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Stirling numbers of the second kind

De�nition

The Stirling number of the second kind
{n
k

}
, read �n subset k�, is the number

of ways to partition a set with n elements into k non-empty subsets.



Stirling numbers of the second kind

De�nition

The Stirling number of the second kind
{n
k

}
, read �n subset k�, is the number

of ways to partition a set with n elements into k non-empty subsets.

Example: splitting a four-element set into two nonempty parts

{1,2,3}
⋃
{4} {1,2,4}

⋃
{3} {1,3,4}

⋃
{2} {2,3,4}

⋃
{1}

{1,2}
⋃
{3,4} {1,3}

⋃
{2,4} {1,4}

⋃
{2,3}

Hence
{
4

2

}
= 7



Stirling numbers of the second kind

De�nition

The Stirling number of the second kind
{n
k

}
, read �n subset k�, is the number

of ways to partition a set with n elements into k non-empty subsets.

Some special cases: (1)

k = 0 We can partition a set into no nonempty parts if and only if the set
is empty.
That is:

{n
0

}
= [n = 0].

k = 1 We can partition a set into one nonempty part if and only if the set
is nonempty.
That is:

{n
1

}
= [n > 0].



Stirling numbers of the second kind

De�nition

The Stirling number of the second kind
{n
k

}
, read �n subset k�, is the number

of ways to partition a set with n elements into k non-empty subsets.

Some special cases: (2)

k = n If n > 0, the only way to partition a set with n elements into n
nonempty parts, is to put every element by itself.
That is:

{n
n

}
= 1. (This also matches the case n = 0.)

k = n−1 Choosing a partition of a set with n elements into n−1 nonempty
subsets, is the same as choosing the two elements that go together.
That is:

{ n
n−1
}

=
(n
2

)
.



Stirling numbers of the second kind

De�nition

The Stirling number of the second kind
{n
k

}
, read �n subset k�, is the number

of ways to partition a set with n elements into k non-empty subsets.

Some special cases (3)

k = 2 Let X be a set with two or more elements.

Each partition of X into two subsets is identi�ed by two
ordered pairs (A,X \A) for A⊆ X .
There are 2n such pairs, but ( /0,X ) and (X , /0) do not satisfy
the nonemptiness condition.

Then
{n
2

}
=

2n−2
2

= 2n−1−1 for n > 2.

In general,
{n
2

}
= (2n−1−1) [n > 2]



Stirling numbers of the second kind

De�nition

The Stirling number of the second kind
{n
k

}
, read �n subset k�, is the number

of ways to partition a set with n elements into k non-empty subsets.

In the general case:

For n > 1, what are the options where to put the nth element?

1 Together with some other elements.
To do so, we can �rst subdivide the other n−1 remaining objects into k
nonempty groups, then decide which group to add the nth element to.

2 By itself.
Then we are only left to decide how to make the remaining k−1 nonempty
groups out of the remaining n−1 objects.

These two cases can be joined as the recurrent equation{
n

k

}
= k

{
n−1
k

}
+

{
n−1
k−1

}
, for n > 0,

that yields the following triangle:



Stirling's triangle for subsets

n
{n
0

} {n
1

} {n
2

} {n
3

} {n
4

} {n
5

} {n
6

} {n
7

} {n
8

} {n
9

}
0 1
1 0 1
2 0 1 1
3 0 1 3 1
4 0 1 7 6 1
5 0 1 15 25 10 1
6 0 1 31 90 65 15 1
7 0 1 63 301 350 140 21 1
8 0 1 127 966 1701 1050 266 28 1
9 0 1 255 3025 7770 6951 2646 462 36 1



Next subsection

1 Stirling numbers

Stirling numbers of the second kind

Stirling numbers of the �rst kind

Basic Stirling number identities, for integer n > 0

Extension of Stirling numbers

2 Fibonacci Numbers



Stirling numbers of the �rst kind

De�nition

The Stirling number of the �rst kind
[n
k

]
, read �n cycle k�, is the number of

ways to partition of a set with n elements into k non-empty circles.

