Special Numbers
 ITT9132 Concrete Mathematics

```
Chapter Six
    Stirling Numbers
    Fibonacci Numbers
```


Contents

1 Stirling numbers

- Stirling numbers of the second kind
- Stirling numbers of the first kind
- Basic Stirling number identities, for integer $n \geqslant 0$
- Extension of Stirling numbers

2 Fibonacci Numbers

Next section

1 Stirling numbers

- Stirling numbers of the second kind
- Stirling numbers of the first kind
- Basic Stirling number identities, for integer $n \geqslant 0$
- Extension of Stirling numbers

2 Fibonacci Numbers

Next subsection

1 Stirling numbers

- Stirling numbers of the second kind
- Stirling numbers of the first kind
- Basic Stirling number identities, for integer $n \geqslant 0$ - Extension of Stirling numbers

2 Fibonacci Numbers

Stirling numbers of the second kind

Definition

The Stirling number of the second kind $\left\{\begin{array}{l}n \\ k\end{array}\right\}$, read " n subset k ", is the number of ways to partition a set with n elements into k non-empty subsets.

Stirling numbers of the second kind

Definition

The Stirling number of the second kind $\left\{\begin{array}{l}n \\ k\end{array}\right\}$ ，read＂n subset k＂，is the number of ways to partition a set with n elements into k non－empty subsets．

Example：splitting a four－element set into two nonempty parts

$$
\begin{array}{llll}
\{1,2,3\} \cup\{4\} & \{1,2,4\} \cup\{3\} & \{1,3,4\} \cup\{2\} & \{2,3,4\} \cup\{1\} \\
\{1,2\} \bigcup\{3,4\} & \{1,3\} \bigcup\{2,4\} & \{1,4\} \cup\{2,3\} &
\end{array}
$$

Hence $\left\{\begin{array}{l}4 \\ 2\end{array}\right\}=7$

Stirling numbers of the second kind

Definition

The Stirling number of the second kind $\left\{\begin{array}{l}n \\ k\end{array}\right\}$, read " n subset k ", is the number of ways to partition a set with n elements into k non-empty subsets.

Some special cases: (1)

$k=0$ We can partition a set into no nonempty parts if and only if the set is empty.
That is: $\left\{\begin{array}{l}n \\ 0\end{array}\right\}=[n=0]$.
$k=1$ We can partition a set into one nonempty part if and only if the set is nonempty.
That is: $\left\{\begin{array}{l}n \\ 1\end{array}\right\}=[n>0]$.

Stirling numbers of the second kind

Definition

The Stirling number of the second kind $\left\{\begin{array}{l}n \\ k\end{array}\right\}$, read " n subset k ", is the number of ways to partition a set with n elements into k non-empty subsets.

Some special cases: (2)

$k=n$ If $n>0$, the only way to partition a set with n elements into n nonempty parts, is to put every element by itself.
That is: $\left\{\begin{array}{l}n \\ n\end{array}\right\}=1$. (This also matches the case $n=0$.)
$k=n-1$ Choosing a partition of a set with n elements into $n-1$ nonempty subsets, is the same as choosing the two elements that go together. That is: $\left\{\begin{array}{c}n \\ n-1\end{array}\right\}=\binom{n}{2}$.

Stirling numbers of the second kind

Definition

The Stirling number of the second kind $\left\{\begin{array}{l}n \\ k\end{array}\right\}$, read " n subset k ", is the number of ways to partition a set with n elements into k non-empty subsets.

Some special cases (3)
$k=2$ Let X be a set with two or more elements.

- Each partition of X into two subsets is identified by two ordered pairs $(A, X \backslash A)$ for $A \subseteq X$.
- There are 2^{n} such pairs, but (\emptyset, X) and (X, \emptyset) do not satisfy the nonemptiness condition.
- Then $\left\{\begin{array}{l}n \\ 2\end{array}\right\}=\frac{2^{n}-2}{2}=2^{n-1}-1$ for $n \geqslant 2$.

In general, $\left\{\begin{array}{l}n \\ 2\end{array}\right\}=\left(2^{n-1}-1\right)[n \geqslant 2]$

Stirling numbers of the second kind

Definition

The Stirling number of the second kind $\left\{\begin{array}{l}n \\ k\end{array}\right\}$, read " n subset k ", is the number of ways to partition a set with n elements into k non-empty subsets.

