Binomial Coefficients and Generating Functions ITT9132 Concrete Mathematics

Chapter Five

Basic Identities

Basic Practice

Tricks of the Trade

Generating Functions

Hypergeometric Functions Hypergeometric Transformations Partial Hypergeometric Sums

Contents

- Operations on Generating Functions
- Building Generating Functions that Count
- Identities in Pascal's Triangle

Next section

- Operations on Generating Functions
- Building Generating Functions that Count
- Identities in Pascal's Triangle

Next subsection

- Operations on Generating Functions
- Building Generating Functions that Count
- Identities in Pascal's Triangle

1. Linear combination

lf:

$$\langle f_0, f_1, f_2, \ldots \rangle \quad \longleftrightarrow \quad F(z)$$

and $\langle g_0, g_1, g_2, \ldots \rangle \quad \longleftrightarrow \quad G(z)$

then for every $lpha,eta\in\mathbb{C}$:

$$\langle \alpha f_0 + \beta g_0, \alpha f_1 + \beta g_1, \alpha f_2 + \beta g_2, \ldots \rangle \quad \longleftrightarrow \quad \alpha F(z) + \beta G(z).$$

Proof:

$$\langle \alpha f_0 + \beta g_0, \alpha f_1 + \beta g_1, \alpha f_2 + \beta g_2, \ldots \rangle \quad \longleftrightarrow \quad \sum_{n \ge 0} (\alpha f_n + \beta g_n) z^n$$

$$= \quad \alpha \sum_{n \ge 0} f_n z^n + \beta \sum_{n \ge 0} g_n z^n$$
by absolute convergence
$$= \quad \alpha F(z) + \beta G(z).$$
Q.E.D

2. Right-shift

If $\langle g_0,g_1,g_2,\ldots
angle \longleftrightarrow {\sf G}(z)$, then

$$\left\langle \underbrace{0,0,\ldots,0}_{k \text{ zeros}},g_0,g_1,g_2,\ldots \right\rangle \iff z^k \cdot G(z).$$

Proof:

$$\begin{array}{lll} \langle 0, 0, \dots, 0, g_0, g_1, g_2, \dots \rangle & \longleftrightarrow & \sum_{n \ge k} g_{n-k} z^n \\ & = & z^k \sum_{n \ge 0} g_n z^n \text{ by absolute convergence} \\ & = & z^k \cdot G(z) \end{array}$$

Q.E.D.

3. Left shift

If $\langle g_0, g_1, g_2, \ldots \rangle \longleftrightarrow F(z)$, then for every $n \ge 0$:

$$\langle g_k, g_{k+1}, g_{k+2}, \ldots \rangle \quad \longleftrightarrow \quad \frac{1}{z^k} \left(G(z) - \sum_{n=0}^{k-1} g_n z^n \right)$$

Proof:

$$\left\langle \underbrace{0, 0, \dots, 0}_{k \text{ zeros}}, g_k, g_{k+1}, g_{k+2}, \dots \right\rangle \quad \longleftrightarrow \quad G(z) - \sum_{n=0}^{k-1} g_n z^n$$
$$= z^k \cdot \frac{1}{z^k} \left(G(z) - \sum_{n=0}^{k-1} g_n z^n \right),$$

that is: $G(z) - \sum_{n=0}^{k-1} g_n z^n$ is the shift to the right by k positions of $\sum_{n \ge 0} g_{n+k} z^n$. Q.E.D.

4. Differentiation

If $\langle g_0,g_1,g_2,\ldots
angle \longleftrightarrow {\sf G}(z)$, then:

$$\langle g_1, 2g_2, 3g_3, \ldots \rangle \quad \longleftrightarrow \quad G'(z).$$

Proof:

$$g_{1}, 2g_{2}, 3g_{3}, \dots \rangle \quad \longleftrightarrow \quad \sum_{n \ge 0} (n+1)g_{n+1}z^{n}$$

$$= \sum_{n \ge 1} g_{n} n z^{n-1}$$

$$= \sum_{n \ge 0} g_{n} \frac{d}{dz}z^{n}$$

$$= \frac{d}{dz} \sum_{n \ge 0} g_{n}z^{n} \text{ by uniform convergence}$$

$$= G'(z)$$

4. Differentiation

If $\langle g_0,g_1,g_2,\ldots
angle \longleftrightarrow G(z)$, then:

$$\langle g_1, 2g_2, 3g_3, \ldots \rangle \quad \longleftrightarrow \quad G'(z).$$

Example

$$(1,2,3,4,\ldots) \longleftrightarrow \frac{1}{(1-z)^2}$$

$$(0,1,2,3,\ldots) \longleftrightarrow \frac{z}{(1-z)^2}$$

4. Differentiation

If $\langle g_0, g_1, g_2, \ldots
angle \longleftrightarrow G(z)$, then:

$$\langle g_1, 2g_2, 3g_3, \ldots \rangle \quad \longleftrightarrow \quad G'(z).$$

