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Operations on Generating Functions

1. Linear combination

If:

〈f0, f1, f2, . . .〉 ←→ F (z)

and 〈g0,g1,g2, . . .〉 ←→ G(z)

then for every α,β ∈ C:

〈αf0 + βg0,αf1 + βg1,αf2 + βg2, . . .〉 ←→ αF (z) + βG(z) .

Proof:

〈αf0 + βg0,αf1 + βg1,αf2 + βg2, . . .〉 ←→ ∑
n>0

(αfn + βgn)zn

= α ∑
n>0

fnz
n + β ∑

n>0
gnz

n

by absolute convergence

= αF (z) + βG(z) .

Q.E.D.



Operations on Generating Functions (2)

2. Right-shift

If 〈g0,g1,g2, . . .〉 ←→ G(z), then〈
0,0, . . . ,0︸ ︷︷ ︸
k zeros

,g0,g1,g2, . . .

〉
←→ zk ·G(z) .

Proof:

〈0,0, . . . ,0,g0,g1,g2, . . .〉 ←→ ∑
n>k

gn−kz
n

= zk ∑
n>0

gnz
n by absolute convergence

= zk ·G(z)

Q.E.D.



Operations on Generating Functions (3)

3. Left shift

If 〈g0,g1,g2, . . .〉 ←→ F (z), then for every n > 0:

〈gk ,gk+1,gk+2, . . .〉 ←→ 1

zk

(
G(z)−

k−1

∑
n=0

gnz
n

)

Proof: 〈
0,0, . . . ,0︸ ︷︷ ︸
k zeros

,gk ,gk+1,gk+2, . . .

〉
←→ G(z)−

k−1

∑
n=0

gnz
n

= zk · 1
zk

(
G(z)−

k−1

∑
n=0

gnz
n

)
,

that is: G(z)−∑
k−1
n=0

gnz
n is the shift to the right by k positions of ∑n>0 gn+kz

n.
Q.E.D.



Operations on Generating Functions (4)

4. Di�erentiation

If 〈g0,g1,g2, . . .〉 ←→ G(z), then:

〈g1,2g2,3g3, . . .〉 ←→ G ′(z) .

Proof:

〈g1,2g2,3g3, . . .〉 ←→ ∑
n>0

(n+1)gn+1z
n

= ∑
n>1

gn nz
n−1

= ∑
n>0

gn
d

dz
zn

=
d

dz ∑
n>0

gnz
n by uniform convergence

= G ′(z)

Q.E.D.



Operations on Generating Functions (4)

4. Di�erentiation

If 〈g0,g1,g2, . . .〉 ←→ G(z), then:

〈g1,2g2,3g3, . . .〉 ←→ G ′(z) .

Example

〈1,1,1,1, . . .〉 ←→ 1

1−z

〈1,2,3,4, . . .〉 ←→ 1

(1−z)2

〈0,1,2,3, . . .〉 ←→ z

(1−z)2



Operations on Generating Functions (4)

4. Di�erentiation

If 〈g0,g1,g2, . . .〉 ←→ G(z), then:

〈g1,2g2,3g3, . . .〉 ←→ G ′(z) .

Corollary

If 〈g0,g1,g2, . . .〉 ←→ G(z), then:

〈0,g1,2g2,3g3, . . .〉 ←→ zG ′(z) .



Operations on Generating Functions (5)

5. Integration

If 〈g0,g1,g2, . . .〉 ←→ G(z), then:

〈
0,g0,

g1
2
,
g2
3
, . . .
〉
←→

∫ z

0

G(w)dw =
∫

1

0

zG(zt)dt .

Proof:〈
0, f0,

1

2
f1,

1

3
f2,

1

4
f3, . . .

〉
←→ f0z +

1

2
f1z

2 +
1

3
f2z

3 +
1

4
f3z

4 + . . .

= f0

∫ z

0

dw + f1

∫ z

0

w dw + f2

∫ z

0

w2 dw + f3

∫ z

0

w3dw + . . .

=
∫ z

0

(
f0 + f1w + f2w

2 + f3w
3 + . . .

)
dw

by uniform convergence

=
∫ z

0

F (w)dw

Q.E.D.