In the general case:

For $n \geqslant 1$, what are the options where to put the nth element?
1 Together with some other elements.
To do so, we can first subdivide the other $n-1$ remaining objects into k nonempty groups, then decide which group to add the nth element to.
2 By itself.
Then we are only left to decide how to make the remaining $k-1$ nonempty groups out of the remaining $n-1$ objects.
These two cases can be joined as the recurrent equation

$$
\left\{\begin{array}{l}
n \\
k
\end{array}\right\}=k\left\{\begin{array}{c}
n-1 \\
k
\end{array}\right\}+\left\{\begin{array}{l}
n-1 \\
k-1
\end{array}\right\}, \quad \text { for } n>0
$$

that yields the following triangle:

Stirling's triangle for subsets

n	$\left\{\begin{array}{l}n \\ 0\end{array}\right\}$	$\left\{\begin{array}{l}n \\ 1\end{array}\right\}$	$\left\{\begin{array}{l}n \\ 2\end{array}\right\}$	$\left\{\begin{array}{l}n \\ 3\end{array}\right\}$	$\left\{\begin{array}{l}n \\ 4\end{array}\right\}$	$\left\{\begin{array}{l}n \\ 5\end{array}\right\}$	$\left\{\begin{array}{l}n \\ 6\end{array}\right\}$	$\left\{\begin{array}{l}n \\ 7\end{array}\right\}$	$\left\{\begin{array}{l}n \\ 8\end{array}\right\}$	$\left\{\begin{array}{l}n \\ 9\end{array}\right\}$
0	1									
1	0	1								
2	0	1	1							
3	0	1	3	1						
4	0	1	7	6	1					
5	0	1	15	25	10	1				
6	0	1	31	90	65	15	1			
7	0	1	63	301	350	140	21	1		
8	0	1	127	966	1701	1050	266	28	1	
9	0	1	255	3025	7770	6951	2646	462	36	1

Next subsection

1 Stirling numbers

- Stirling numbers of the second kind
- Stirling numbers of the first kind
- Basic Stirling number identities, for integer $n \geqslant 0$ - Extension of Stirling numbers

2 Fibonacci Numbers

Stirling numbers of the first kind

Definition

The Stirling number of the first kind $\left[\begin{array}{l}n \\ k\end{array}\right]$, read " n cycle k ", is the number of ways to partition of a set with n elements into k non-empty circles.

A circle is a cyclic arrangement

- The circle can be written as $[A, B, C, D]$;
- It means that
$[A, B, C, D]=[B, C, D, A]=[C, D, A, B]=[D, A, B, C]$;
- It is not same as $[A, B, D, C]$ or $[D, C, B, A]$.

Stirling numbers of the first kind

Definition

The Stirling number of the first kind $\left[\begin{array}{l}n \\ k\end{array}\right]$, read " n cycle k ", is the number of ways to partition of a set with n elements into k non-empty circles.

Example: splitting a four-element set into two circles

$$
\begin{array}{lllll}
{[1,2,3][4]} & {[1,2,4][3]} & {[1,3,4][2]} & {[2,3,4][1]} \\
{[1,3,2][4]} & {[1,4,2][3]} & {[1,4,3][2]} & {[2,4,3][1]} \\
{[1,2][3,4]} & {[1,3][2,4]} & {[1,4][2,3]} &
\end{array}
$$

Hence $\left[\begin{array}{l}4 \\ 2\end{array}\right]=11$

Stirling numbers of the first kind

Definition

The Stirling number of the first kind $\left[\begin{array}{l}n \\ k\end{array}\right]$, read " n cycle k ", is the number of ways to partition of a set with n elements into k non-empty circles.

Some special cases (1):

$k=1$ To arrange one circle of n objects: choose the order, and forget which element was the first. That is: $\left[\begin{array}{l}n \\ 1\end{array}\right]=\frac{n!}{n}=(n-1)!$.

Stirling numbers of the first kind

Definition

The Stirling number of the first kind $\left[\begin{array}{l}n \\ k\end{array}\right]$, read " n cycle k ", is the number of ways to partition of a set with n elements into k non-empty circles.

Some special cases (2):
$k=0$ The only way to arrange objects into no nonempty cycles, is if there are no objects. Then: $\left[\begin{array}{c}n \\ 0\end{array}\right]=[n=0]$.
$k=n$ Every cycle is a singleton and there is just one partition into circles. That is, $\left[\begin{array}{l}n \\ n\end{array}\right]=1$ for any n :

$$
[1][2][3][4]
$$

$k=n-1$ The partition into circles consists of $n-2$ singletons and one pair. So $\left[\begin{array}{c}n \\ n-1\end{array}\right]=\binom{n}{2}$, the number of ways to choose a pair:

$$
\begin{array}{lll}
{[1,2][3][4]} & {[1,3][2][4]} & {[1,4][2][3]} \\
{[2,3][1][4]} & {[2,4][1][3]} & {[3,4][1][2]}
\end{array}
$$

Stirling numbers of the first kind

Definition

The Stirling number of the first kind $\left[\begin{array}{c}n \\ k\end{array}\right]$, read " n cycle k ", is the number of ways to partition of a set with n elements into k non-empty circles.