Corollary

If $\langle g_0, g_1, g_2, \ldots
angle \longleftrightarrow G(z)$, then:

$$\langle 0, g_1, 2g_2, 3g_3, \ldots \rangle \quad \longleftrightarrow \quad zG'(z).$$

5. Integration

If $\langle g_0,g_1,g_2,\ldots
angle \longleftrightarrow G(z)$, then:

$$\left\langle 0, g_0, \frac{g_1}{2}, \frac{g_2}{3}, \ldots \right\rangle \quad \longleftrightarrow \quad \int_0^z G(w) \, dw = \int_0^1 z G(zt) \, dt \, .$$

Proof:

$$\begin{cases} \left\langle 0, f_0, \frac{1}{2}f_1, \frac{1}{3}f_2, \frac{1}{4}f_3, \ldots \right\rangle & \longleftrightarrow & f_0z + \frac{1}{2}f_1z^2 + \frac{1}{3}f_2z^3 + \frac{1}{4}f_3z^4 + \ldots \\ \\ &= & f_0 \int_0^z dw + f_1 \int_0^z w \, dw + f_2 \int_0^z w^2 \, dw + f_3 \int_0^z w^3 \, dw + \ldots \\ \\ &= & \int_0^z \left(f_0 + f_1w + f_2w^2 + f_3w^3 + \ldots\right) \, dw \\ & \text{by uniform convergence} \\ \\ &= & \int_0^z F(w) \, dw \end{cases}$$

5. Integration

If $\langle g_0, g_1, g_2, \ldots
angle \longleftrightarrow G(z)$, then:

$$\left\langle 0, g_0, \frac{g_1}{2}, \frac{g_2}{3}, \ldots \right\rangle \quad \longleftrightarrow \quad \int_0^z G(w) \, dw = \int_0^1 z G(zt) \, dt$$

Example

$$\begin{array}{l} \bullet \quad \langle 1,1,1,1,\ldots\rangle \longleftrightarrow \frac{1}{1-z} \\ \bullet \quad \left\langle 0,1,\frac{1}{2},\frac{1}{3},\ldots\right\rangle \longleftrightarrow \int_{0}^{z} \frac{dw}{1-w} = \log \frac{1}{1-z} \end{array}$$

6. Convolution (product)

 $\mathsf{If}\ \langle f_0, f_1, f_2, \ldots \rangle \ \longleftrightarrow \ \mathsf{F}(z), \ \langle g_0, g_1, g_2, \ldots \rangle \ \longleftrightarrow \ \mathsf{G}(z), \ \mathsf{and}$

$$h_n = f_0 g_n + f_1 g_{n-1} + f_2 g_{n-2} + \dots + f_n g_0 = \sum_{k=0}^n a_k b_{n-k} = \sum_{i+j=k}^n a_i b_j$$

then $\langle h_0, h_1, h_2, \ldots \rangle \iff F(z) \cdot G(z)$.

6. Convolution (product)

 $\mathsf{lf}\ \langle \mathit{f}_0, \mathit{f}_1, \mathit{f}_2, \ldots \rangle \ \longleftrightarrow \ \mathit{F}(z) \mathsf{,}\ \langle g_0, g_1, g_2, \ldots \rangle \ \longleftrightarrow \ \mathit{G}(z) \mathsf{,} \mathsf{ and}$

$$h_n = f_0 g_n + f_1 g_{n-1} + f_2 g_{n-2} + \dots + f_n g_0 = \sum_{k=0}^n a_k b_{n-k} = \sum_{i+i=k}^n a_i b_i$$

then $\langle h_0, h_1, h_2, \ldots \rangle \iff F(z) \cdot G(z)$.

Proof:

$$F(z) \cdot G(z) = (f_0 + f_1 z + f_2 z^2 + ...) \cdot (g_0 + g_1 z + g_2 z^2 + ...)$$

= $f_0 g_0 + (f_0 g_1 + f_1 g_0) z + (f_0 g_2 + f_1 g_1 + f_2 g_0) z^2 + ...$
by absolute convergence

Q.E.D.

6. Convolution (product)

 $\mathsf{lf}\; \langle \mathit{f}_0, \mathit{f}_1, \mathit{f}_2, \ldots \rangle \; \longleftrightarrow \; \mathit{F}(z), \; \langle \mathit{g}_0, \mathit{g}_1, \mathit{g}_2, \ldots \rangle \; \longleftrightarrow \; \mathit{G}(z), \; \mathsf{and}$

$$h_n = f_0 g_n + f_1 g_{n-1} + f_2 g_{n-2} + \dots + f_n g_0 = \sum_{k=0}^n a_k b_{n-k} = \sum_{i+j=k}^n a_i b_j$$

then $\langle h_0, h_1, h_2, \ldots \rangle \iff F(z) \cdot G(z).$

Proof:

$$F(z) \cdot G(z) = (f_0 + f_1 z + f_2 z^2 + ...) \cdot (g_0 + g_1 z + g_2 z^2 + ...)$$

= $f_0 g_0 + (f_0 g_1 + f_1 g_0) z + (f_0 g_2 + f_1 g_1 + f_2 g_0) z^2 + ...$
by absolute convergence

QED.