Operations on Generating Functions (5)

5. Integration

If 〈g0,g1,g2, . . .〉 ←→ G(z), then:

〈
0,g0,

g1
2
,
g2
3
, . . .
〉
←→

∫ z

0

G(w)dw =
∫

1

0

zG(zt)dt .

Example

〈1,1,1,1, . . .〉 ←→ 1

1−z〈
0,1,

1

2
,
1

3
, . . .

〉
←→

∫ z
0

dw
1−w = log

1

1−z



Operations on Generating Functions (6)

6. Convolution (product)

If 〈f0, f1, f2, . . .〉 ←→ F (z), 〈g0,g1,g2, . . .〉 ←→ G(z), and

hn = f0gn + f1gn−1 + f2gn−2 + · · ·+ fng0 =
n

∑
k=0

akbn−k = ∑
i+j=k

aibj

then 〈h0,h1,h2, . . .〉 ←→ F (z) ·G(z).



Operations on Generating Functions (6)

6. Convolution (product)

If 〈f0, f1, f2, . . .〉 ←→ F (z), 〈g0,g1,g2, . . .〉 ←→ G(z), and

hn = f0gn + f1gn−1 + f2gn−2 + · · ·+ fng0 =
n

∑
k=0

akbn−k = ∑
i+j=k

aibj

then 〈h0,h1,h2, . . .〉 ←→ F (z) ·G(z).

Proof:

F (z) ·G(z) = (f0 + f1z + f2z
2 + . . .) · (g0 +g1z +g2z

2 + . . .)

= f0g0 + (f0g1 + f1g0)z + (f0g2 + f1g1 + f2g0)z2 + . . .

by absolute convergence

Q.E.D.



Operations on Generating Functions (6)

6. Convolution (product)

If 〈f0, f1, f2, . . .〉 ←→ F (z), 〈g0,g1,g2, . . .〉 ←→ G(z), and

hn = f0gn + f1gn−1 + f2gn−2 + · · ·+ fng0 =
n

∑
k=0

akbn−k = ∑
i+j=k

aibj

then 〈h0,h1,h2, . . .〉 ←→ F (z) ·G(z).

Proof:

F (z) ·G(z) = (f0 + f1z + f2z
2 + . . .) · (g0 +g1z +g2z

2 + . . .)

= f0g0 + (f0g1 + f1g0)z + (f0g2 + f1g1 + f2g0)z2 + . . .

by absolute convergence

Q.E.D.
Note that all terms involving the same power of z lie on a /sloped diagonal:

g0z
0 g1z

1 g2z
2 g3z

3 . . .

f0z
0 f0g0z

0 f0g1z
1 f0g2z

2 f0g3z
3 . . .

f1z
1 f1g0z

1 f1g1z
2 f1g2z

3 . . .
f2z

2 f2g0z
2 f2g1z

3 . . .
f3z

3 f3g0z
3 . . .



Operations on Generating Functions (6)

6. Convolution (product)

If 〈f0, f1, f2, . . .〉 ←→ F (z), 〈g0,g1,g2, . . .〉 ←→ G(z), and

hn = f0gn + f1gn−1 + f2gn−2 + · · ·+ fng0 =
n

∑
k=0

akbn−k = ∑
i+j=k

aibj

then 〈h0,h1,h2, . . .〉 ←→ F (z) ·G(z).

Example

〈1,1,1,1, . . .〉 ·
〈
0,1,

1

2
,
1

3
, . . .

〉
=

〈
1·0,1·0+1·1,1·0+1·1+1· 1

2
,1·0+1·1+1· 1

2
+1· 1

3
, . . .

〉
=

〈
0,1,1+

1

2
,1+

1

2
+

1

3
, . . .

〉
= 〈0,H1,H2,H3, . . .〉

Hence:

∑
n>1

Hnz
n =

1

1−z
log

1

1−z
.



Example: the generating function of gn = n2

〈1,1,1,1, . . .〉 ←→ 1

1−z

〈1,2,3,4, . . .〉 ←→ d

dz

1

1−z
=

1

(1−z)2

〈0,1,2,3, . . .〉 ←→ z · 1

(1−z)2
=

z

(1−z)2

〈1,4,9,16, . . .〉 ←→ d

dz

z

(1−z)2
=

1+ z

(1−z)3

〈0,1,4,9, . . .〉 ←→ z · 1+ z

(1−z)3
=

z(1+ z)

(1−z)3
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Counting with Generating Functions

Example: Choosing a k-subset of an n-set

The binomial theorem yields:〈(
n

0

)
,

(
n

1

)
,

(
n

2

)
, . . . ,

(
n

n

)
,0,0,0, . . .

