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Binomial coefficients

Let r be a complex number and k an integer. The binomial coefficient “r choose k" is
the complex number

k!

Ar—=1)---(r— k.
<r): r-(r=1)---(r k+1):% k>0,
0 " ifk<0.

If r=nis a natural number

In this case,
n\ _n-(n=1)---(n—k+1)
k) k!

is the number of ways we can choose k elements from a set of n elements, in any

order.
Consistently with this interpretation,
n! if0< k <
(Z): QG [AL
0 ifk>n.
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The binomial theorem

n

(a+b)"= Z (Z)akb"_k

k=0

for any integer n > 0.

Proof.

Expanding (a+ b)" = (a+b)(a+b)---(a+ b) yields the sum of the
2" products of the form ejes---e,, where each e; is a or b. These
terms are composed by selecting from each factor (a+ b) either a or
b. For example, if we select a k times, then we must choose b n— k
times. So, we can rearrange the sum as

n
(a+b)"=Y Ceakpnk,
k=0

where the coefficient C is the number of ways to select k elements

(k factors (a+ b)) from a set of n elements (from the product of n

factors (a+b)-(a+b)---(a+b)).

That is why the coefficient C is called “(from) n choose k" and TAL
denoted by (Z) QEDTECH



Binomial coefficients and combinations

The number of subsets with k elements of a set with n elements is:

==
(1) -7

Proof:
m To choose a sequence of k different elements, we have n choices for the first
element, n—1 for the second, ..., n— k-+1 for the kth.
= In other words, there are n(n—1)---(n— k+1) = n sequences of k different
elements.
m But two different sequences with the same elements identify the same subsets.

m And each such subsequence corresponds to one of the k! ways of sorting k
k

n
k!
with n elements. Q.E.D.

objects. In conclusion, we have = Wlk)' subsets with k elements of a set
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Binomial coefficients and combinations

The number of subsets with k elements of a set with n elements is:

==
(1) -7

Proof:

m To choose a sequence of k different elements, we have n choices for the first
element, n—1 for the second, ..., n— k-+1 for the kth.

= In other words, there are n(n—1)---(n— k+1) = n sequences of k different
elements.

m But two different sequences with the same elements identify the same subsets.

m And each such subsequence corresponds to one of the k! ways of sorting k
k

. . n*< .
objects. In conclusion, we have W = Wlk)' subsets with k elements of a set

with n elements. Q.E.D.

Some other notations used for the “n choose k" in literature:

Cﬁvc(nvk%nck»nck- J ;éé”




Properties of Binomial Coefficients

Yio (Z) =2": A set of n elements has 2" subsets.

Yio(—=1)K(}) = [n=0]: In a nonempty set, the number of subsets with odd
cardinality is equal to the number of sets with even cardinality.

Proof:

m Take a= b =1 in the binomial theorem:

5 (0)- £ (e oo

k=0 k=0

m Takea=-1and b=1:
¥ 05(;) = £ (7)o = ey =tn=a

QED.
TECH



Another Property For n > 0 Integer

Symmetry of binomial coefficients

(D) =(,",) for every n>0.

Proof. For 0 < k < n direct conclusion from Theorem 2:

() == (o)

otherwise, both sides vanish. Q.E.D.
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Another Property For n > 0 Integer

Symmetry of binomial coefficients

() =(,") for every n>0.

Proof. For 0 < k < n direct conclusion from Theorem 2:

()= = (")

otherwise, both sides vanish. Q.E.D.

Only if n is nonnegative!

For n=—-1and k>0,

while for k <0,

[AL
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Yet Another Property

TAL
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Yet Another Property

Recurrence formula

o o

Proof: if k <0 then both sides equal [k = 0]; if k > 0, then:

(G - S

(r—1)k——1.(r-k)+(r—1)k——1.k

k! k!
 (r=D)(r—k+k)
- k!
r~(r—1)k’—1

k!