Note that all terms involving the same power of z lie on a /sloped diagonal:

6. Convolution (product)

 $\mathsf{lf}\; \langle \mathit{f}_0, \mathit{f}_1, \mathit{f}_2, \ldots \rangle \; \longleftrightarrow \; \mathit{F}(z) \mathsf{,}\; \langle \mathit{g}_0, \mathit{g}_1, \mathit{g}_2, \ldots \rangle \; \longleftrightarrow \; \mathit{G}(z) \mathsf{,}\; \mathsf{and}\;$

$$h_n = f_0 g_n + f_1 g_{n-1} + f_2 g_{n-2} + \dots + f_n g_0 = \sum_{k=0}^n a_k b_{n-k} = \sum_{i+j=k}^n a_i b_j$$

then $\langle h_0, h_1, h_2, \ldots \rangle \iff F(z) \cdot G(z)$.

Example

$$\begin{array}{lll} \langle 1,1,1,1,\ldots\rangle \cdot \left\langle 0,1,\frac{1}{2},\frac{1}{3},\ldots\right\rangle & = & \left\langle 1\cdot 0,1\cdot 0+1\cdot 1,1\cdot 0+1\cdot 1+1\cdot \frac{1}{2},1\cdot 0+1\cdot 1+1\cdot \frac{1}{2}+1\cdot \frac{1}{3},\ldots\right\rangle \\ & = & \left\langle 0,1,1+\frac{1}{2},1+\frac{1}{2}+\frac{1}{3},\ldots\right\rangle \\ & = & \left\langle 0,H_{1},H_{2},H_{3},\ldots\right\rangle \end{array}$$

Hence:

$$\sum_{n\geq 1}H_nz^n=\frac{1}{1-z}\log\frac{1}{1-z}.$$

Example: the generating function of $g_n = n^2$

$$\begin{array}{rcl} \langle 1,1,1,1,\ldots\rangle & \longleftrightarrow & \displaystyle \frac{1}{1-z} \\ \langle 1,2,3,4,\ldots\rangle & \longleftrightarrow & \displaystyle \frac{d}{dz} \frac{1}{1-z} = \frac{1}{(1-z)^2} \\ \langle 0,1,2,3,\ldots\rangle & \longleftrightarrow & \displaystyle z \cdot \frac{1}{(1-z)^2} = \frac{z}{(1-z)^2} \\ \langle 1,4,9,16,\ldots\rangle & \longleftrightarrow & \displaystyle \frac{d}{dz} \frac{z}{(1-z)^2} = \frac{1+z}{(1-z)^3} \\ \langle 0,1,4,9,\ldots\rangle & \longleftrightarrow & \displaystyle z \cdot \frac{1+z}{(1-z)^3} = \frac{z(1+z)}{(1-z)^3} \end{array}$$

Next subsection

- Operations on Generating Functions
- Building Generating Functions that Count
- Identities in Pascal's Triangle

Counting with Generating Functions

Example: Choosing a k-subset of an n-set

The binomial theorem yields:

$$\left\langle \binom{n}{0}, \binom{n}{1}, \binom{n}{2}, \dots, \binom{n}{n}, 0, 0, 0, \dots \right\rangle \longleftrightarrow \sum_{k \ge 0} \binom{n}{k} z^k = (1+z)^n$$

- The coefficient of z^k in $(1+z)^n$ is the number of ways to choose k distinct items from a set of size n.
- For example, the coefficient of z^2 is the number of ways to choose 2 items from a set with *n* elements.
- Similarly, the coefficient of z^{n+1} is the number of ways to choose n+1 items from a *n*-set, which is zero.

The generating function for the number of ways to choose *n* elements from a 1-basket \mathscr{A} (a (multi)set of identical elements) is: $A(z) = \sum_{n \ge 0} [n \text{ can be selected}] z^n$

Examples of GF selecting items from a set A:

If any natural number of elements can be selected:

$$A(z) = 1 + z + z^{2} + z^{3} + \dots = \frac{1}{1 - z}$$

The generating function for the number of ways to choose *n* elements from a 1-basket \mathscr{A} (a (multi)set of identical elements) is: $A(z) = \sum_{n \ge 0} [n \text{ can be selected}] z^n$

Examples of GF selecting items from a set *A*:

If any natural number of elements can be selected:

$$A(z) = 1 + z + z^{2} + z^{3} + \dots = \frac{1}{1 - z}$$

■ If any even number of elements can be selected:

$$A(z) = 1 + z^{2} + z^{4} + z^{6} + \dots = \frac{1}{1 - z^{2}}$$

The generating function for the number of ways to choose *n* elements from a 1-basket \mathscr{A} (a (multi)set of identical elements) is: $A(z) = \sum_{n \ge 0} [n \text{ can be selected}] z^n$