A circle is a cyclic arrangement

B

A

C

D

The circle can be written as [A,B,C ,D];

It means that
[A,B,C ,D] = [B,C ,D,A] = [C ,D,A,B] = [D,A,B,C ];

It is not same as [A,B,D,C ] or [D,C ,B,A].



Stirling numbers of the �rst kind

De�nition

The Stirling number of the �rst kind
[n
k

]
, read �n cycle k�, is the number of

ways to partition of a set with n elements into k non-empty circles.

Example: splitting a four-element set into two circles

[1,2,3] [4] [1,2,4] [3] [1,3,4] [2] [2,3,4] [1]

[1,3,2] [4] [1,4,2] [3] [1,4,3] [2] [2,4,3] [1]

[1,2] [3,4] [1,3] [2,4] [1,4] [2,3]

Hence
[
4

2

]
= 11



Stirling numbers of the �rst kind

De�nition

The Stirling number of the �rst kind
[n
k

]
, read �n cycle k�, is the number of

ways to partition of a set with n elements into k non-empty circles.

Some special cases (1):

k = 1 To arrange one circle of n objects: choose the order, and forget
which element was the �rst. That is:

[n
1

]
= n!

n = (n−1)!.

B

A

C

D

B

A

D

C

D

A

C

B

D

A

B

C

C

A

B

D

C

A

D

B



Stirling numbers of the �rst kind

De�nition

The Stirling number of the �rst kind
[n
k

]
, read �n cycle k�, is the number of

ways to partition of a set with n elements into k non-empty circles.

Some special cases (2):

k = 0 The only way to arrange objects into no nonempty cycles, is if there
are no objects. Then:

[n
0

]
= [n = 0].

k = n Every cycle is a singleton and there is just one partition into circles.
That is,

[n
n

]
= 1 for any n:

[1] [2] [3] [4]

k = n−1 The partition into circles consists of n−2 singletons and one pair.
So
[ n
n−1
]

=
(n
2

)
, the number of ways to choose a pair:

[1,2] [3] [4] [1,3] [2] [4] [1,4] [2] [3]

[2,3] [1] [4] [2,4] [1] [3] [3,4] [1] [2]



Stirling numbers of the �rst kind

De�nition

The Stirling number of the �rst kind
[n
k

]
, read �n cycle k�, is the number of

ways to partition of a set with n elements into k non-empty circles.

In the general case:

For n > 1, what are the options where to put the nth element?

1 Together with some other elements.
To do so, we can �rst subdivide the other n−1 remaining objects into k
nonempty cycles, then decide which element to put the nth one after.

2 By itself.
Then we are only left to decide how to make the remaining k−1 nonempty
cycles out of the remaining n−1 objects.

These two cases can be joined as the recurrent equation[
n

k

]
= (n−1)

[
n−1
k

]
+

[
n−1
k−1

]
, for n > 0,

that yields the following triangle:



Stirling's triangle for circles

n
[n
0

] [n
1

] [n
2

] [n
3

] [n
4

] [n
5

] [n
6

] [n
7

] [n
8

] [n
9

]
0 1
1 0 1
2 0 1 1
3 0 2 3 1
4 0 6 11 6 1
5 0 24 50 35 10 1
6 0 120 274 225 85 15 1
7 0 720 1764 1624 735 175 21 1
8 0 5040 13068 13132 6769 1960 322 28 1
9 0 40320 109584 118124 67284 22449 4536 546 36 1



Warmup: A closed formula for
[n
2

]

Theorem [
n

2

]
= (n−1)!Hn−1 [n > 2]



Warmup: A closed formula for
[n
2

]
Theorem [

n

2

]
= (n−1)!Hn−1 [n > 2]

The formula is true for n = 2, so let n > 3.