_ork_(r
ok \k)

TAL
Q.E.D. TECH
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Pascal’s Triangle

Blaise Pascal
(1623-1662)
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Pascal’s Triangle

Blaise Pascal
(1623-1662)

m Pascal Triangle is symmetric with respect to the vertical line
through its apex.

m Every number is the sum of the two numbers immediately above it.

TAL
TECH



Warmup: The hexagon property

Statement

For every n>2 and 0 < k < n,

()6

TAL
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Warmup: The hexagon property

Statement

For every n>2 and 0 < k < n,
n—1 n n+1 . n—1 n n+1
k—1)\k+1 k )\ k k—1)\k+1

Interpretation

m Looking at Pascal’s triangle in the previous slide, the six numbers in the
expression above form a “hexagon” around (Z)

m Then the hexagon property says that the product of the odd-numbered corners
of the hexagon equals that of the even-numbered corners.

TAL
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Warmup: The hexagon property

Statement

For every n>2 and 0 < k < n,

(22) () () = () () ()

Proof

Consider the expression of the binomial coefficients as a ratio of products of primes.
At the numerator, both sides contribute with (n—1)!-n!-(n+1)!

At the denominator:

m The left hand side contributes with:
(k=) (n—k)!-(k+1)'-(n—k—=1)!-k!-(n+1—k)!
m The right-hand side contributes with:
kl-(n=1—k)!-(k=1)!-(n—k+1)!-(k+1)!-(n—k)!

[AL
The contributions of the two sides are thus equal, and the thesis follows. TECH



The polynomial argument: Case study

For every r complex and k integer,

()3
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The polynomial argument: Case study

For every r complex and k integer,

0 =("")
(,,k)(;) =(rfk)(,:k) :r(r:;il) :r(r;1)

Proof:

TAL
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The polynomial argument: Case study

For every r complex and k integer,

Proof:

r r r—1 r—1
=0 =e=0( 2 =(Sle) = ()
Wait! There’s a problem:

We can have r appear in the lower index only if it is an integer!

TAL
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The polynomial argument: Description

Lemma

If two polynomials with complex coefficients of degree at most k take the same values
in more than k points, then they take the same values everywhere.
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The polynomial argument: Description

Lemma

If two polynomials with complex coefficients of degree at most k take the same values
in more than k points, then they take the same values everywhere.
Proof:

m Suppose f(x) and g(x) are polynomials of degree at most k taking the same
values in the point x1,x2,...,Xk41-

m Then the polynomial p(x) = f(x) —g(x) vanishes at each of the points
X1,X2,.--,Xk+1. SO there exists a polynomial g(x) such that:

p(x) = (x—x1)(x —x2)--- (x = xk41)q(x) .

m But the left-hand side has degree at most k, while the right-hand side has
degree at least k+1 unless g(x) =0 everywhere.

m So p(x) =0 everywhere too, that is, f(x) = g(x) everywhere.

TAL
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The polynomial argument: Description

Lemma

If two polynomials with complex coefficients of degree at most k take the same values
in more than k points, then they take the same values everywhere.
So the proof in the previous slide was not too wrong . ..

m (r—k)(;) and r(";") are polynomials in r of degree k1.

m The two polynomials take the same value on every integer n.

m By the polynomial argument, they take the same value on every real number r.

TAL
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Another application of the polynomial argument

For every r € C and k,m € Z:
r\(m\ _[(r\[(r—k
m)\k) \k)\m—k)

Proof: If k <0 or m < k then both sides vanish. If m > k > 0, then for every n>m

integer:
(;)(’:) - m!(nnim)!'k!(rr,:’ik)!
n! (n—k)!

Ki(n—k)! (m—k)I((n— k) — (m—k))!
n\ [/ n—k
(D))

whence the thesis by the polynomial argument.