Examples of GF selecting items from a set A:

If any natural number of elements can be selected:

$$A(z) = 1 + z + z^{2} + z^{3} + \dots = \frac{1}{1 - z}$$

If any even number of elements can be selected:

$$A(z) = 1 + z^{2} + z^{4} + z^{6} + \dots = \frac{1}{1 - z^{2}}$$

If any positive even number of elements can be selected:

$$A(x) = z^{2} + z^{4} + z^{6} + \dots = \frac{z^{2}}{1 - z^{2}}$$

The generating function for the number of ways to choose *n* elements from a 1-basket \mathscr{A} (a (multi)set of identical elements) is: $A(z) = \sum_{n \ge 0} [n \text{ can be selected}] z^n$

Examples of GF selecting items from a set A:

If any natural number of elements can be selected:

$$A(z) = 1 + z + z^{2} + z^{3} + \dots = \frac{1}{1 - z}$$

If any number of elements multiple of 5 can be selected:

$$A(z) = 1 + z^{5} + z^{10} + z^{15} + \dots = \frac{1}{1 - z^{5}}$$

The generating function for the number of ways to choose *n* elements from a 1-basket \mathscr{A} (a (multi)set of identical elements) is: $A(z) = \sum_{n \ge 0} [n \text{ can be selected}] z^n$

Examples of GF selecting items from a set \mathscr{A} :

If any natural number of elements can be selected:

$$A(z) = 1 + z + z^{2} + z^{3} + \dots = \frac{1}{1 - z}$$

If at most four elements can be selected:

$$A(z) = 1 + z + z^{2} + z^{3} + z^{4} = \frac{1 - z^{5}}{1 - z}$$

If at most one element can be selected:

$$A(z) = \frac{1 - z^2}{1 - z} = 1 + z$$

Counting elements of two sets

Convolution Rule

Let A(z) be the generating function for selecting an item from (multi)set A, and let B(z), be the generating function for selecting an item from (multi)set B.
If A and B are disjoint, then the generating function for selecting items from the union A∪B is the product A(z) ⋅ B(z).

Proof. To count the number of ways to select *n* items from $\mathscr{A} \cup \mathscr{B}$ we have to select *j* items from \mathscr{A} and n-j items from \mathscr{B} , where $0 \leq j \leq n$. Summing over all the possible values of *j* gives a total of

$$a_0b_n + a_1b_{n-1} + a_2b_{n-2} + \dots + a_nb_0$$

ways to select *n* items from $\mathscr{A} \cup \mathscr{B}$. This is precisely the coefficient of z^n in the series for $A(z) \cdot B(z)$ Q.E.D.

How many nonnegative integer solutions does the equation $x_1 + x_2 = n$ have?

There is one way to solve the equation $x_1 = n$, so the generating function for the number of solutions of $x_1 = n$ is:

$$A(z) = 1 + z + z^{2} + z^{3} + \dots = \frac{1}{1 - z}$$

- The same holds for $x_2 = n$.
- Then the generating function of the number of solutions of $x_1 + x_2 = n$ is the convolution of 1/(1-z) with itself:

$$\begin{aligned} \mathcal{H}(z) &= (1+z+z^2+z^3+\cdots)(1+z+z^2+z^3+\cdots) \\ &= (1\cdot 1) + (z\cdot 1+1\cdot z) + (1\cdot z^2+z\cdot z+z^2\cdot 1) \\ &+ (1\cdot z^3+z\cdot z^2+z^2\cdot z+z^3\cdot 1) + \dots \end{aligned}$$

by absolute convergence

$$= 1+2z+3z^{2}+...+(n+1)z^{n}+...$$
$$= \frac{1}{(1-z)^{2}}$$

How many nonnegative integer solutions does the equation $x_1 + x_2 = n$ have?

There is one way to solve the equation $x_1 = n$, so the generating function for the number of solutions of $x_1 = n$ is:

$$A(z) = 1 + z + z^{2} + z^{3} + \dots = \frac{1}{1 - z}$$

- The same holds for $x_2 = n$.
- Then the generating function of the number of solutions of $x_1 + x_2 = n$ is the convolution of 1/(1-z) with itself:

$$\begin{aligned} \mathcal{H}(z) &= (1+z+z^2+z^3+\cdots)(1+z+z^2+z^3+\cdots) \\ &= (1\cdot 1)+(z\cdot 1+1\cdot z)+(1\cdot z^2+z\cdot z+z^2\cdot 1) \\ &+(1\cdot z^3+z\cdot z^2+z^2\cdot z+z^3\cdot 1)+\ldots \end{aligned}$$

by absolute convergence

$$= 1+2z+3z^{2}+...+(n+1)z^{n}+...$$
$$= \frac{1}{(1-z)^{2}}$$

Indeed, this equation has n+1 solutions:

$$0+n, 1+(n-1), 2+(n-2)..., (n-1)+1, n+0.$$

The number of integer solutions of the equation $x_1 + x_2 + \cdots + x_k = n$

Theorem

The number of ways to distribute *n* identical objects into *k* bins is $\binom{n+k-1}{k}$.