For k = 1, . . . ,n−1 there are
(n
k

)
ways of splitting n objects into a group of k

and one of n−k. Each such way appears once for k, and once for n−k.

To each splitting correspond
[k
1

][n−k
1

]
= (k−1)!(n−k−1)! pairs of cycles.

Then: [
n

2

]
=

1

2

n−1

∑
k=1

(
n

k

)
(k−1)!(n−k−1)!

=
n!

2

n−1

∑
k=1

1

k(n−k)

=
n!

2

n−1

∑
k=1

1

n

(
1

k
+

1

n−k

)
= (n−1)!Hn−1
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Basic Stirling number identities, for integer n > 0

Some identities and inequalities we have already observed:{n
0

}
=
[n
0

]
= [n = 0]{n

1

}
= [n > 0] and

[n
1

]
= (n−1)! [n > 0]{n

2

}
= (2n−1−1) [n > 0] and

[n
2

]
= (n−1)!Hn−1 [n > 2]{ n

n−1
}

=
[ n
n−1
]

=
(n
2

)
= n(n−1)

2{n
n

}
=
[n
n

]
=
(n
n

)
= 1{n

k

}
=
[n
k

]
=
(n
k

)
= 0, if k > n or k < 0



Basic Stirling number identities (2)

For any integer n > 0, ∑
n
k=0

[n
k

]
= n!

Permutations de�ne cyclic arrangement and vice versa,
for example:

3 8 4 7 2 9 1 5 6

1 2 3 4 5 6 7 8 9

Thus the permutation π = 384729156 of {1,2,3,4,5,6,7,8,9} is equivalent to
the circle arrangement

[1,3,4,7] [2,8,5] [6,9]



Basic Stirling number identities (2)

For any integer n > 0, ∑
n
k=0

[n
k

]
= n!

Permutations de�ne cyclic arrangement and vice versa,
for example:

3 8 4 7 2 9 1 5 6

1 2 3 4 5 6 7 8 9

8

2

2

5 8

5

Thus the permutation π = 384729156 of {1,2,3,4,5,6,7,8,9} is equivalent to
the circle arrangement

[1,3,4,7] [2,8,5] [6,9]



Basic Stirling number identities (2)

For any integer n > 0, ∑
n
k=0

[n
k

]
= n!

Permutations de�ne cyclic arrangement and vice versa,
for example:

3 8 4 7 2 9 1 5 6

1 2 3 4 5 6 7 8 9

8

2

2

5 8

5

6

9 6

9

Thus the permutation π = 384729156 of {1,2,3,4,5,6,7,8,9} is equivalent to
the circle arrangement

[1,3,4,7] [2,8,5] [6,9]



Basic Stirling number identities (3)

Observation

x0 = x0

x1 = x1

x2 = x1 +x2

x3 = x1 +3x2 +x3

x4 = x1 +7x2 +6x3 +x4

· · · · · ·
Does the following general formula hold?

xn = ∑
k

{
n

k

}
xk



Basic Stirling number identities (3a)

Inductive proof of xn = ∑k

{n
k

}
xk

Considering that xk+1 = xk (x−k) we obtain that x ·xk = xk+1 +kxk

Hence

x ·xn−1 = x∑
k

{
n−1
k

}
xk = ∑

k

{
n−1
k

}
xk+1 +∑

k

{
n−1
k

}
kxk

= ∑
k

{
n−1
k−1

}
xk +∑

k

{
n−1
k

}
kxk

= ∑
k

({
n−1
k−1

}
+k

{
n−1
k

})
xk = ∑

k

{
n

k

}
xk

Q.E.D.