〉
←→ ∑

k>0

(
n

k

)
zk = (1+ z)n

The coe�cient of zk in (1+ z)n is the number of ways to choose k distinct
items from a set of size n.

For example, the coe�cient of z2 is the number of ways to choose 2 items from
a set with n elements.

Similarly, the coe�cient of zn+1 is the number of ways to choose n+1 items
from a n-set, which is zero.



Building Generating Functions that Count

The generating function for the number of ways to choose n elements from a
1-basket A (a (multi)set of identical elements) is:

A(z) = ∑n>0 [n can be selected]zn

Examples of GF selecting items from a set A :

If any natural number of elements can be selected:

A(z) = 1+ z + z2 + z3 + · · ·= 1

1−z
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The generating function for the number of ways to choose n elements from a
1-basket A (a (multi)set of identical elements) is:

A(z) = ∑n>0 [n can be selected]zn

Examples of GF selecting items from a set A :

If any natural number of elements can be selected:

A(z) = 1+ z + z2 + z3 + · · ·= 1

1−z

If any even number of elements can be selected:

A(z) = 1+ z2 + z4 + z6 + · · ·= 1

1−z2



Building Generating Functions that Count

The generating function for the number of ways to choose n elements from a
1-basket A (a (multi)set of identical elements) is:

A(z) = ∑n>0 [n can be selected]zn

Examples of GF selecting items from a set A :

If any natural number of elements can be selected:

A(z) = 1+ z + z2 + z3 + · · ·= 1

1−z

If any even number of elements can be selected:

A(z) = 1+ z2 + z4 + z6 + · · ·= 1

1−z2

If any positive even number of elements can be selected:

A(x) = z2 + z4 + z6 + · · ·= z2

1−z2



Building Generating Functions that Count

The generating function for the number of ways to choose n elements from a
1-basket A (a (multi)set of identical elements) is:

A(z) = ∑n>0 [n can be selected]zn

Examples of GF selecting items from a set A :

If any natural number of elements can be selected:

A(z) = 1+ z + z2 + z3 + · · ·= 1

1−z

If any number of elements multiple of 5 can be selected:

A(z) = 1+ z5 + z10 + z15 + · · ·= 1

1−z5



Building Generating Functions that Count

The generating function for the number of ways to choose n elements from a
1-basket A (a (multi)set of identical elements) is:

A(z) = ∑n>0 [n can be selected]zn

Examples of GF selecting items from a set A :

If any natural number of elements can be selected:

A(z) = 1+ z + z2 + z3 + · · ·= 1

1−z

If at most four elements can be selected:

A(z) = 1+ z + z2 + z3 + z4 =
1−z5

1−z

If at most one element can be selected:

A(z) =
1−z2

1−z
= 1+ z



Counting elements of two sets

Convolution Rule

Let A(z) be the generating function for selecting an item from (multi)set A ,
and let B(z), be the generating function for selecting an item from (multi)set

B.
If A and B are disjoint, then the generating function for selecting items from

the union A ∪B is the product A(z) ·B(z).

Proof. To count the number of ways to select n items from A ∪B we have to select j
items from A and n− j items from B, where 06 j 6 n.
Summing over all the possible values of j gives a total of

a0bn +a1bn−1 +a2bn−2 + · · ·+anb0

ways to select n items from A ∪B. This is precisely the coe�cient of zn in the series
for A(z) ·B(z) Q.E.D.



How many nonnegative integer solutions does the equation
x1+ x2 = n have?

There is one way to solve the equation x1 = n, so the generating function for the
number of solutions of x1 = n is:

A(z) = 1+ z + z2 + z3 + · · ·= 1

1−z

The same holds for x2 = n.

Then the generating function of the number of solutions of x1 +x2 = n is the
convolution of 1/(1−z) with itself:

H(z) = (1+ z + z2 + z3 + · · ·)(1+ z + z2 + z3 + · · ·)
= (1 ·1) + (z ·1+1 ·z) + (1 ·z2 + z ·z + z2 ·1)

+(1 ·z3 + z ·z2 + z2 ·z + z3 ·1) + . . .

by absolute convergence

= 1+2z +3z2 + . . .+ (n+1)zn + . . .