TAL
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Expanding the Addition Formula (1)

Summation on the upper index

For every r € C and n € Z:
y (r+k) B (r+n+1)
i<n k n

TAL
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Expanding the Addition Formula (1)

Summation on the upper index

For every r € C and ne Z:
( € ) ( ” )
k<n

Proof: if n <0 then both sides are zero, otherwise we unfold:

<r+n+1) (r+n) r+n)
= +
n n n—1



Expanding the Addition Formula (2)

Summation on the upper index

For every n,m e N,
(k) (n+1)
<Z< m m+1
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Expanding the Addition Formula (2)

Summation on the upper index

For every nym e N,

Proof:
n+1
_ n i n
m—+1 m-+1 m
_ n—1 i n—1 i n
- m+1 m m

because m+1 > 1, so surely (m(-]l—l)

TAL
TECH



Generalizing the Binomial Theorem

Generalized Binomial Theorem

Let either re N or |x/y| <1. Then:

cany =5 (D)t

For if r is arbitrary but z = x/y is such that |z| <1, then the Taylor series of (1+2z)"
in a neighborhood of the origin converges absolutely:

2]_ r-2 l]_ r-3 il r—4
A2 ) 2O ) A,

- 2=z ()"

and multiplying both sides by y” we get the thesis.

(1+z) 1+r(140) 1z +

TAL
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Generalizing the Binomial Theorem

Generalized Binomial Theorem

Let either re N or |x/y| < 1. Then:

T A

For if r is arbitrary but z = x/y is such that |z| <1, then the Taylor series of (1+2z)"
in a neighborhood of the origin converges absolutely:

21 0r—2 11 0r—3 Al 0r—4
r(—;) z2+r(‘;) Z3+r(‘L) 24

Z()-2()6)

and multiplying both sides by y" we get the thesis.

1+2)" = 14+r(14+0)1z+

This is actually our first use of a generating function.

TAL
TECH



Warmup: The binomial inversion formula

Theorem (Binomial inversion formula)

Let f and g be two complex- functions defined on N. The following are equivalent:
For every n >0, g(n) = X7_o (1) (—1)%f (k).
For every n >0, f(n) =Y1_o () (~1) g(k).

Note that the role of f and g is symmetrical.

TAL
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Warmup: The binomial inversion formula

Theorem (Binomial inversion formula)

Let f and g be two complex- functions defined on N. The following are equivalent:
For every n >0, g(n) =Xr_o (1) (—1)%f (k).
For every n>0, f(n)=XYq_, (1) (—1)“g(k).

Note that the role of f and g is symmetrical.

If g(n) =X7_o () (—1)%f(k) for every n >0, then for every n >0 also:

éo () vreto kgo (D(‘”k"?k;o () comrtm)

= <§ nm(n;:n)ﬂm|(kk )I( 15" (m)
= L (Eer(m) o
= £ (7)im=rnrm=ron by



Binomial identities cheat sheet

1 for every r complex.

r for every r complex.

)
(1)
= (") =[n>0] for every n integer.
()
()

[ = [k = 0] for every k integer.

m = £ (;71) for every r complex and k # 0 integer.

m k() =r(;7}) for every r complex and k integer (also 0).
m ([) = (") + (;73) for every r complex and k integer.

m Y7 o (7) =2" for every n> 0 integer.

B Y7 o(—1)%(}) =[n=0] for every n >0 integer.

m Yoen (TFF) = ("7 for every r complex and n integer.

f;) = (::_11) for every n,m € N.

| |
Ing!
o
IN
A
N
S|
— X
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Next section

Basic Practice
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A Sum of Ratios

Compute Y7o (7)/ (1), where n > m > 0 are integers.

TAL
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A Sum of Ratios

Compute Y7 (7)/ (7). where n> m >0 are integers.