Proof:

- The generating function of the sequence of the number of solutions of $x_1 + \ldots + x_k = n$ is the convolution $1/(1-z)^k$ of k copies of 1/(1-z).
- But for an analytic function f(z) in a neighborhood of the origin:

$$f(z) = f(0) + f'(0)z + \frac{f''(0)}{2}z^2 + \ldots + \frac{f^{(n)}(0)}{n!}z^n + \ldots$$

For
$$f(z) = \frac{1}{(1-z)^k}$$
 it is $f^{(n)}(z) = k(k+1)\cdots(k+n-1)\cdot\frac{1}{(1-z)^{k+n}}$, so

$$\frac{f^{(n)}(0)}{n!} = \frac{k^{\overline{n}}}{n!} = \frac{(n+k-1)^{\underline{n}}}{n!} = \binom{n+k-1}{n}$$

Let $\langle g_0, g_1, g_2, \ldots \rangle$ and $\langle h_0, h_1, h_2, \ldots \rangle$ be sequences of complex numbers. Let $G(z) = \sum_{n \ge 0} g_n z^n$ and $H(z) = \sum_{n \ge 0} h_n z^n$ be their generating functions. The following operations are legitimate:

sequence	generic term	g.f.
$\langle \alpha g_0 + \beta h_0, \alpha g_1 + \beta h_1, \alpha g_2 + \beta h_2, \ldots \rangle$	$\alpha g_n + \beta h_n$	$\alpha G(z) + \beta H(z)$
$\langle 0, \ldots, 0, g_0, g_1, \ldots \rangle$	$g_{n-m}[n \ge m]$	$z^m G(z)$
$\langle g_m, g_{m+1}, g_{m+2}, \ldots \rangle$	g _{n+m}	$\frac{G(z) - \sum_{k=0}^{m-1} g_k z^k}{z^m}$
$\langle a_1, 2a_2, 3a_3, \ldots \rangle$	$(n+1)g_{n+1}$	G'(z)
$\langle 0, a_1, 2a_2, 3a_3, \ldots \rangle$	ng _n	zG'(z)
$\langle 0, a_0, \frac{a_1}{2}, \ldots \rangle$	$\frac{g_{n-1}}{n}[n>0]$	$\int_0^z G(w) dw$
$\langle g_0 h_0, g_0 h_1 + g_1 h_0, g_0 h_2 + g_1 h_1 + g_2 h_0, \ldots \rangle$	$\sum_{k=0}^{n} g_k h_{n-k}$	$G(z) \cdot H(z)$

where:

- undefined · [False] = 0; and
- $\int_0^z G(w) dw = \int_0^1 z G(tz) dt = \Gamma(z) \text{ where } \Gamma'(z) = G(z) \text{ and } \Gamma(0) = 0.$

Warmup: The old lady and her pets

The problem

When a certain old lady walks her pets, she brings:

- three, four, or five dogs;
- a cage with several pairs of rabbits;
- and (sometimes) her crocodile.

In how many ways can she walk *n* pets, for $n \ge 0$?

Warmup: The old lady and her pets

The problem

When a certain old lady walks her pets, she brings:

- three, four, or five dogs;
- a cage with several pairs of rabbits;
- and (sometimes) her crocodile.

In how many ways can she walk *n* pets, for $n \ge 0$?

Using generating functions

Let D(z), R(z), and C(z) be the generating functions of the number of ways the old lady can walk dogs, rabbits, and crocodiles, respectively:

$$D(z) = z^3 + z^4 + z^5$$
; $R(z) = 1 + z^2 + z^4 + \dots = \frac{1}{1 - z^2}$; $C(z) = 1 + z^4$

The generating function A(z) of the number of ways the old lady can walk pets is thus:

$$A(z) = D(z) \cdot R(z) \cdot C(z) = \frac{z^3 + z^4 + z^5}{1 - z}$$

Warmup: The old lady and her pets

The problem

When a certain old lady walks her pets, she brings:

- three, four, or five dogs;
- a cage with several pairs of rabbits;
- and (sometimes) her crocodile.

In how many ways can she walk *n* pets, for $n \ge 0$?

Solution

For $m \ge 0$ integer, $G(z) = z^m$ is the generating function of $g_n = [n = m]$. $G(z) = (1-z)^{-1}$ is the generating function of $g_n = 1$. Then for every $n \ge 0$, the number of ways the old lady can walk her pets is:

$$a_n = [z^n]A(z) = \sum_{m=3}^5 \sum_{k=0}^n [k=m] = \sum_{m=3}^5 [n \ge m]$$

For example, for n = 6 the old lady has three choices:

- three dogs, one pair of rabbits, and the crocodile;
- four dogs and one pair of rabbits;
- five dogs and the crocodile.