=
1

(1−z)2



How many nonnegative integer solutions does the equation
x1+ x2 = n have?

There is one way to solve the equation x1 = n, so the generating function for the
number of solutions of x1 = n is:

A(z) = 1+ z + z2 + z3 + · · ·= 1

1−z

The same holds for x2 = n.
Then the generating function of the number of solutions of x1 +x2 = n is the
convolution of 1/(1−z) with itself:

H(z) = (1+ z + z2 + z3 + · · ·)(1+ z + z2 + z3 + · · ·)
= (1 ·1) + (z ·1+1 ·z) + (1 ·z2 + z ·z + z2 ·1)

+(1 ·z3 + z ·z2 + z2 ·z + z3 ·1) + . . .

by absolute convergence

= 1+2z +3z2 + . . .+ (n+1)zn + . . .

=
1

(1−z)2

Indeed, this equation has n+1 solutions:

0+n,1+ (n−1),2+ (n−2) . . . ,(n−1) +1,n+0 .



The number of integer solutions of the equation
x1+ x2+ · · ·+ xk = n

Theorem

The number of ways to distribute n identical objects into k bins is
(n+k−1

k

)
.

Proof:

The generating function of the sequence of the number of solutions of
x1 + . . .+xk = n is the convolution 1/(1−z)k of k copies of 1/(1−z).

But for an analytic function f (z) in a neighborhood of the origin:

f (z) = f (0) + f ′(0)z +
f ′′(0)

2
z2 + . . .+

f (n)(0)

n!
zn + . . .

For f (z) =
1

(1−z)k
it is f (n)(z) = k(k +1) · · ·(k +n−1) · 1

(1−z)k+n
, so:

f (n)(0)

n!
=

kn

n!
=

(n+k−1)n

n!
=

(
n+k−1

n

)



A summary of properties of generating functions

Let 〈g0,g1,g2, . . .〉 and 〈h0,h1,h2, . . .〉 be sequences of complex numbers.
Let G(z) = ∑n>0 gnz

n and H(z) = ∑n>0 hnz
n be their generating functions.

The following operations are legitimate:

sequence generic term g.f.
〈αg0 + βh0,αg1 + βh1,αg2 + βh2, . . .〉 αgn + βhn αG(z) + βH(z)
〈0, . . . ,0,g0,g1, . . .〉 gn−m[n >m] zmG(z)

〈gm,gm+1,gm+2, . . .〉 gn+m
G(z)−∑

m−1
k=0

gkz
k

zm
〈a1,2a2,3a3, . . .〉 (n+1)gn+1 G ′(z)
〈0,a1,2a2,3a3, . . .〉 ngn zG ′(z)
〈0,a0, a12 , . . .〉 gn−1

n [n > 0]
∫ z
0
G(w)dw

〈g0h0,g0h1 +g1h0,g0h2 +g1h1 +g2h0, . . .〉 ∑
n
k=0

gkhn−k G(z) ·H(z)

where:

undefined · [False] = 0; and∫ z
0
G(w)dw =

∫
1

0
zG(tz)dt = Γ(z) where Γ′(z) = G(z) and Γ(0) = 0.



Warmup: The old lady and her pets

The problem

When a certain old lady walks her pets, she brings:

three, four, or �ve dogs;

a cage with several pairs of rabbits;

and (sometimes) her crocodile.

In how many ways can she walk n pets, for n > 0?



Warmup: The old lady and her pets

The problem

When a certain old lady walks her pets, she brings:

three, four, or �ve dogs;

a cage with several pairs of rabbits;

and (sometimes) her crocodile.

In how many ways can she walk n pets, for n > 0?

Using generating functions

Let D(z), R(z), and C(z) be the generating functions of the number of ways the old
lady can walk dogs, rabbits, and crocodiles, respectively:

D(z) = z3 + z4 + z5 ; R(z) = 1+ z2 + z4 + · · ·= 1

1−z2
; C(z) = 1+ z

The generating function A(z) of the number of ways the old lady can walk pets is thus:

A(z) = D(z) ·R(z) ·C(z) =
z3 + z4 + z5

1−z



Warmup: The old lady and her pets

The problem

When a certain old lady walks her pets, she brings:

three, four, or �ve dogs;

a cage with several pairs of rabbits;

and (sometimes) her crocodile.

