Special Numbers
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Chapter Six
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Next subsection

Stirling numbers
m Stirling numbers of the second kind
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Stirling numbers of the second kind

The Stirling number of the second kind {}}, read “n subset k", is the number
of ways to partition a set with n elements into k non-empty subsets.
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Stirling numbers of the second kind

The Stirling number of the second kind {Z} read “n subset k", is the number
of ways to partition a set with n elements into k non-empty subsets.

Example: splitting a four-element set into two nonempty parts

{1,2,3}U{4} {1,2,4}U{3} {1,3,41U{2} {2,3,43U{1}
{1,23U1{3,4} {1,31U{2,4} {1,43U{2,3}

Hence {3} =7
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Stirling numbers of the second kind

The Stirling number of the second kind {Z} read “n subset k", is the number
of ways to partition a set with n elements into k non-empty subsets.

Some special cases: (1)

k =0 We can partition a set into no nonempty parts if and only if the set
is empty.
That is: {3} =[n=0].

k=1 We can partition a set into one nonempty part if and only if the set
is nonempty.
That is: {{} =[n>0].
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Stirling numbers of the second kind

The Stirling number of the second kind {}}, read “n subset k", is the number
of ways to partition a set with n elements into k non-empty subsets.

Some special cases: (2)

k=n If n>0, the only way to partition a set with n elements into n
nonempty parts, is to put every element by itself.
That is: {"} =1. (This also matches the case n=0.)

n
k=n—1 Choosing a partition of a set with n elements into n—1 nonempty
subsets, is the same as choosing the two elements that go together.

Thatis: {,",}=(3).
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Stirling numbers of the second kind

The Stirling number of the second kind {}}, read “n subset k", is the number
of ways to partition a set with n elements into k non-empty subsets.

Some special cases (3)

k=2 Let X be a set with two or more elements.
m Each partition of X into two subsets is identified by two
ordered pairs (A, X\ A) for AC X.
m There are 2" such pairs, but (0,X) and (X,0) do not satisfy
the nonemptiness condition.

n 22 1
m Then {2}27:2" —1 for n>2.

In general, {3} = (21 —1)[n>2]
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Stirling numbers of the second kind

The Stirling number of the second kind {}}, read “n subset k", is the number
of ways to partition a set with n elements into k non-empty subsets.

In the general case:

For n > 1, what are the options where to put the nth element?

Together with some other elements.
To do so, we can first subdivide the other n—1 remaining objects into k
nonempty groups, then decide which group to add the nth element to.

By itself.
Then we are only left to decide how to make the remaining kK — 1 nonempty
groups out of the remaining n— 1 objects.

These two cases can be joined as the recurrent equation

n n—1 n—1
{k}:k{ K }+{k—1}’ for n>0,

[AL
that yields the following triangle: FTECH



Stirling’s triangle for subsets

nifor 0 B & & & & & & &
0| 1

1|0 1

2/ 0 1 1

3|0 1 3 1

a0 1 7 6 1

500 1 15 25 10 1

6| 0 1 3 9 6 15 1

7] 0 1 63 301 350 140 21 1

8| 0 1 127 966 1701 1050 266 28 1

9| 0 1 255 3025 7770 6951 2646 462 36 1
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Next subsection

Stirling numbers

m Stirling numbers of the first kind
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Stirling numbers of the first kind

The Stirling number of the first kind [[], read “n cycle k", is the number of
ways to partition of a set with n elements into k non-empty circles.

A circle is a cyclic arrangement

/ A \ m The circle can be written as [A, B, C,DJ;

D B m |t means that
[A,B,C,D]:[B,C,D,A]:[C,D,A,B]:[D,A7B,C];

\ c / m It is not same as [A,B,D,C] or [D,C,B,A].
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Stirling numbers of the first kind

The Stirling number of the first kind [7], read “n cycle k", is the number of
ways to partition of a set with n elements into k non-empty circles.

Example: splitting a four-element set into two circles

[1,2,3] [4] [1,2,4] [3] [1,3,4] [2] [2,3,4] [1]
[1,3,2] [4] [1,4,2] [3] [1,4,3] [2] [2,4,3] [1]
[1,2] [3,4] [1,3] [2,4] [1,4] [2,3]

Hence [g] =11
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Stirling numbers of the first kind

The Stirling number of the first kind [}], read “n cycle k", is the number of
ways to partition of a set with n elements into k non-empty circles.