Derivatives of the generating function

Theorem

If $G(z) = \sum_{n \ge 0} g_n z^n$, then for every $k \ge 0$,

$$G^{(k)}(z) = \sum_{n \ge 0} (n+k)^{\underline{k}} g_{n+k} z^n$$

Derivatives of the generating function

Theorem

If $G(z) = \sum_{n \ge 0} g_n z^n$, then for every $k \ge 0$,

$$G^{(k)}(z) = \sum_{n \ge 0} (n+k)^{\underline{k}} g_{n+k} z^n$$

The thesis is true for k = 0 as $n^{\underline{0}}$ is an empty product. If the thesis is true for k, then

$$G^{(k+1)}(z) = \sum_{n \ge 0} (n+k)^{\underline{k}} n g_{n+k} z^{n-1} [n \ge 1]$$

=
$$\sum_{n \ge 0} (n+1+k)^{\underline{k}} (n+1)^{\underline{1}} g_{n+1+k} z^{n}$$

=
$$\sum_{n \ge 0} (n+1+k)^{\underline{k+1}} g_{n+1+k} z^{n}$$

Derivatives of the generating function

Theorem

If $G(z) = \sum_{n \ge 0} g_n z^n$, then for every $k \ge 0$,

$$G^{(k)}(z) = \sum_{n \ge 0} (n+k)^{\underline{k}} g_{n+k} z^n$$

Corollary

For every $n \ge 0$,

$$g_n = \frac{n^n}{n!} g_n = \frac{1}{n!} \sum_{n \ge 0} (n+k)^n g_{n+k} 0^k = \frac{G^{(n)}(0)}{n!}$$

Distribute n objects into k bins so that there is at least one object in each bin

Theorem

The number of k-tuples of positive integers such that $x_1 + x_2 + \ldots + x_k = n$ is $\binom{n-1}{k-1}$.

Proof: (sketch)

- For k = 1 bin there is one way of distributing *n* objects if n > 0 and none if n = 0.
- Then the generating function of the sequence of the number of ways to put n objects in 1 bin is $C(z) = z + z^2 + z^3 + \ldots = z/(1-z)$.
- For k≥1 arbitrary, the generating function of the solution is the convolution of k copies of C(z) with itself:

$$H(z) = (C(z))^k = \frac{z^k}{(1-z)^k}$$

But this is the shift by k positions to the right of $\frac{1}{(1-z)^k} = \sum_{n \ge 0} {n+k-1 \choose n} z^n$, so:

$$H(z) = \sum_{n \ge 0} \binom{n+k-1}{n} z^{n+k} = \sum_{n \ge 0} \binom{n+k-1}{k-1} z^{n+k} = \sum_{n \ge k} \binom{n-1}{k-1} z^n.$$

Q.E.D.

Example: 100 Euros

In how many ways can 100 Euros be changed using smaller banknotes?

Generating functions for selecting banknotes of 5, 10, 20 or 50 Euros:

$$A(z) = z^{0} + z^{5} + z^{10} + z^{15} + \dots = \frac{1}{1 - z^{5}}$$

$$B(z) = z^{0} + z^{10} + z^{20} + z^{30} + \dots = \frac{1}{1 - z^{10}}$$

$$C(z) = z^{0} + z^{20} + z^{40} + z^{60} + \dots = \frac{1}{1 - z^{20}}$$

$$D(z) = z^{0} + z^{50} + z^{100} + z^{150} + \dots = \frac{1}{1 - z^{50}}$$

Generating function for obtaining sums of euros using banknotes

$$P(z) = A(z)B(z)C(z)D(z) = \frac{1}{(1-z^5)(1-z^{10})(1-z^{20})(1-z^{50})}$$

Example: 100 Euros

In how many ways can 100 Euros be changed using smaller banknotes?

Generating functions for selecting banknotes of 5, 10, 20 or 50 Euros:

$$A(z) = z^{0} + z^{5} + z^{10} + z^{15} + \dots = \frac{1}{1 - z^{5}}$$

$$B(z) = z^{0} + z^{10} + z^{20} + z^{30} + \dots = \frac{1}{1 - z^{10}}$$

$$C(z) = z^{0} + z^{20} + z^{40} + z^{60} + \dots = \frac{1}{1 - z^{20}}$$

$$D(z) = z^{0} + z^{50} + z^{100} + z^{150} + \dots = \frac{1}{1 - z^{50}}$$

Generating function for obtaining sums of euros using banknotes

$$P(z) = A(z)B(z)C(z)D(z) = \frac{1}{(1-z^5)(1-z^{10})(1-z^{20})(1-z^{50})}$$

Example: 100 Euros

In how many ways can 100 Euros be changed using smaller banknotes?