In how many ways can she walk n pets, for n > 0?

Solution

For m > 0 integer, G(z) = zm is the generating function of gn = [n = m].
G(z) = (1−z)−1 is the generating function of gn = 1.
Then for every n > 0, the number of ways the old lady can walk her pets is:

an = [zn]A(z) =
5

∑
m=3

n

∑
k=0

[k = m] =
5

∑
m=3

[n >m]

For example, for n = 6 the old lady has three choices:

three dogs, one pair of rabbits, and the crocodile;

four dogs and one pair of rabbits;

�ve dogs and the crocodile.



Derivatives of the generating function

Theorem

If G(z) = ∑n>0 gnz
n, then for every k > 0,

G (k)(z) = ∑
n>0

(n+k)kgn+kz
n



Derivatives of the generating function

Theorem

If G(z) = ∑n>0 gnz
n, then for every k > 0,

G (k)(z) = ∑
n>0

(n+k)kgn+kz
n

The thesis is true for k = 0 as n0 is an empty product.
If the thesis is true for k, then

G (k+1)(z) = ∑
n>0

(n+k)kngn+kz
n−1[n > 1]

= ∑
n>0

(n+1+k)k (n+1)1gn+1+kz
n

= ∑
n>0

(n+1+k)k+1gn+1+kz
n



Derivatives of the generating function

Theorem

If G(z) = ∑n>0 gnz
n, then for every k > 0,

G (k)(z) = ∑
n>0

(n+k)kgn+kz
n

Corollary

For every n > 0,

gn =
nn

n!
gn =

1

n! ∑
n>0

(n+k)ngn+k0
k =

G (n)(0)

n!



Distribute n objects into k bins so that there is at least one
object in each bin

Theorem

The number of k-tuples of positive integers such that x1 +x2 + . . .+xk = n is
(n−1
k−1
)
.

Proof: (sketch)

For k = 1 bin there is one way of distributing n objects if n> 0 and none if n = 0.

Then the generating function of the sequence of the number of ways to put n
objects in 1 bin is C(z) = z + z2 + z3 + . . . = z/(1−z).

For k > 1 arbitrary, the generating function of the solution is the convolution of
k copies of C(z) with itself:

H(z) = (C(z))k =
zk

(1−z)k
.

But this is the shift by k positions to the right of
1

(1−z)k
= ∑n>0

(n+k−1
n

)
zn, so:

H(z) = ∑
n>0

(
n+k−1

n

)
zn+k = ∑

n>0

(
n+k−1
k−1

)
zn+k = ∑

n>k

(
n−1
k−1

)
zn .

Q.E.D.



Example: 100 Euros

In how many ways can 100 Euros be changed using smaller banknotes?

Generating functions for selecting banknotes of 5, 10, 20 or 50 Euros:

A(z) = z0 + z5 + z10 + z15 + · · ·= 1

1−z5

B(z) = z0 + z10 + z20 + z30 + · · ·= 1

1−z10

C(z) = z0 + z20 + z40 + z60 + · · ·= 1

1−z20

D(z) = z0 + z50 + z100 + z150 + · · ·= 1

1−z50

Generating function for obtaining sums of euros using banknotes:

P(z) = A(z)B(z)C(z)D(z) =
1

(1−z5)(1−z10)(1−z20)(1−z50)
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Example: 100 Euros

In how many ways can 100 Euros be changed using smaller banknotes?