Let us work on the summand:

which depends on k in the numerator, but not the denominator. Now:
z”: (nfk> _ Z (nfk) _ Z (n7m+k) _ ((nfm)—l-m—l-l) _ (n+1)
=0 m—k o m—k K<m k m m

by renaming k as m— k. In conclusion:

kgo (Z)/(:) - (Eg) - m!(ErnJ:rllz!m)! L n+n;r_1m'

TAL
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Next section

Generating Functions
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Power series of functions

Example: Functions expanded as power series

2 X3 x4

5 y
i_l 2 42 42
§: =l 5+ oy

. ( 1)n 2n+1 X3 X5 X7
sin(x) n;, @nr1)l X" 3 T 120 5040

1 = ZX":1+x+x2+x3+x4+---
1-x =

TAL
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Power series of functions (2)

Power series of a function

m The power series expansion of the function f in a neighborhood of a point c is
an expression of the form:
f(x)= Z an(x—¢c)"= ao—I—‘;:l(xfc)-i-ag(xfc)2 +a3(x7c)3+--- ,
n=0

where c,ap,a1,... are constants. (Taylor series)

m The special case ¢ =0 provide the Maclaurin series:

f(x)= Z anx" = ag+a1x+asx® +azx>+ -
n=0

m The coefficients are defined as

f(")(c)
n!

an =

TAL
TECH



Power series of functions (3)

Example: Generating functions

F=ltx+5+5 5+ (113,830
. 3 5 7 1 1 1
sin(x) =x— 5+ {55 — soq0 + (0,1,-3,9, 135,0, ~ 50450 "*)

<171~,171~,'“>

/ﬁ:1+x+x2+x3+x4+m
[11

Generating functions ... . of the sequences

TAL
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Generating Functions

The generating function of the sequence (go,g1,82,...) is the power series

G(x)=got+gix+gx®+gax>+ =Y gx"
n=0

Some simple examples

(0,0,0,0,...) +— 040x+0x24+0x3+---=0
(1,0,0,0,...) +— 140x+0x24+0x3+---=1
(2,3,1,0,...) +— 243x+1x24+0x3+... =243x+1x2

TAL
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More examples (1)

S = 14+x+x2+x3+---
xS = x+x2Fx3 4.

Subtracting:

1
(1—x)S=1, thatis, S:l—

—X

TAL
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More examples (1)

S = 14+x+x2+x34--
xS = x+x2+x34-.

Subtracting:

1
(1—x)S=1, thatis, S:l—

— X

NB! This formula converges only for —1 <x <1.

We will see that we don't need to worry about convergence issues.

TAL
TECH



More examples (2)

(a,ab,ab?,ab?,...) +— a+abx+ab?x®2+ab3x3+-. = 2

Like in the previous example:

S = a+tabx+ab’x®+ab>x3+---
bxS = abx+ab?x? 4+ ab®x3 + ---
Subtract and get:
a

(1—bx)S =a, thatis, S= S

TAL
TECH



More examples (3)

Taking in the last example a=0,5 and b =1 yields

0,5
0,540,5x+0,6x2+0,6x>+--- = 1’ (1)
— X
Taking a=0,5 and b= —1, gives
0,5—0,5x40,5x —0,5x3 +... = 0.5 (2)
I b b b 1+X

Adding equations (1) and (2), we get the generating function of the sequence
(1,0,1,0,1,0,...):

142 x4 48 + —£+ 0.5 _ L _ !
T 1-x 1+x (1-x)(1+x) 1-x2

TAL
TECH



Next subsection

Generating Functions
m Intermezzo: Analytic functions
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The complex derivative

Let ACC, f: A— C, and z an internal point of A.
The complex derivative of f in z is (if exists) the quantity

f'(z) = AliTO %

Complex differentiation follows the same rules as real differentiation:
(af (2) + bg(2))' = af'(z) + bg'(2).

(f(2)g(2)) = f'(2)g(2) +f(2)g'(2).

(f(g(2))) = f'(g(2))g'(2).

If g(z) = f1(2), then g'(z) = 1/f'(g(2)).

If Ais open and f has complex derivative in every point of A, e say that f is
holomophic in A.