Basic Stirling number identities (4)

Observation

x0 = x0

x1 = x1

x2 = x1 +x2

x3 = 2x1 +3x2 +x3

x4 = 6x1 +11x2 +6x3 +x4

· · · · · ·

Generating function for Stirling cycle numbers:

xn = ∑
k

[
n

k

]
xk , for n > 0



Basic Stirling number identities (4a)

Generating function of the Stirling numbers of the �rst kind

∑
k

[
n

k

]
zk = zn ∀n > 0

The formula is clearly true for n = 0 and n = 1.
If it is true for n−1, then:

zn = zn−1(z +n−1)

=

(
∑
k

[
n−1
k

]
zk

)
(z +n−1)

= ∑
k

[
n−1
k

]
zk+1 + (n−1)∑

k

[
n−1
k

]
zk

= ∑
k

[
n−1
k−1

]
zk + (n−1)∑

k

[
n−1
k

]
zk

= ∑
k

(
(n−1)

[
n−1
k

]
+

[
n−1
k−1

])
zk ,

whence the thesis.



Basic Stirling number identities (5)

Reversing the formulas for falling and rising factorials

For every n > 0,

xn = ∑
k

{
n

k

}
(−1)n−kxk and xn = ∑

k

[
n

k

]
(−1)n−kxk



Basic Stirling number identities (5)

Reversing the formulas for falling and rising factorials

For every n > 0,

xn = ∑
k

{
n

k

}
(−1)n−kxk and xn = ∑

k

[
n

k

]
(−1)n−kxk

Proof

As xk = (−1)k (−x)k , we can rewrite the known equalities as:

xn = ∑
k

{
n

k

}
(−1)k (−x)k and (−1)n(−x)n = ∑

k

[
n

k

]
xk

But clearly xn = (−1)n(−x)n, so by replacing x with −x we get the thesis.



Basic Stirling number identities (5)

Reversing the formulas for falling and rising factorials

For every n > 0,

xn = ∑
k

{
n

k

}
(−1)n−kxk and xn = ∑

k

[
n

k

]
(−1)n−kxk

Corollary

∑
k

{
n

k

}[
k

m

]
(−1)n−k = ∑

k

[
n

k

]{
k

m

}
(−1)n−k = [m = n]

Indeed, the following must hold for every x :

xn = ∑
k

{
n

k

}
(−1)n−k

(
∑
m

[
k

m

]
xm
)

= ∑
m

(
∑
k

{
n

k

}[
k

m

]
(−1)n−k

)
xm

which is only possible if m = n. The other equality is proved similarly.



Stirling's inversion formula (cf. Exercise 6.12)

Statement

Let f and g be two functions de�ned on N with values in C.
The following are equivalent:

1 For every n > 0,

g(n) = ∑
k

{
n

k

}
(−1)k f (k) .

2 For every n > 0,

f (n) = ∑
k

[
n

k

]
(−1)kg(k) .



Stirling's inversion formula (cf. Exercise 6.12)

Proof

If g(n) = ∑k

{n
k

}
(−1)k f (k) for every n > 0, then also for n > 0

∑
k

[
n

k

]
(−1)kg(k) = ∑

k

[
n

k

]
(−1)k ∑

m

{
k

m

}
(−1)mf (m)

= ∑
k,m

(−1)k+mf (m)

[
n

k

]{
k

m

}
= ∑

k,m

(−1)2n−k−mf (m)

[
n

k

]{
k

m

}
= ∑

m

(−1)n−mf (m)∑
k

(−1)n−k
[
n

k

]{
k

m

}
= ∑

m

(−1)n−mf (m)[m = n]

= f (n) .

The other implication is proved similarly.
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Stirling's triangles in tandem

Basic recurrences of Stirling numbers yield for every integers k,n a simple law:[
n

k

]
=

{
−k
−n

}
with

[
n

0

]
=

{
n

0

}
= [n = 0] and

[
0

k

]
=

{
0

k

}
= [k = 0]

n
{ n
−5
} { n

−4
} { n

−3
} { n

−2
} { n

−1
} {n

0

} {n
1

} {n
2

} {n
3

} {n
4

} {n
5

}
-5 1
-4 10 1
-3 35 6 1
-2 50 11 3 1
-1 24 6 2 1 1
0 0 0 0 0 0 1
1 0 0 0 0 0 0 1
2 0 0 0 0 0 0 1 1
3 0 0 0 0 0 0 1 3 1
4 0 0 0 0 0 0 1 7 6 1
5 0 0 0 0 0 0 1 15 25 10 1