Generating functions for selecting banknotes of 5, 10, 20 or 50 Euros:

A(z) = z0 + z5 + z10 + z15 + · · ·= 1

1−z5

B(z) = z0 + z10 + z20 + z30 + · · ·= 1

1−z10

C(z) = z0 + z20 + z40 + z60 + · · ·= 1

1−z20

D(z) = z0 + z50 + z100 + z150 + · · ·= 1

1−z50

Generating function for obtaining sums of euros using banknotes:

P(z) = A(z)B(z)C(z)D(z) =
1

(1−z5)(1−z10)(1−z20)(1−z50)



Example: 100 Euro (2)

1. Observation:

(1−z5)(1 + z5 + · · ·+ z45 +2z50 +2z55 + · · ·+2z95 +3z100 +3z105 + · · ·+3z145 +4z150 + · · ·) =

1 + z5 + · · ·+ z45+2z50 +2z55 + · · ·+2z95+3z100 +3z105 + · · ·+3z145+4z150 · · ·
− z5−·· ·−z45−z50−2z55−·· ·−2z95−2z100−3z105−·· ·−3z145−3z150−4z155−·· ·

= 1 + z50 + z100 + z150 + z200 + · · ·= 1

1−z50

By dividing both sides by 1−z5 we get:

F (z) = A(z)D(z) =
1

(1−z5)(1−z50)
= ∑

k>0

(⌊
k

10

⌋
+1

)
z5k = ∑

k>0

fkz
5k



Example: 100 Euro (2)

1. Observation:

(1−z5)(1 + z5 + · · ·+ z45 +2z50 +2z55 + · · ·+2z95 +3z100 +3z105 + · · ·+3z145 +4z150 + · · ·) =

1 + z5 + · · ·+ z45+2z50 +2z55 + · · ·+2z95+3z100 +3z105 + · · ·+3z145+4z150 · · ·
− z5−·· ·−z45−z50−2z55−·· ·−2z95−2z100−3z105−·· ·−3z145−3z150−4z155−·· ·

= 1 + z50 + z100 + z150 + z200 + · · ·= 1

1−z50

By dividing both sides by 1−z5 we get:

F (z) = A(z)D(z) =
1

(1−z5)(1−z50)
= ∑

k>0

(⌊
k

10

⌋
+1

)
z5k = ∑

k>0

fkz
5k

2. Similarly:

G(z) = B(z)C(z) =
1

(1−z10)(1−z20)
= ∑

k>0

(⌊
k

2

⌋
+1

)
z10k = ∑

k>0

gkz
10k



Example: 100 Euro (3)

Convolution:

P(z) = F (z)G(z) = ∑
n>0

cnz
5n

The coe�cient of z100 equals:

c20 = f0g10 + f2g9 + f4g8 + · · ·+ f20g0

=
10

∑
k=0

f2kg10−k

=
10

∑
k=0

(⌊
2k

10

⌋
+1

)(⌊
10−k

2

⌋
+1

)

=
10

∑
k=0

(⌊
k +5

5

⌋)(⌊
12−k

2

⌋)
= 1 · (6+5+5+4+4) +2 · (3+3+2+2+1) +3 ·1
= 24+22+3 = 49 .



Next subsection

1 Generating Functions

Operations on Generating Functions

Building Generating Functions that Count

Identities in Pascal's Triangle



Generating function for arbitrary binomial coe�cients

Theorem (Generalized binomial theorem)

For every r ∈ R,

(1+ z)r = ∑
n>0

(
r

n

)
zn



Generating function for arbitrary binomial coe�cients

Theorem (Generalized binomial theorem)

For every r ∈ R,

(1+ z)r = ∑
n>0

(
r

n

)
zn

Indeed, let G(z) = (1+ z)r where r ∈ R is arbitrary:

By di�erentiating n > 0 times, G (n)(z) = r · · ·(r −1) · · ·(r −n+1) · (1+ z)r−n.

Then,
G (n)(0)

n!
=

rn

n!
=

(
r

n

)
.

As n is arbitrary and the correspondence between sequences and generating
functions is one-to-one, the thesis follows.



Generating function for arbitrary binomial coe�cients

Theorem (Generalized binomial theorem)

For every r ∈ R,

(1+ z)r = ∑
n>0

(
r

n

)
zn

Indeed, let G(z) = (1+ z)r where r ∈ R is arbitrary:

By di�erentiating n > 0 times, G (n)(z) = r · · ·(r −1) · · ·(r −n+1) · (1+ z)r−n.

Then,
G (n)(0)

n!
=

rn

n!
=

(
r

n

)
.

As n is arbitrary and the correspondence between sequences and generating
functions is one-to-one, the thesis follows.