Generating functions for selecting banknotes of 5, 10, 20 or 50 Euros:

$$\begin{aligned} A(z) &= z^{0} + z^{5} + z^{10} + z^{15} + \dots = \frac{1}{1 - z^{5}} \\ B(z) &= z^{0} + z^{10} + z^{20} + z^{30} + \dots = \frac{1}{1 - z^{10}} \\ C(z) &= z^{0} + z^{20} + z^{40} + z^{60} + \dots = \frac{1}{1 - z^{20}} \\ D(z) &= z^{0} + z^{50} + z^{100} + z^{150} + \dots = \frac{1}{1 - z^{50}} \end{aligned}$$

Generating function for obtaining sums of euros using banknotes:

$$P(z) = A(z)B(z)C(z)D(z) = \frac{1}{(1-z^5)(1-z^{10})(1-z^{20})(1-z^{50})}$$

Example: 100 Euro (2)

1. Observation:

By dividing both sides by $1-z^{\rm 5}$ we get:

$$F(z) = A(z)D(z) = \frac{1}{(1-z^5)(1-z^{50})} = \sum_{k \ge 0} \left(\left\lfloor \frac{k}{10} \right\rfloor + 1 \right) z^{5k} = \sum_{k \ge 0} f_k z^{5k}$$

Example: 100 Euro (2)

1. Observation:

By dividing both sides by $1-z^5$ we get:

$$F(z) = A(z)D(z) = \frac{1}{(1-z^5)(1-z^{50})} = \sum_{k\geq 0} \left(\left\lfloor \frac{k}{10} \right\rfloor + 1 \right) z^{5k} = \sum_{k\geq 0} f_k z^{5k}$$

2. Similarly:

$$G(z) = B(z)C(z) = \frac{1}{(1-z^{10})(1-z^{20})} = \sum_{k \ge 0} \left(\left\lfloor \frac{k}{2} \right\rfloor + 1 \right) z^{10k} = \sum_{k \ge 0} g_k z^{10k}$$

Example: 100 Euro (3)

Convolution:

$$P(z) = F(z)G(z) = \sum_{n \ge 0} c_n z^{5n}$$

• The coefficient of z^{100} equals:

$$c_{20} = f_{0}g_{10} + f_{2}g_{9} + f_{4}g_{8} + \dots + f_{20}g_{0}$$

$$= \sum_{k=0}^{10} f_{2k}g_{10-k}$$

$$= \sum_{k=0}^{10} \left(\left\lfloor \frac{2k}{10} \right\rfloor + 1 \right) \left(\left\lfloor \frac{10-k}{2} \right\rfloor + 1 \right)$$

$$= \sum_{k=0}^{10} \left(\left\lfloor \frac{k+5}{5} \right\rfloor \right) \left(\left\lfloor \frac{12-k}{2} \right\rfloor \right)$$

$$= 1 \cdot (6+5+5+4+4) + 2 \cdot (3+3+2+2+1) + 3 \cdot 1$$

$$= 24+22+3 = 49.$$

Next subsection

1 Generating Functions

- Operations on Generating Functions
- Building Generating Functions that Count
- Identities in Pascal's Triangle

Generating function for arbitrary binomial coefficients

Theorem (Generalized binomial theorem)

For every $r \in \mathbb{R}$,

$$(1+z)^r = \sum_{n \ge 0} \binom{r}{n} z^n$$

Theorem (Generalized binomial theorem)

For every $r \in \mathbb{R}$,

$$(1+z)^r = \sum_{n \ge 0} \binom{r}{n} z^n$$

Indeed, let $G(z) = (1+z)^r$ where $r \in \mathbb{R}$ is arbitrary:

- By differentiating $n \ge 0$ times, $G^{(n)}(z) = r \cdots (r-1) \cdots (r-n+1) \cdot (1+z)^{r-n}$.
- Then,

$$\frac{G^{(n)}(0)}{n!} = \frac{r\underline{n}}{n!} = \binom{r}{n}$$

As n is arbitrary and the correspondence between sequences and generating functions is one-to-one, the thesis follows.

Generating function for arbitrary binomial coefficients

Theorem (Generalized binomial theorem)

For every $r \in \mathbb{R}$,

$$(1+z)^r = \sum_{n \ge 0} \binom{r}{n} z^n$$

Indeed, let $G(z) = (1+z)^r$ where $r \in \mathbb{R}$ is arbitrary:

- By differentiating $n \ge 0$ times, $G^{(n)}(z) = r \cdots (r-1) \cdots (r-n+1) \cdot (1+z)^{r-n}$.
- Then,

$$\frac{G^{(n)}(0)}{n!} = \frac{r\underline{n}}{n!} = \binom{r}{n}$$

As n is arbitrary and the correspondence between sequences and generating functions is one-to-one, the thesis follows.

Example

$$\sqrt{1+z} = \sum_{n \ge 0} \binom{1/2}{n} z^n$$

Vandermonde's identity

Theorem

For every $r, s \in \mathbb{C}$ and $n \ge 0$,

$$\binom{r+s}{n} = \sum_{k=0}^{n} \binom{r}{k} \binom{s}{n-k}$$

Vandermonde's identity

Theorem

For every $r, s \in \mathbb{C}$ and $n \ge 0$,

$$\binom{r+s}{n} = \sum_{k=0}^{n} \binom{r}{k} \binom{s}{n-k}$$

Proof:

$$\begin{split} \sum_{n \ge 0} \binom{r+s}{n} z^n &= (1+z)^{r+s} \\ &= (1+z)^r \cdot (1+z)^s \\ &= \left(\sum_{n \ge 0} \binom{r}{n} z^n\right) \cdot \left(\sum_{n \ge 0} \binom{s}{n} z^n\right) \\ &= \sum_{n \ge 0} \left(\sum_{k=0}^n \binom{r}{k} \binom{s}{n-k}\right) z^n, \end{split}$$

whence the thesis by uniqueness of coefficients.