Some special cases (1):

k=1 To arrange one circle of n objects: choose the order, and forget
which element was the first. That is: []] =2 = (n—1)L.

AN AN
B D D C
N ;.
~N / N / N
./ N / N / .
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Stirling numbers of the first kind

The Stirling number of the first kind [Z] read “n cycle k", is the number of
ways to partition of a set with n elements into k non-empty circles.

Some special cases (2):
k=0 The only way to arrange objects into no nonempty cycles, is if there

are no objects. Then: [g] =[n=0].

k =n Every cycle is a singleton and there is just one partition into circles.
That is, [7] =1 for any n:

(1] [2] [3] [4]

k =n—1 The partition into circles consists of n—2 singletons and one pair.

So [,",] = (5). the number of ways to choose a pair:

n2 B W L3 2 e (L4 2
23 [ [ 24 13 34 [ 2 [BEH



Stirling numbers of the first kind

The Stirling number of the first kind [7], read “n cycle k", is the number of
ways to partition of a set with n elements into k non-empty circles.

In the general case:
For n>1, what are the options where to put the nth element?

Together with some other elements.
To do so, we can first subdivide the other n—1 remaining objects into k
nonempty cycles, then decide which element to put the nth one after.

By itself.
Then we are only left to decide how to make the remaining k —1 nonempty
cycles out of the remaining n—1 objects.

These two cases can be joined as the recurrent equation

[:}=(n71)[n;1]+[::ﬂ, for n>0,

that yields the following triangle: FEEH



Stirling’s triangle for circles

(2]

OO~ WNHEHO

OO0 O0OOO OO+

N = =

(=)}

120
720
5040
40320

11
50
274
1764
13068
109584

1
6
35
225
1624
13132
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1
10
85
735
6769
67284

1
15
175
1960
22449

1
21
322
4536

1
28
546

1
36
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Warmup: A closed formula for ['27]

m =(n—1)1H, 1[n>2]
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Warmup: A closed formula for ['27]

m =(n—1)!Hy1[n>2]

The formula is true for n=2, so let n > 3.

m For k=1,...,n—1 there are () ways of splitting n objects into a group of k
and one of n— k. Each such way appears once for k, and once for n— k.

m To each splitting correspond [’1‘] ["Ik] =(k—1)!(n—k—1)! pairs of cycles.
m Then:

m - %g(:)(k—l)!(n—k—l)!

nl n=1 1

-2 & k(n—k)
a1 /1 1

= Ek;;(ﬁn_k)

= —1)!H,_ TAL
(=11 TECH



Next subsection

Stirling numbers

m Basic Stirling number identities, for integer n >0
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Basic Stirling number identities, for integer n > 0

Some identities and inequalities we have already observed:
= {o} =[] =[n=0]
= {{}=In>0] and (1] = (n=1)![n>0]
m {J}=02"1-1)[n>0] and (3] =(n—1)1Hy_1 [n>2]
= (=00 = ) =25
» =0=0=1

m {3 =[]]=()=0,if k>nor k<0
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Basic Stirling number identities (2)

For any integer n>0, Y'7_,

Permutations define cyclic arrangement and vice versa,
for example:

Thus the permutation & = 384729156 of {1,2,3,4,5,6,7,8,9} is equivalent to
the circle arrangement

[1,3,4,7] [2,8,5] [6,9]
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Basic Stirling number identities (2)

For any integer n>0, Y'7_,

Permutations define cyclic arrangement and vice versa,
for example:

Thus the permutation & = 384729156 of {1,2,3,4,5,6,7,8,9} is equivalent to
the circle arrangement

[1,3,4,7] [2,8,5] [6,9]
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Basic Stirling number identities (2)

For any integer n>0, Y'7_,

Permutations define cyclic arrangement and vice versa,
for example:

Thus the permutation & = 384729156 of {1,2,3,4,5,6,7,8,9} is equivalent to
the circle arrangement

[1,3,4,7] [2,8,5] [6,9]
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Basic Stirling number identities (3)

Xt = 8 EE s

x2=x14x2

o 1
3 1 2 3 2l !
x° = x4+ 3x5+ x> 2| © 1 1
3/ 0 1 3 1
ARENETY 2 3 A 4 0 1 7 6 1
X = XA TXE 46X+ x 5 0 1 15 25 10 1