Example

√
1+ z = ∑

n>0

(
1/2

n

)
zn



Vandermonde's identity

Theorem

For every r ,s ∈ C and n > 0, (
r + s

n

)
=

n

∑
k=0

(
r

k

)(
s

n−k

)



Vandermonde's identity

Theorem

For every r ,s ∈ C and n > 0, (
r + s

n

)
=

n

∑
k=0

(
r

k

)(
s

n−k

)

Proof:

∑
n>0

(
r + s

n

)
zn = (1+ z)r+s

= (1+ z)r · (1+ z)s

=

(
∑
n>0

(
r

n

)
zn

)
·

(
∑
n>0

(
s

n

)
zn

)

= ∑
n>0

(
n

∑
k=0

(
r

k

)(
s

n−k

))
zn ,

whence the thesis by uniqueness of coe�cients.



Vandermonde's identity

Theorem

For every r ,s ∈ C and n > 0, (
r + s

n

)
=

n

∑
k=0

(
r

k

)(
s

n−k

)

Example: r = 3, s = 6

1

1

1

1

1

1

1

1

1

1 9

8

7

6

5

4

3

2

1

1

3

6

10

15

21

28

36 84

56

35

20

10

4

1

1

5

15

35

70

126 126

56

21

6

1

1

7

28

84 36

8

1

1

9 1

(
9

2

)
=

(
3

0

)(
6

2

)
+

(
3

1

)(
6

1

)
+

(
3

2

)(
6

0

)



Vandermonde's identity for r = s = n

Special case: r = s = n

(
2n

n

)
=

n

∑
k=0

(
n

k

)(
n

n−k

)
= ∑

k>0

(
n

k

)2

Example:
(
4

0

)2
+
(
4

1

)2
+
(
4

2

)2
+
(
4

3

)2
+
(
4

4

)2
=
(
8

4

)
1

1

1

1

1

1

1

1

1 8

7

6

5

4

3

2

1

1

3

6

10

15

21

28 56

35

20

10

4

1

1

5

15

35

70 56

21

6

1

1

7

28 8

1

1

1

1

1

1

1 16

9

4

1

1

9

36 16

1

1

1+16+36+16+1 = 70



Sequence
〈(m

0

)
,0,−

(m
1

)
,0,
(m
2

)
,0,−

(m
3

)
,0,
(m
4

)
,0, . . . ,

〉
Let's take sequences〈(

m

0

)
,

(
m

1

)
,

(
m

2

)
, . . . ,

(
m

n

)
, . . .

〉
←→ F (z) = (1+ z)m

and 〈(
m

0

)
,−
(
m

1

)
,

(
m

2

)
, . . . ,(−1)n

(
m

n

)
, . . .

〉
←→ G(z) = F (−z) = (1−z)m

Then the convolution corresponds to the function (1+ z)m(1−z)m = (1−z2)m that
gives the identity of binomial coe�cients:

n

∑
j=0

(
m

j

)(
m

n− j

)
(−1)j = (−1)bn/2c

(
m

bn/2c

)
[n is even]



Other useful binomial identities

Sign change and falling powers

(−1)nrn = (n− r −1)n ∀r ∈ R ∀n > 0

Proof: (−1)n · r · (r −1) · · ·(r −n+2) · (r −n+1) = (n− r −1) · (n− r −2) · · ·(1− r) · (−r)

Generating function for binomial coe�cients with upper index increasing

For every r > 0,

1

(1−z)r+1
= ∑

n>0
(−1)n

(
−1− r

n

)
zn = ∑

n>0

(
r +n

n

)
zn

In addition, if r = m is an integer,

1

(1−z)m+1
= ∑

n>0

(
m+n

n

)
zn = ∑

n>0

(
m+n

m

)
zn

and by shifting,
zm

(1−z)m+1
= ∑

n>0

(
m+n

m

)
zm+n = ∑

n>0

(
n

m

)
zn



Generating functions cheat sheet

1

1−z
= ∑

n>0
zn

z

(1−z)2
= ∑

n>0
nzn

(1+ z)r = ∑
n>0

(
r

n

)
zn , r ∈ R

1

(1−z)r+1
= ∑

n>0

(
r +n

n

)
zn , r ∈ R

zm

(1−z)m+1
= ∑

n>0

(
n

m

)
zn , m ∈ N

log
1

1−z
= ∑

n>1

zn

n

1

1−z
log

1

1−z
= ∑

n>1
Hnz

n
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