Stirling numbers cheat sheet

{n
0

}
=
[n
0

]
= [n = 0]{n

1

}
= [n > 0] and

[n
1

]
= (n−1)! [n > 2]{n

2

}
= (2n−1−1) [n > 2] and

[n
2

]
= (n−1)!Hn−1[n > 0]{ n

n−1
}

=
[ n
n−1
]

=
(n
2

)
=

n(n−1)

2{n
n

}
=
[n
n

]
=
(n
n

)
= 1{n

k

}
=
[n
k

]
=
(n
k

)
= 0, if k > n or k < 0{n

k

}
= k

{n−1
k

}
+
{n−1
k−1
}

and
[n
k

]
= (n−1)

[n−1
k

]
+
[n−1
k−1
]

∑k

{n
k

}
xk = xn and ∑k

[n
k

]
xk = xn

∑k

[n
k

]
= n!

∑k

{n
k

}
(−1)n−kxk = xn and ∑k

[n
k

]
(−1)n−kxk = xn

∑k

{n
k

}[k
m

]
(−1)k = ∑k

[n
k

]{k
m

}
(−1)k = [m = n]
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Fibonacci numbers: Idea

Fibonacci's problem

A pair of baby rabbits is left on an island.

A baby rabbit becomes adult in one month.

A pair of adult rabbits produces a pair of baby rabbits each
month.

How many pairs of rabbits will be on the island ofter n months?
How many of them will be adult, and how many will be babies?

Leonardo
Fibonacci

(1175�1235)



Fibonacci numbers: Idea

Fibonacci's problem

A pair of baby rabbits is left on an island.

A baby rabbit becomes adult in one month.

A pair of adult rabbits produces a pair of baby rabbits each
month.

How many pairs of rabbits will be on the island ofter n months?
How many of them will be adult, and how many will be babies?

Solution (see Exercise 6.6)

On the �rst month, the two baby rabbits will have become adults.

On the second month, the two adult rabbits will have produced a
pair of baby rabbits.

On the third month, the two adult rabbits will have produced
another pair of baby rabbits, while the other two baby rabbits will
have become adults.

And so on, and so on . . .

Leonardo
Fibonacci

(1175�1235)



Fibonacci numbers: Idea

Fibonacci's problem

A pair of baby rabbits is left on an island.

A baby rabbit becomes adult in one month.

A pair of adult rabbits produces a pair of baby rabbits each
month.

How many pairs of rabbits will be on the island ofter n months?
How many of them will be adult, and how many will be babies?

Solution (see Exercise 6.6)

month 0 1 2 3 4 5 6 7 8 9 10
baby 1 0 1 1 2 3 5 8 13 21 34
adult 0 1 1 2 3 5 8 13 21 34 55
total 1 1 2 3 5 8 13 21 34 55 89

That is: at month n, there are fn+1 pair of rabbits, of which fn pairs of
adults, and fn−1 pairs of babies.
(Note: this seems to suggest f−1 = 1 . . . )

Leonardo
Fibonacci

(1175�1235)



Fibonacci Numbers: De�nition

n 0 1 2 3 4 5 6 7 8 9 10
fn 0 1 1 2 3 5 8 13 21 34 55

Formulae for computing:

fn = fn−1 + fn−2, where f0 = 0 and f1 = 1

fn = Φn−Φ̂n
√
5

("Binet form")

The golden ratio

The constant Φ = 1+
√
5

2
≈ 1.61803 is called golden ratio :