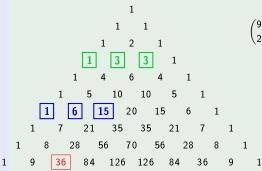
Vandermonde's identity

Theorem

For every $r, s \in \mathbb{C}$ and $n \ge 0$,

$$\binom{r+s}{n} = \sum_{k=0}^{n} \binom{r}{k} \binom{s}{n-k}$$

Example: r = 3, s = 6



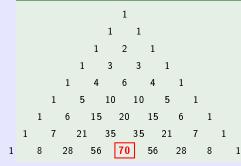
$$\binom{9}{2} = \binom{3}{0}\binom{6}{2} + \binom{3}{1}\binom{6}{1} + \binom{3}{2}\binom{6}{0}$$

Vandermonde's identity for r = s = n

Special case: r = s = n

$$\binom{2n}{n} = \sum_{k=0}^{n} \binom{n}{k} \binom{n}{n-k} = \sum_{k \ge 0} \binom{n}{k}^{2}$$

Example: $\binom{4}{0}^2 + \binom{4}{1}^2 + \binom{4}{2}^2 + \binom{4}{3}^2 + \binom{4}{4}^2 = \binom{8}{4}$



1 + 16 + 36 + 16 + 1 = 70

Sequence
$$\left< \binom{m}{0}, 0, -\binom{m}{1}, 0, \binom{m}{2}, 0, -\binom{m}{3}, 0, \binom{m}{4}, 0, \dots, \right>$$

Let's take sequences

$$\left\langle \binom{m}{0}, \binom{m}{1}, \binom{m}{2}, \dots, \binom{m}{n}, \dots \right\rangle \iff F(z) = (1+z)^m$$

and

$$\left\langle \binom{m}{0}, -\binom{m}{1}, \binom{m}{2}, \dots, (-1)^n \binom{m}{n}, \dots \right\rangle \iff G(z) = F(-z) = (1-z)^m$$

Then the convolution corresponds to the function $(1+z)^m(1-z)^m = (1-z^2)^m$ that gives the identity of binomial coefficients:

$$\sum_{j=0}^{n} \binom{m}{j} \binom{m}{n-j} (-1)^{j} = (-1)^{\lfloor n/2 \rfloor} \binom{m}{\lfloor n/2 \rfloor} [n \text{ is even}]$$

Other useful binomial identities

Sign change and falling powers

$$(-1)^n r^{\underline{n}} = (n-r-1)^{\underline{n}} \,\forall r \in \mathbb{R} \,\forall n \ge 0$$

Proof: $(-1)^n \cdot r \cdot (r-1) \cdots (r-n+2) \cdot (r-n+1) = (n-r-1) \cdot (n-r-2) \cdots (1-r) \cdot (-r)$

Generating function for binomial coefficients with upper index increasing

For every $r \ge 0$,

$$\frac{1}{(1-z)^{r+1}} = \sum_{n \ge 0} (-1)^n \binom{-1-r}{n} z^n = \sum_{n \ge 0} \binom{r+n}{n} z^n$$

In addition, if r = m is an integer,

$$\frac{1}{(1-z)^{m+1}} = \sum_{n \ge 0} \binom{m+n}{n} z^n = \sum_{n \ge 0} \binom{m+n}{m} z^n$$

and by shifting,

$$\frac{z^m}{(1-z)^{m+1}} = \sum_{n \ge 0} \binom{m+n}{m} z^{m+n} = \sum_{n \ge 0} \binom{n}{m} z^n$$

Generating functions cheat sheet

$$\frac{1}{1-z} = \sum_{n \ge 0} z^n$$
$$\frac{z}{(1-z)^2} = \sum_{n \ge 0} nz^n$$
$$(1+z)^r = \sum_{n \ge 0} \binom{r}{n} z^n, \ r \in \mathbb{R}$$
$$\frac{1}{(1-z)^{r+1}} = \sum_{n \ge 0} \binom{r+n}{n} z^n, \ r \in \mathbb{R}$$
$$\frac{z^m}{(1-z)^{m+1}} = \sum_{n \ge 0} \binom{n}{m} z^n, \ m \in \mathbb{N}$$
$$\log \frac{1}{1-z} = \sum_{n \ge 1} \frac{z^n}{n}$$
$$\frac{1}{1-z} \log \frac{1}{1-z} = \sum_{n \ge 1} H_n z^n$$