TAL
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The complex derivative and the partial derivatives

Let f(z) = u(z) +iv(z). If f/(z) exists, then:
m For Az = Ax,

af f(z+Ax)—1f(z)
= A A =@
m For Az=iAy,
(z)—l lim f(z+iAy)—f(z)

=if
Ax—0 iAy )
As j-i= —1, we get the Cauchy-Riemann conditions:

of . df

7+ 7 0, that is, uX=vyanduy:7vX

Vice versa, if f has continuous partial derivatives and satisfies the Cauchy-Riemann
conditions, then f has a complex derivative.

TAL
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Elementary holomorphic functions

f(z) | holomorphic in | defined as | f'(2)
z™, meN zeC ", z mz™ 1
z" . meZ, m<0 | zeC\{0} nr,z* mz™ 1
e zeC eX(cosy +isiny) where z=x+1iy | e
ez _ g iz
sinz zeC T cosz
1z —Iz
cosz zeC % —sinz
1
log z z€C\(—20,0] | In|z|+iargz .

where argz is the unique 6 € (—m, 7] such that z=|z|-(cos6 +isinB).

TAL
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Warmup: The complex exponential

We look for a solution f : C — C to the Cauchy problem:

{ f'(z) f(z) VzeC,
(0)

1.

TAL
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Warmup: The complex exponential

We look for a solution f : C — C to the Cauchy problem:

{ f'(z) f(z) VzeC,
£(0)

1.

m As f' = Jdf /dx when the left-hand side exists, we can search:
f(z) =e*-g(y) where x+iy =z.
m The Cauchy-Riemann conditions and the hypothesis tell us that:
e*g'(y) = if'(z) = if (2).
m Consequently, eXg”(y) = —f(z), and by dividing both sides by e*,
g'(v)=-gly) Yy €R.

m Then it must be g(y) = Acosy + Bsiny for suitable A,B € C. PE‘(L:H



Warmup: The complex exponential

We look for a solution f: C — C to the Cauchy problem:

f'(2) f(z) VzeC,
{ f(0) 1.

®m Summarizing:
f(z) = €X(Acosy + Bsiny) where z=x+iy.

= £(0)=1 yields A=1; f/(0) =1 yields B =i.

We conclude:
e? = e*(cosy +isiny) where z=x+1iy.

TAL
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Warmup: The complex exponential

We look for a solution f: C — C to the Cauchy problem:
f'(2)
£(0)

Similarly, the complex cosine and sine are the solutions of the Cauchy problems:

f(z) VzeC,
1.

{ g'(z) = -v(z) VzeC, { W(z) = -w(z)VzeC,
g(0) = 1, h(0) = 0,
g'(0) = 0; K(©) = 1.

As e and e both satisfy f/ = —f in C, setting the initial conditions yields:

iz —iz iz _ a—iz
g(z) =cosz = % and h(z) =sinz= 2ie

[AL
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Warmup: The complex exponential

We look for a solution f : C — C to the Cauchy problem:

{ f'(z) f(z) VzeC,
f(o) = 1.

As e? and e~% both satisfy f/ = —f in C, setting the initial conditions yields:
iz —iz iz _ iz
g(z) =cosz= % and h(z) =sinz = € 2’,6

We then recover Euler's equation:

e? =cosz+isinz foreveryze C.

TAL
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Convergence of sequences of functions

Pointwise convergence

Let f,: A— C be functions. The (pointwise) limit of the sequence {f,},>0 is the
function defined by

f(z)= rI]m fa(2)
for every z € A where the limit exists.

For power series: }.,>9anz" = limy_ Z:’Lo anz".

TAL
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Convergence of sequences of functions

Pointwise convergence

Let f, : A— C be functions. The (pointwise) limit of the sequence {f,}n>0 is the
function defined by

f(z) = lim f,(z
(2) = lim fi(2)
for every z € A where the limit exists.

For power series: ¥ ,>0anz" = limy_e Z,’YZO apnz".