Does the following general formula hold?

el
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Basic Stirling number identities (3a)

Inductive proof of x" =¥, {7}xk

m Considering that xAtL — xk(x — k) we obtain that x - xk = xktL 4 kxk

m Hence
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Basic Stirling number identities (4)

x2 :x1+x2
x3 = 2x! +3x% +x3

XE: 6x* —+ 11x2 +6x3 —|—x4

Generating function for Stirling cycle numbers:

xﬁ:Z{n}x", for n>0
k k
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Basic Stirling number identities (4a)

Generating function of the Stirling numbers of the first kind
Z[ﬂzk =Zz"VYn>0

k

The formula is clearly true for n=0 and n=1.
If it is true for n—1, then:

2" = z"Yz+n-1)
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Basic Stirling number identities (5)

Reversing the formulas for falling and rising factorials

For every n > 0,

x" = ; {:}(—1)"*[ and x” = ; m (=1)"kxk
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Basic Stirling number identities (5)

Reversing the formulas for falling and rising factorials

For every n > 0,

X" = ;{Z}(_n"*x? and x2= ; m (—1)"kxk

As xk = (—1)k(—x)?, we can rewrite the known equalities as:
X = ¥4 H1A(=0)F and (<1)°(=x)2 =1 || <
% Lk % Lk

But clearly x” = (—1)"(—x)", so by replacing x with —x we get the thesis.
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Basic Stirling number identities (5)

Reversing the formulas for falling and rising factorials

For every n > 0,

x" = ; {:}(—1)"*[ and x" = ; m (=1)"kxk

e n o =gl {nfeor=tm=n

Indeed, the following must hold for every x:

e=p{ior (g [)e) -2 (e or)-

which is only possible if m = n. The other equality is proved similarly. PE‘(L:H



Stirling’s inversion formula (cf. Exercise 6.12)

Statement

Let f and g be two functions defined on N with values in C.
The following are equivalent:

For every n> 0,

g =L {{ bnrr.

3
For every n>0,

F(n) = );H( 1) g(k).
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Stirling’s inversion formula (cf. Exercise 6.12)

If g(n) =Xk {7} (—1)kf(k) for every n> 0, then also for n>0

MHICUEDIES U [CID RIS

= LCeTrm) (]
= LT Kt

_ —1)"Mf(m _1\n—k n k
= T rrm e l{ )
= Y.(-1)""f(m)[m= n]
= f(n).

The other implication is proved similarly.

TAL
TECH



Next subsection

Stirling numbers

m Extension of Stirling numbers
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Stirling’s triangles in tandem

Basic recurrences of Stirling numbers yield for every integers k,n a simple law:

- =) =rmamf]-(3) oo

o {5 (A {5 (% () & O & G & {5

5|1

-4 | 10 1

3| 35 6 1

2| 50 11 3 1

1| 24 6 2 1 1

0 0 0 0 0 0 1

1 0 0 0 0 0 0 1

2 0 0 0 0 0 o 1 1

3 0 0 0 0 0 o 1 3 1

4 0 0 0 0 0 o 1 7 6 1

5 0 0 0 0 0 0o 1 15 25 10 1 |tAL
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Stirling numbers cheat sheet

= {ot=lo]=[n=0]

O i =lem e [ =(n-1)![n>2]

= 3= -1)[n=>2] and (7] = (n—1)!H, 1[n> 0]
- L =lnl= ="

» =0=0=1

m {(P=[=()=0,if k>nor k<0

= =k and [ = (=[] + [=]
Y {])xk=x" and Y [f]xk=x"

w Y [g]=n!

= Y {1 kxk—x and Y [ﬂ(,l)nkakzxﬂ
» T {i} (- e a1k =[m=n]
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Next section

Fibonacci Numbers
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Fibonacci numbers: Idea

Fibonacci’'s problem

A pair of baby rabbits is left on an island.
m A baby rabbit becomes adult in one month.

m A pair of adult rabbits produces a pair of baby rabbits each
month.

How many pairs of rabbits will be on the island ofter n months?
How many of them will be adult, and how many will be babies?

