S(z) = ∑n>0 an(z−c)n for |z−c|< r .

1 For any such z we can approximate S(z) with its partial sum

SN(z) = ∑
06n6N

an(z−c)n

2 The quantity |S(z)−SN(z)| can be made arbitrarily small by setting N large
enough.

3 The choice of n can be made good for every z such that |z−c|6 ρ < r .

4 Arithmetic operations are su�cient to compute SN(z).



Power series are holomorphic functions

Let S(z) = ∑n>0 an(z−c)n and let R > 0 be its convergence radius.

The function

T (z) = ∑
n>0

d

dz
(an(z−c)n) = ∑

n>1
nan(z−c)n−1 = ∑

n>0
(n+1)an+1(z−c)n

is still a power series.

But
limsup

n>0

n
√
|(n+1)an+1|= limsup

n>0

n
√
|an| :

so T (z) also has convergence radius R.

By the Abel-Hadamard theorem, for |z−c|< R,

S ′(z) = ∑
n>0

(n+1)an+1(z−c)n = T (z)

Note how we swapped di�erentiation with sum, which is made possible by
uniform convergence, which in turn is ensured by total convergence.



Holomorphic functions are power series locally

Laurent's theorem

Let f be holomorphic in a disk

Dr (c) = {z ∈ C | |z−c|< r}.

Then there exist a sequence {an}n>0 of complex numbers such that:

1 The power series S(z) = ∑n>0 an(z−c)n has convergence radius R > r .

2 For every z ∈Dr (c) we have S(z) = f (z).

A function which is �locally a power series� at each point is called analytic.
For complex functions of a complex variable, analyticity is the same as holomorphy.



Holomorphic functions are power series locally

Laurent's theorem

Let f be holomorphic in a disk

Dr (c) = {z ∈ C | |z−c|< r}.

Then there exist a sequence {an}n>0 of complex numbers such that:

1 The power series S(z) = ∑n>0 an(z−c)n has convergence radius R > r .

2 For every z ∈Dr (c) we have S(z) = f (z).

A function which is �locally a power series� at each point is called analytic.
For complex functions of a complex variable, analyticity is the same as holomorphy.

Counterexample in real analysis

Let f (x) = e−1/x
2

for x 6= 0, f (0) = 0.

Then f is in�nitely di�erentiable in R and nonzero everywhere except x = 0 . . .

. . . but the Taylor series in x = 0 vanishes!



Holomorphic functions are power series locally

Laurent's theorem

Let f be holomorphic in a disk

Dr (c) = {z ∈ C | |z−c|< r}.

Then there exist a sequence {an}n>0 of complex numbers such that:

1 The power series S(z) = ∑n>0 an(z−c)n has convergence radius R > r .

2 For every z ∈Dr (c) we have S(z) = f (z).

A function which is �locally a power series� at each point is called analytic.
For complex functions of a complex variable, analyticity is the same as holomorphy.

Consequence for generating functions

Every function that is analytic in a neighborhood of the origin
is the generating function of some sequence.



The identity principle for analytic functions

Statement

Let A be a connected open subset of the complex plane.

Let f : A→ C be an analytic function.

Suppose f is not identically zero in A.

Then all the zeroes of f in A are isolated:
If z0 ∈ A and f (z0) = 0, then there exists r > 0 such that f (z) 6= 0 for every z
such that 0< |z−z0|< r .



The identity principle for analytic functions

Statement

Let A be a connected open subset of the complex plane.

Let f : A→ C be an analytic function.

Suppose f is not identically zero in A.

Then all the zeroes of f in A are isolated:
If z0 ∈ A and f (z0) = 0, then there exists r > 0 such that f (z) 6= 0 for every z
such that 0< |z−z0|< r .

Corollary: Uniqueness of analytic continuation

Let:

I a nonempty interval of the real line;

A a connected open subset of the complex plane such that I ⊆ A; and

f : I → R a continuous function.

Then there exists at most one function analytic in A which coincides with f on I .



The identity principle for analytic functions

Statement

Let A be a connected open subset of the complex plane.

Let f : A→ C be an analytic function.

Suppose f is not identically zero in A.

Then all the zeroes of f in A are isolated:
If z0 ∈ A and f (z0) = 0, then there exists r > 0 such that f (z) 6= 0 for every z
such that 0< |z−z0|< r .

Consequence for generating functions

Every sequence {gn}n>0 of complex numbers such that limsupn>0
n
√
|gn|< ∞

is uniquely determined by its generating function.



1+2+3+4+ . . .=−1/12 !??

The series

∑
n>1

n−s

converges for every real value s > 1: for example, for s = 2,

∑
n>1

1

n2
=

π2

6

The Riemann zeta function is the unique analytic function ζ (s), de�ned for
s ∈ C\{1}, such that ζ (s) = ∑n>1 n

−s for every real s > 1.