If a line segment a is divided into two sub-segments b and a−b so that
a : b = b : (a−b), then

a

b
= Φ and

b

a
=−Φ̂



Fibonacci Numbers: De�nition

n 0 1 2 3 4 5 6 7 8 9 10
fn 0 1 1 2 3 5 8 13 21 34 55

Formulae for computing:

fn = fn−1 + fn−2, where f0 = 0 and f1 = 1

fn = Φn−Φ̂n
√
5

("Binet form")

The golden ratio

The constant Φ = 1+
√
5

2
≈ 1.61803 is called golden ratio :

If a line segment a is divided into two sub-segments b and a−b so that
a : b = b : (a−b), then

a

b
= Φ and

b

a
=−Φ̂



Generating Function for Fibonacci Numbers

F (Z) = f0 + f1z + f2z
2 + f3z

3 + f4z
4 + · · ·



Generating Function for Fibonacci Numbers

F (Z) = f0 + f1z + f2z
2 + f3z

3 + f4z
4 + · · ·

〈f0, f1, f2, f3, f4, . . .〉

〈0, 1, f1 + f0, f2 + f1, f3 + f2, . . .〉

↔ F (z)



Generating Function for Fibonacci Numbers

F (Z) = f0 + f1z + f2z
2 + f3z

3 + f4z
4 + · · ·

〈f0, f1, f2, f3, f4, . . .〉

〈0, 1, f1 + f0, f2 + f1, f3 + f2, . . .〉

↔ F (z)

Applying Addition to some known generating functions:

〈0, 1, 0, 0, 0, · · · 〉 ↔ z
〈0, f0, f1, f2, f3, · · · 〉 ↔ zF (z)

+ 〈0, 0, f0, f1, f2, · · · 〉 ↔ z2F (z)
〈0, 1+ f0, f1 + f0, , f2 + f1, f3 + f2, · · · 〉 ↔ z + zF (z) + z2F (z)



Generating Function for Fibonacci Numbers

F (Z) = f0 + f1z + f2z
2 + f3z

3 + f4z
4 + · · ·

〈f0, f1, f2, f3, f4, . . .〉

〈0, 1, f1 + f0, f2 + f1, f3 + f2, . . .〉

↔ F (z)

Applying Addition to some known generating functions:

〈0, 1, 0, 0, 0, · · · 〉 ↔ z
〈0, f0, f1, f2, f3, · · · 〉 ↔ zF (z)

+ 〈0, 0, f0, f1, f2, · · · 〉 ↔ z2F (z)
〈0, 1+ f0, f1 + f0, , f2 + f1, f3 + f2, · · · 〉 ↔ z + zF (z) + z2F (z)

Closed form of the generating function: F (z) = z
1−z−z2



Evaluation of Coe�cients: Factorization

We know from the previous lecture that

1

1−αz
= 1+ αz + α

2z2 + α
3z3 + · · ·

Let's try to represent a generating function in the form:

G(z) =
A

1−αz
+

B

1−βz

= A ∑
n>0

(αz)n +B ∑
n>0

(βz)n

= ∑
n>0

(Aα
n +Bβ

n)zn

The task is to �nd such constants A,B,α,β that

G(z) =
A

1−αz
+

B

1−βz
=

A−Aβz +B−Bαz

(1−αz)(1−βz)
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Factorization for Fibonacci (2)

For the generating function of Fibonacci Numbers we need to solve the
equations: {

(1−αz)(1−βz) = 1−z−z2

(A+B)− (Aβ +Bα)z = z



Factorization for Fibonacci (2)

For the generating function of Fibonacci Numbers we need to solve the
equations: {

(1−αz)(1−βz) = 1−z−z2

(A+B)− (Aβ +Bα)z = z

To factorize 1−z−z2

Solve the equation w2−wz−z2 = 0 (i.e. w = 1 gives the special case
1−z−z2 = 0):

w1,2 =
z±
√
x2 +4x2

2
=

1±
√
5

2
z

Therefore

w2−wz−z2 =

(
w − 1+

√
5

2
z

)(
w − 1−

√
5

2
z

)
and

1−z−z2 =

(
1− 1+

√
5

2
z

)(
1− 1−

√
5

2
z

)



Factorization for Fibonacci (2)

For the generating function of Fibonacci Numbers we need to solve the
equations: {

(1−αz)(1−βz) = 1−z−z2

(A+B)− (Aβ +Bα)z = z

A general trick

Let p(x) = ∑
n
k=0

akz
k be a polynomial over C of degree n such that

a0 = p(0) 6= 0.