Leonardo
Fibonacci
(1175-1235)
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Fibonacci numbers: Idea

Fibonacci's problem

A pair of baby rabbits is left on an island.
m A baby rabbit becomes adult in one month.

m A pair of adult rabbits produces a pair of baby rabbits each
month.

How many pairs of rabbits will be on the island ofter n months?
How many of them will be adult, and how many will be babies?

Solution (see Exercise 6.6)

Leonardo
m On the first month, the two baby rabbits will have become adults. Fibonacci
m On the second month, the two adult rabbits will have produced a (1175-1235)

pair of baby rabbits.

m On the third month, the two adult rabbits will have produced
another pair of baby rabbits, while the other two baby rabbits will
have become adults.

m Andsoon,andsoon ...
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Fibonacci numbers: Idea

Fibonacci’'s problem

A pair of baby rabbits is left on an island.
m A baby rabbit becomes adult in one month.

m A pair of adult rabbits produces a pair of baby rabbits each
month.

How many pairs of rabbits will be on the island ofter n months?
How many of them will be adult, and how many will be babies?

Solution (see Exercise 6.6)

Leonardo
month [0 |1]|2[3|4|5]| 6 | 7| 8 9 | 10 Fibonacci
baby 1{0|1|1]2[3]| 5 8 |13 |21 | 34 (1175-1235)
adult 0|1 (12|35 8 |13 |21 |34 |55
total 1123|5813 (21|34 ]|55]89

That is: at month n, there are f, 1 pair of rabbits, of which f, pairs of
adults, and f,_; pairs of babies.

(Note: this seems to suggest -1 =1 ...) TAL
TECH



Fibonacci Numbers: Definition
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Fibonacci Numbers: Definition

n|o0|1]2]3|4]5]6]7|8]09]10
IO [T 12358 13]21 3455

Formulae for computing:

m fp="F_1+1f_2, where fp=0and 1 =1

m f= d’";\/;’" ("Binet form")

The golden ratio

The constant ¢ = 1‘*'2‘/5 ~1.61803 is called golden ratio :

If a line segment a is divided into two sub-segments b and a— b so that
a:b=b:(a—b), then

%:¢and§:7&>
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Generating Function for Fibonacci Numbers

F(Z)Zfb+fiz+f222+f323+f4z4+“_
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Generating Function for Fibonacci Numbers

F(Z)=fo+hfz+h2+ R+ +-

(fo, fi, fa, f3, fa, can)
“ F(z)
)

0, 1, fi+fo, Hh+f, HB+hH,

TAL
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Generating Function for Fibonacci Numbers

F(Z)=fo+hz+hHh?+hRZ+H2%+--

(fo, f1, fa, fi, fa, o)
+ F(z)
fi+fo, fHL+f, L)

f3+f27

<07 11 O, 07 O’ > o z
<07 fo, f1, f2, f3, > A4 ZF(Z)
+ <07 0, fo, f1, fa, > <~ z2 F(Z)
0, 1+f, f+f,, hrL+h, f+hH, Y < z+zF(2)+z%F(2)
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Generating Function for Fibonacci Numbers

F(Z)=fo+hz+Hh+ R+ +-

(o, fi, f f3, fa, ...
< F(z)
)

0, 1, A+fh, HL+ha, B+hH

v

Applying Addition to some known generating functions:

©, 1, 0, 0, 0, ) © z
<0, fo, fl, fé, f3, > <~ ZF(Z)
+ (0, 0, fo, f1, fa, )y 22F(z)
0, 1+f, fA+fh, hk+hH, K+hH, )y <  z+zF(2)+2z%2F(2)

AL
Closed form of the generating function: F(z) = %2 ‘ECH



Evaluation of Coefficients: Factorization

m We know from the previous lecture that

1
l1-az

=1+az+a?22+aB+.-

TAL
TECH



Evaluation of Coefficients: Factorization

m We know from the previous lecture that

1

=1+az+a?22+aB+.-
l1-oaz

m Let's try to represent a generating function in the form:

A o B
l-az 1-fz

=A Z (az)"+B Z (B=2)"

n=0 n=0

=Y (Aa"+BB")z"

n=0

G(z)=
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Evaluation of Coefficients: Factorization

m We know from the previous lecture that

1
l1-az

=1+az+a?22+aB+.-

m Let's try to represent a generating function in the form:

A o B
l-az 1-fz

=A Z (az)"+B Z (B=2)"

n=0 n=0

=Y (Aa"+BB")z"

n=0

G(z)=

m The task is to find such constants A, B, o, 3 that

A B A-ABz+B-Baz
(@) =T "1~ a2
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Factorization for Fibonacci (2)

m For the generating function of Fibonacci Numbers we need to solve the

equations:
{ (1-az)(1-Bz)
(A+B)—(AB+Ba)z

1—z—27?

z
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Factorization for Fibonacci (2)

m For the generating function of Fibonacci Numbers we need to solve the

equations:
{ (1-az)(1-Bz)
(A+B)—(AB+Ba)z

To factorize 1 —z — 22

1—z—2?

z

m Solve the equation w? —wz—22 =0 (i.e. w=1 gives the special case
Il =z—723 =)
z+Vx2+4x2  1+./5
wip = = z
’ 2 2
m Therefore
w- —wz—z" = w — > z w — > z

and

AL
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Factorization for Fibonacci (2)

m For the generating function of Fibonacci Numbers we need to solve the

equations:
{ (1-az)(1-Bz)
(A+B)—(AB+Ba)z

1—z—22

z

A general trick

Let p(x) = X7_o axz* be a polynomial over C of degree n such that
a0 = p(0) # 0.
m Then all the roots of p have a multiplicative inverse.

m Consider the “reverse” polynomial
&z 1
ore)= £t 2)
k=0 z

m Then a is a root of p if and only if 1/ is a root of pgr, because if
p(x)=an(z—o0a)---(z—0n), then pr(z) =an(l—o1z)--- (1 — 0ty2).

AL
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Factorization for Fibonacci (3)

m For the generating function of Fibonacci Numbers we need to solve the

equations:
(1-az)(1-B2) = g~
(A+B)—(AB+Ba)z = 2
Denote ¢ = 1+2\/5 ( Ik
= "phi hat” is
¢:1—¢:1_1+27\/§:#: 1,2\/5
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Factorization for Fibonacci (3)

m For the generating function of Fibonacci Numbers we need to solve the

equations:
(1-az)(1-B2) = g~
(A+B)—(AB+Ba)z = 2
Denote ¢ = 1+2\/5 ( Ik
= "phi hat” is
¢:1—¢:1_1+27\/§:#: 1,2\/5

m and we have R
1-z—-22=(1-%z) (1—¢z)
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Factorization for Fibonacci (4)

m For the generating function of Fibonacci Numbers we need to solve the
equations:

(17¢z)(17<’l\>z) = l—z=2
(A+B) — (A + Bo)z

z

To find A and B:

m Solve
A+B=0
Ad+ Bd = -1

AL
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Factorization for Fibonacci (4)

m For the generating function of Fibonacci Numbers we need to solve the
equations:

{ (17¢z)(17<’l\>z) = l—z=2

(A+B) — (A + Bo)z

To find A and B:

m Solve
A+B=0
{A<T>+B¢:—1
m Thisis A=1/(d—):
A=1/(¢-®)
1+v5 1-+5
:1/< +2f_ 2f>
_ 2 _ L
T 14+V5-1+V5 VB AL
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Factorization for Fibonacci (5)

To conclude:

m We have a =& = (14++5)/2, =& =(1-5)/2, A=1/y/5 and B=—1/\/5
m Generating function:

m Closed formula for f,:

f, = Aa"+ BB"

- % (¢"—<T>")
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Some Fibonacci Identities

Cassini's Identity fry1f, 1 —f2=(—1)" for all n>0
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Some Fibonacci Identities

Cassini's Identity foy1fy_1—f2 = (—1)" for all n>0

The Chessboard Paradox
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Some Fibonacci Identities

Cassini's Identity fry1fy1—f2=(—1)" for all n>0

Divisors f, and f,11 are relatively prime and f; divides f,:

ng(fnv fm) = fgcd(n,m)
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Some Fibonacci Identities

Cassini's Identity foy1fy_1—f2 = (—1)" for all n>0

Divisors f, and f,11 are relatively prime and f; divides f,:

ng(fﬂ’ fm) = fgcd(n,m)

Matrix Calculus If A is the 2 x 2 matrix ( 1 é ), then

A" = ( f";rl ff”l > , for n> 0.
n n—

Note that this yields Cassini's identity, because det A= —1.
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