It happens that ζ (−1) =−1/12.
This does not mean that ∑n>1 n =−1/12!
Instead, it means that the formula ζ (s) = ∑n>1 n

−s can be assumed valid only
when s is real and greater than 1.



Basic generating functions

G(z) z 〈g0,g1,g2,g3, . . .〉 gn

zm , m ∈ N z ∈ C 〈0, . . . ,0,1,0, . . . ,〉 [n = m]

ez z ∈ C 〈1,1, 1
2
, 1
6
, . . .〉 1

n!

cosz z ∈ C 〈1,0,− 1

2
,0, . . .〉 (−1)bn/2c

n!
· [n is even]

sinz z ∈ C 〈0,1,0,− 1

6
, . . .〉 (−1)bn/2c

n!
· [n is odd]

(1+ z)α |z |< 1 〈1,α, α(α−1)
2

, α3

6
, . . .〉

(
α

n

)
=

αn

n!
1

1−αz
|z |< 1/|α| 〈1,α,α2,α3, . . .〉 αn

ln
1

1−z
|z |< 1 〈0,1, 1

2
, 1
3
, . . .〉 1

n
· [n > 0]

ln(1+ z) |z |< 1 〈0,1,− 1

2
, 1
3
, . . .〉 (−1)n−1

n
· [n > 0]

Recall our convention that, if a is in�nite or unde�ned, then a · [False] = 0.



Analytic functions and generating functions: A summary

1 Every function that is analytic in a neighborhood of the origin of the complex
plane is the generating function of some sequence.
Reason why: Laurent's theorem.

2 Every sequence {gn}n>0 of complex numbers such that

limsup
n

n
√
|gn|< ∞

admits a generating function.
Reason why: The Abel-Hadamard theorem.

3 Every such sequence is uniquely determined by its generating function.
Reason why: Uniqueness of analytic continuation.

We can thus use all the standard operations on sequences and their generating
functions, without caring about de�nition, convergence, etc., provided we do so under
the tacit assumption that we are in a �small enough� circle centered in the origin of
the complex plane.



Power series and in�nite sums

The problem

Consider an in�nite sum of the form ∑n>0 anβn.

Suppose that we are given a closed form for the generating function G(z) of the
sequence 〈a0,a1,a2, . . .〉.
Can we deduce that ∑n>0 anβn = G(β)?



Power series and in�nite sums

The problem

Consider an in�nite sum of the form ∑n>0 anβn.

Suppose that we are given a closed form for the generating function G(z) of the
sequence 〈a0,a1,a2, . . .〉.
Can we deduce that ∑n>0 anβn = G(β)?

Answer: It depends!

Let R be the convergence radius of the power series ∑n>0 anz
n.

If |β |< R: YES by Abel-Hadamard and uniqueness of analytic continuation.

If |β |> R: NO by Abel-Hadamard.

If |β |= R: Sometimes yes, sometimes not!



Warmup: A fast approximation for ln2

Problem

Show that ∑k>1
1

k ·2k
= ln2.



Warmup: A fast approximation for ln2

Problem

Show that ∑k>1
1

k ·2k
= ln2.

Solution:

The sum ∑k>1
1

k ·2k
resembles the power series ∑k>1

zk

k
evaluated at z = 1/2.

Since limk→∞
k
√
k = 1, z = 1/2 is within the convergence radius of the series.

But for |z |< 1 it is ∑k>1
zk

k
= ln

1

1−z
: we can then evaluate indi�erently the

left-hand side or the right-hand side!

As
1

1−1/2
= 2, the thesis follows.



Two rules for |β |= R

Abel's summation formula

Let S(z) = ∑n>0 anz
n be a power series with center 0 and convergence radius 1. If

S = ∑
n>0

an = S(1)

exists, then S(z) converges uniformly in [0,1]. In particular,

S = lim
x→1−

S(x) , x ∈ [0,1]



Two rules for |β |= R

Abel's summation formula

Let S(z) = ∑n>0 anz
n be a power series with center 0 and convergence radius 1. If

S = ∑
n>0

an = S(1)

exists, then S(z) converges uniformly in [0,1]. In particular,

S = lim
x→1−

S(x) , x ∈ [0,1]

The converse does not hold!

For |z |< 1 we have:

∑
n>0

(−1)nzn =
1

1+ z

Then L =
1

2
but S does not exist.



Two rules for |β |= R

Abel's summation formula

Let S(z) = ∑n>0 anz
n be a power series with center 0 and convergence radius 1. If

S = ∑
n>0

an = S(1)

exists, then S(z) converges uniformly in [0,1]. In particular,

S = lim
x→1−

S(x) , x ∈ [0,1]

Tauber's theorem

Let S(z) = ∑n>0 anz
n be a power series with center 0 and convergence radius 1. If

L = lim
x→1−

S(x) , x ∈ [0,1]

exists and in addition limn→∞ nan = 0 , then S = S(1) also exists, and coincides with L.
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