Uniform convergence

The sequence of functions {f,},>¢ of functions converges uniformly to f in A if:
Ve >03ng >0 suchthat Vn> ne Vz € A.|f(z) —f(2)| <€ :
that is, if pointwise convergence is independent of the point.

m The sequence f(x) = efxz[\x| < n] converges to f(x) = e uniformly in R.

m The sequence f,(x) = [x > n] converges to zero in R, but not uniformly.

TAL
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Consequences of uniform convergence

Continuity of the limit

Uniform limit of continuous functions is continuous.

Not true for simply pointwise convergence:

1-nx if0<x<1/n,

iffn(x):{ 0 B e, then ,!mfn(x):[x:O].

Swap limits

If f, converges uniformly in A, then:

lim lim f,(z) = lim lim f,(z) Yz € A

z—2g N—0 n—o0z—2g

Swap limit with differentiation

If f, — f uniformly in A, all the £, are differentiable, and f; converges uniformly, then
f is differentiable and:
f'(z) = |i£n f1(z)
n—soo

[AL
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Total convergence

A series of functions Y, fx(z) converges totally in a set A if there exists a convergent
series Y, by with nonnegative coefficients such that

|f(2)| < by foreveryz € A

Total convergence is the strongest form of convergence for series of functions:
total

|

uniform absolute

T

absolute uniform

\/

pointwise

TAL
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The convergence radius of a power series

Definition
The convergence radius of the power series

S(z)=Y an(z—¢)"

n=0

R— 1
-~ limsup,zo {/]an]’

with the conventions 1/0 =o0, 1/00 =0.

m For ¢ €C, ¥ ,50"2" has convergence radius 1/|a|.
Z"
m Y,-; — has convergence radius 1.
' n

n
z s q
m Y0 ol has infinite convergence radius.

TAL
TECH



The Abel-Hadamard theorem

Statement

Let S(z) be a power series of center ¢ and convergence radius R.

If R >0, then S(z) converges totally on every closed and bounded subset of the
open disk of center ¢ and radius R.

If R <eo, then S(z) does not converge at any point z such that |z—c| > R.

TAL
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The Abel-Hadamard theorem

Statement

Let S(z) be a power series of center ¢ and convergence radius R.

If R >0, then S(z) converges totally on every closed and bounded subset of the
open disk of center ¢ and radius R.

If R < oo, then S(z) does not converge at any point z such that [z—c| > R.

(=1)"

= Yoo mz" converges totally in {|z| <1}.

2' n
m Y. >0 %does not exist.

If |z— 20| = R then “all bets are equal™

Zn
Yo = has R =1 and does not converge at z=1.

z" o
Yo 2 has R =1 and converges totally on the closed unit disk.

TAL
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The Abel-Hadamard theorem

Statement

Let S(z) be a power series of center ¢ and convergence radius R.

If R>0, then S(z) converges totally on every closed and bounded subset of the
open disk of center ¢ and radius R.

If R <eo, then S(z) does not converge at any point z such that |z—c| > R.

Consequence for generating functions

If limsup,~q {/|gn| < e,
then the generating function of g, is well defined in a neighborhood of 0.

TAL
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Exploiting power series

Let S(z) =Y ps0an(z—c)" for [z—c| < r.
For any such z we can approximate S(z) with its partial sum

Sn(z) = Z an(z—c)"

0<n<N

The quantity |S(z) — Sy(z)| can be made arbitrarily small by setting N large
enough.

The choice of n can be made good for every z such that [z—c|<p <r.

Arithmetic operations are sufficient to compute Sy(z).

TAL
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series are holomorphic functions

Let S(z) = Y,>0an(z—c)" and let R > 0 be its convergence radius.
The function

T(z)= Z (z—c)") =Y nap(z—c)" b= =Y (n+1)aps1(z—c)"

n>0 n>1 n>0

is still a power series.

But
limsup /|(n+1)ap+1| = limsup v/|an| :
n>0 n=0

so T(z) also has convergence radius R.
By the Abel-Hadamard theorem, for |z—c| < R,

S'(z)= Z (n+1)apt1(z—c)"=T(2)

n=0

Note how we swapped differentiation with sum, which is made possible by
uniform convergence, which in turn is ensured by total convergence.