Then all the roots of p have a multiplicative inverse.

Consider the �reverse� polynomial

pR(z) =
n

∑
k=0

akz
n−k = znp

(
1

z

)

Then α is a root of p if and only if 1/α is a root of pR , because if
p(x) = an(z−α1) · · ·(z−αn), then pR(z) = an(1−α1z) · · ·(1−αnz).



Factorization for Fibonacci (3)

For the generating function of Fibonacci Numbers we need to solve the
equations: {

(1−αz)(1−βz) = 1−z−z2

(A+B)− (Aβ +Bα)z = z

Denote Φ = 1+
√
5

2
(golden ratio):

�phi hat� is

Φ̂ = 1−Φ = 1− 1+
√
5

2
= 2−1−

√
5

2
= 1−

√
5

2

and we have
1−z−z2 = (1−Φz)

(
1− Φ̂z

)



Factorization for Fibonacci (3)

For the generating function of Fibonacci Numbers we need to solve the
equations: {

(1−αz)(1−βz) = 1−z−z2

(A+B)− (Aβ +Bα)z = z

Denote Φ = 1+
√
5

2
(golden ratio):

�phi hat� is

Φ̂ = 1−Φ = 1− 1+
√
5

2
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2
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√
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and we have
1−z−z2 = (1−Φz)

(
1− Φ̂z

)



Factorization for Fibonacci (4)

For the generating function of Fibonacci Numbers we need to solve the
equations: {

(1−Φz)(1− Φ̂z) = 1−z−z2

(A+B)− (AΦ̂ +BΦ)z = z

To �nd A and B:

Solve {
A+B = 0

AΦ̂ +BΦ =−1

This is A = 1/(Φ− Φ̂):

A = 1/(Φ− Φ̂)

= 1/

(
1+
√
5

2
− 1−

√
5

2

)

=
2

1+
√
5−1+

√
5

=
1√
5



Factorization for Fibonacci (4)

For the generating function of Fibonacci Numbers we need to solve the
equations: {

(1−Φz)(1− Φ̂z) = 1−z−z2

(A+B)− (AΦ̂ +BΦ)z = z

To �nd A and B:

Solve {
A+B = 0

AΦ̂ +BΦ =−1

This is A = 1/(Φ− Φ̂):

A = 1/(Φ− Φ̂)

= 1/

(
1+
√
5

2
− 1−

√
5

2

)

=
2

1+
√
5−1+

√
5

=
1√
5



Factorization for Fibonacci (5)

To conclude:

We have α = Φ = (1+
√
5)/2, β = Φ̂ = (1−

√
5)/2, A = 1/

√
5 and B =−1/

√
5

Generating function:

F (z) =
A

1−αz
+

B

1−βz

=
1√
5

(
1

1−Φz
− 1

1− Φ̂z

)
Closed formula for fn:

fn = Aα
n +Bβ

n

=
1√
5

(
Φn− Φ̂n

)



Some Fibonacci Identities

Cassini's Identity fn+1fn−1− f 2n = (−1)n for all n > 0
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Some Fibonacci Identities

Cassini's Identity fn+1fn−1− f 2n = (−1)n for all n > 0

Divisors fn and fn+1 are relatively prime and fk divides fnk :

gcd(fn, fm) = fgcd(n,m)

Matrix Calculus If A is the 2×2 matrix

(
1 1
1 0

)
, then

An =

(
fn+1 fn
fn fn−1

)
, for n > 0.

Note that this yields Cassini's identity, because detA =−1.
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