TAL
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Holomorphic functions are power series locally

Laurent’s theorem

Let f be holomorphic in a disk
D(c)={zeC||z—c|<r}.

Then there exist a sequence {an},>0 of complex numbers such that:
The power series S(z) = Y,>0 an(z— )" has convergence radius R > r.
For every z € D,(c) we have 5(z) = f(2).

A function which is “locally a power series” at each point is called analytic.
For complex functions of a complex variable, analyticity is the same as holomorphy.
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Holomorphic functions are power series locally

Laurent’s theorem

Let f be holomorphic in a disk
D.(c)={zeC | |z—c|<r}.

Then there exist a sequence {an},>0 of complex numbers such that:
The power series S(z) = Y,50 an(z— )" has convergence radius R > r.
For every z € D,(c) we have 5(z) = f(2).

A function which is “locally a power series” at each point is called analytic.
For complex functions of a complex variable, analyticity is the same as holomorphy.

Counterexample in real analysis
Let f(x) = e 1/* for x=£0, £(0) =0.
m Then f is infinitely differentiable in R and nonzero everywhere except x=0 ...

m ...but the Taylor series in x =0 vanishes!
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Holomorphic functions are power series locally

Laurent’s theorem

Let f be holomorphic in a disk
Di(c)={zeC||z—c|<r}.

Then there exist a sequence {an},>0 of complex numbers such that:
The power series S(z) = Y,50 an(z—c)" has convergence radius R > r.
For every z € D,(c) we have S(z) = f(z).

A function which is “locally a power series” at each point is called analytic.
For complex functions of a complex variable, analyticity is the same as holomorphy.

Consequence for generating functions

Every function that is analytic in a neighborhood of the origin
is the generating function of some sequence.
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The identity principle for analytic functions

Statement

Let A be a connected open subset of the complex plane.
Let f: A— C be an analytic function.
Suppose f is not identically zero in A.

Then all the zeroes of f in A are isolated:
If zo € A and f(z9) =0, then there exists r > 0 such that f(z) # 0 for every z
such that 0 <|z—z| <r.
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The identity principle for analytic functions

Statement

m Let A be a connected open subset of the complex plane.
m Let f: A— C be an analytic function.
m Suppose f is not identically zero in A.

m Then all the zeroes of f in A are isolated:
If zo € A and f(z0) =0, then there exists r > 0 such that f(z) # 0 for every z
such that 0 <|z—z| < r.

Corollary: Uniqueness of analytic continuation

Let:
m | a nonempty interval of the real line;
m A a connected open subset of the complex plane such that / C A; and
m f:/— R a continuous function.
Then there exists at most one function analytic in A which coincides with f on /.
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The identity principle for analytic functions

Statement

m Let A be a connected open subset of the complex plane.
m Let f: A— C be an analytic function.
m Suppose f is not identically zero in A.

m Then all the zeroes of f in A are isolated:
If zp € A and f(z9) =0, then there exists r > 0 such that f(z) # 0 for every z
such that 0 < |z—z| <r.

Consequence for generating functions

Every sequence {gn}n>0 of complex numbers such that limsup,>q {/|gn| < o°
is uniquely determined by its generating function.
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14+2+43+44...=—1/12177

The series
n>1
converges for every real value s > 1: for example, for s =2,

1 T
L2

n>1

The Riemann zeta function is the unique analytic function {(s), defined for
s € C\ {1}, such that {(s) =Y ,>1 n~° for every real s> 1.

m It happens that {(—1) = —1/12.
m This does not mean that ¥,>; n=—1/12!

m Instead, it means that the formula {(s) =Y,>1 n"° can be assumed valid only
when s is real and greater than 1.
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Basic generating functions

G(2) | 2 | (g0.£1.82.83,--) | &n
z" meN | zeC (0,...,0,1,0,...,) [n=m]
1
e? zeC (11,41, ﬁ
1 (e
cosz zeC (1,0,—3,0,...) T[nlseven]
. (=1)ln/2]
sinz zeC @10, =50000) T-[nisodd]
1 3 o
1+2)% | |zl<1 Lo S ey ==
1
o |zl <1/|a] | (1,0,02,03,...) a’
1 1
In— |z| <1 (0,1,4,1,..) E-[n>0]
11 (-1"*
In(1+2z) lz| <1 @1, =5, 50000 #-[n>0]

Recall our convention that, if a is infinite or undefined, then a-[False] = 0.
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Analytic functions and generating functions: A summary

Every function that is analytic in a neighborhood of the origin of the complex
plane is the generating function of some sequence.
Reason why: Laurent’s theorem.

Every sequence {g,}n>0 of complex numbers such that
limsup \/|gn| < o
n

admits a generating function.
Reason why: The Abel-Hadamard theorem.

Every such sequence is uniquely determined by its generating function.
Reason why: Uniqueness of analytic continuation.

We can thus use all the standard operations on sequences and their generating
functions, without caring about definition, convergence, etc., provided we do so under
the tacit assumption that we are in a “small enough” circle centered in the origin of
the complex plane.
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Power series and infinite sums

The problem

m Consider an infinite sum of the form ¥~ anB".

m Suppose that we are given a closed form for the generating function G(z) of the
sequence (ag, a1, az,...).

m Can we deduce that ¥,>02,8" = G(B)?
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Power series and infinite sums

The problem

m Consider an infinite sum of the form ¥,,~¢a,B8".

m Suppose that we are given a closed form for the generating function G(z) of the
sequence (ag,a1,az,...).

m Can we deduce that ¥,,59an8" = G(B)?

Answer: It depends!

Let R be the convergence radius of the power series ¥~ a,z".
m If |B] < R: YES by Abel-Hadamard and uniqueness of analytic continuation.
m If || > R: NO by Abel-Hadamard.
m If || = R: Sometimes yes, sometimes not!
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Warmup: A fast approximation for In2

1
Show that Y~ PR In2.
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Warmup: A fast approximation for In2

1
Show that Y ;-4 ol In2.

Solution:
k

1 .
m The sum Y~ PR resembles the power series Y ;1 27 evaluated at z=1/2.

m Since limy_,. ¥k =1, z=1/2 is within the convergence radius of the series.

2 1
m But for |z| <1 itis Zk>1 P Inl—: we can then evaluate indifferently the

left-hand side or the right-hand side!

1 .
= As m =2, the thesis follows.
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Two rules for |B| =R

Abel’s summation formula

Let S(z) = Xn>0anz” be a power series with center 0 and convergence radius 1. If

s=Y a,=5(1)

n=0
exists, then S(z) converges uniformly in [0,1]. In particular,

S= lim S(x),x¢€[0,1]
x—1"
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Two rules for |B| =R

Abel's summation formula

Let S(z) = Y50 anz" be a power series with center 0 and convergence radius 1. If

S:Za,,:S(l)

n=0
exists, then S(z) converges uniformly in [0,1]. In particular,

S=lim S(x), x€[0,1]
x—1~

The converse does not hold!

For |z| <1 we have:
1

—1)1z" —
Z( ) 14z

n=0

1
Then L= - but S does not exist.
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Two rules for |B| =R

Abel's summation formula

Let S(z) = Y50 anz” be a power series with center 0 and convergence radius 1. If

s=Y a,=5(1)

n=0
exists, then S(z) converges uniformly in [0,1]. In particular,

S= lim S(x), x€[0,1]
x—1~

Tauber’s theorem
Let S(z) = Y50 anz” be a power series with center 0 and convergence radius 1. If

L= lim S(x),xe[0,1]
x—1~

exists and in addition lim, . na, =0 , then S = S(1) also exists, and coincides with L.
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