In the general case:

For $n \geqslant 1$, what are the options where to put the nth element?
1 Together with some other elements.
To do so, we can first subdivide the other $n-1$ remaining objects into k nonempty cycles, then decide which element to put the nth one after.
2 By itself.
Then we are only left to decide how to make the remaining $k-1$ nonempty cycles out of the remaining $n-1$ objects.
These two cases can be joined as the recurrent equation

$$
\left[\begin{array}{l}
n \\
k
\end{array}\right]=(n-1)\left[\begin{array}{c}
n-1 \\
k
\end{array}\right]+\left[\begin{array}{l}
n-1 \\
k-1
\end{array}\right], \quad \text { for } n>0
$$

that yields the following triangle:

Stirling's triangle for circles

n	$\left[\begin{array}{l}n \\ 0\end{array}\right]$	$\left[\begin{array}{l}n \\ 1\end{array}\right]$	$\left[\begin{array}{l}n \\ 2\end{array}\right]$	$\left[\begin{array}{l}n \\ 3\end{array}\right]$	$\left[\begin{array}{l}n \\ 4\end{array}\right]$	$\left[\begin{array}{l}n \\ 5\end{array}\right]$	$\left[\begin{array}{l}n \\ 6\end{array}\right]$	$\left[\begin{array}{l}n \\ 7\end{array}\right]$	$\left[\begin{array}{l}n \\ 8\end{array}\right]$	$\left[\begin{array}{l}n \\ 9\end{array}\right]$
0	1									
1	0	1								
2	0	1	1							
3	0	2	3	1						
4	0	6	11	6	1					
5	0	24	50	35	10	1				
6	0	120	274	225	85	15	1			
7	0	720	1764	1624	735	175	21	1		
8	0	5040	13068	13132	6769	1960	322	28	1	
9	0	40320	109584	118124	67284	22449	4536	546	36	1

Warmup: A closed formula for $\left[\begin{array}{c}n \\ 2\end{array}\right]$

Theorem

$$
\left[\begin{array}{l}
n \\
2
\end{array}\right]=(n-1)!H_{n-1}[n \geqslant 2]
$$

Warmup: A closed formula for $\left[\begin{array}{c}n \\ 2\end{array}\right]$

Theorem

$$
\left[\begin{array}{l}
n \\
2
\end{array}\right]=(n-1)!H_{n-1}[n \geqslant 2]
$$

The formula is true for $n=2$, so let $n \geqslant 3$.

- For $k=1, \ldots, n-1$ there are $\binom{n}{k}$ ways of splitting n objects into a group of k and one of $n-k$. Each such way appears once for k, and once for $n-k$.
- To each splitting correspond $\left[\begin{array}{c}k \\ 1\end{array}\right]\left[\begin{array}{c}n-k \\ 1\end{array}\right]=(k-1)!(n-k-1)$! pairs of cycles.
- Then:

$$
\begin{aligned}
{\left[\begin{array}{l}
n \\
2
\end{array}\right] } & =\frac{1}{2} \sum_{k=1}^{n-1}\binom{n}{k}(k-1)!(n-k-1)! \\
& =\frac{n!}{2} \sum_{k=1}^{n-1} \frac{1}{k(n-k)} \\
& =\frac{n!}{2} \sum_{k=1}^{n-1} \frac{1}{n}\left(\frac{1}{k}+\frac{1}{n-k}\right) \\
& =(n-1)!H_{n-1}
\end{aligned}
$$

Next subsection

1 Stirling numbers

- Basic Stirling number identities, for integer $n \geqslant 0$
- Extension of Stirling numbers

2 Fibonacci Numbers

Basic Stirling number identities, for integer $n \geqslant 0$

Some identities and inequalities we have already observed:

- $\left\{\begin{array}{l}n \\ 0\end{array}\right\}=\left[\begin{array}{l}n \\ 0\end{array}\right]=[n=0]$
- $\left\{\begin{array}{l}n \\ 1\end{array}\right\}=[n>0] \quad$ and $\left[\begin{array}{l}n \\ 1\end{array}\right]=(n-1)![n>0]$
- $\left\{\begin{array}{l}n \\ 2\end{array}\right\}=\left(2^{n-1}-1\right)[n>0]$ and $\left[\begin{array}{l}n \\ 2\end{array}\right]=(n-1)!H_{n-1}[n \geqslant 2]$
- $\left\{\begin{array}{c}n \\ n-1\end{array}\right\}=\left[\begin{array}{c}n \\ n-1\end{array}\right]=\binom{n}{2}=\frac{n(n-1)}{2}$
- $\left\{\begin{array}{l}n \\ n\end{array}\right\}=\left[\begin{array}{c}n \\ n\end{array}\right]=\binom{n}{n}=1$
- $\left\{\begin{array}{l}n \\ k\end{array}\right\}=\left[\begin{array}{l}n \\ k\end{array}\right]=\binom{n}{k}=0$, if $k>n$ or $k<0$

Basic Stirling number identities (2)

For any integer $n \geqslant 0, \sum_{k=0}^{n}\left[\begin{array}{l}n \\ k\end{array}\right]=n!$

Permutations define cyclic arrangement and vice versa, for example:

Thus the permutation $\pi=384729156$ of $\{1,2,3,4,5,6,7,8,9\}$ is equivalent to the circle arrangement

$$
[1,3,4,7][2,8,5][6,9]
$$

Basic Stirling number identities (2)

For any integer $n \geqslant 0, \sum_{k=0}^{n}\left[\begin{array}{l}n \\ k\end{array}\right]=n!$

Permutations define cyclic arrangement and vice versa, for example:

Thus the permutation $\pi=384729156$ of $\{1,2,3,4,5,6,7,8,9\}$ is equivalent to the circle arrangement

$$
[1,3,4,7][2,8,5][6,9]
$$

Basic Stirling number identities (2)

For any integer $n \geqslant 0, \sum_{k=0}^{n}\left[\begin{array}{l}n \\ k\end{array}\right]=n!$

Permutations define cyclic arrangement and vice versa, for example:

Thus the permutation $\pi=384729156$ of $\{1,2,3,4,5,6,7,8,9\}$ is equivalent to the circle arrangement

$$
[1,3,4,7][2,8,5][6,9]
$$

Basic Stirling number identities (3)

Observation

$$
\begin{aligned}
& x^{0}=x^{\underline{0}} \\
& x^{1}=x^{\underline{1}} \\
& x^{2}=x^{\underline{1}}+x^{\underline{2}} \\
& x^{3}=x^{\underline{1}}+3 x^{\underline{2}}+x^{\underline{3}} \\
& x^{4}=x^{\underline{1}}+7 x^{\underline{2}}+6 x^{\frac{3}{-}}+x^{4}
\end{aligned}
$$

$\left.\begin{array}{||c|cccccc}\hline \hline n & \left\{\begin{array}{l}n \\ 0\end{array}\right\} & \left\{\begin{array}{l}n \\ 1\end{array}\right\} & \left\{\begin{array}{l}n \\ 2\end{array}\right\} & \left\{\begin{array}{l}n \\ 3\end{array}\right\}\end{array} \begin{array}{c}\left\{\begin{array}{l}n \\ 4\end{array}\right\}\end{array} \quad\left\{\begin{array}{l}n \\ 5\end{array}\right\}\right\}$

Does the following general formula hold?

$$
x^{n}=\sum_{k}\left\{\begin{array}{l}
n \\
k
\end{array}\right\} x^{\underline{k}}
$$

Basic Stirling number identities (3a)

Inductive proof of $x^{n}=\sum_{k}\left\{\begin{array}{l}n \\ k\end{array}\right\} x^{\underline{k}}$

- Considering that $x^{\underline{k+1}}=x^{\underline{k}}(x-k)$ we obtain that $x \cdot x^{\underline{k}}=x^{\underline{k+1}}+k x^{\underline{k}}$
- Hence

$$
\begin{aligned}
x \cdot x^{n-1}=x \sum_{k}\left\{\begin{array}{c}
n-1 \\
k
\end{array}\right\} x^{\underline{k}} & =\sum_{k}\left\{\begin{array}{c}
n-1 \\
k
\end{array}\right\} x^{\frac{k+1}{}}+\sum_{k}\left\{\begin{array}{c}
n-1 \\
k
\end{array}\right\} k x^{\underline{k}} \\
& =\sum_{k}\left\{\begin{array}{l}
n-1 \\
k-1
\end{array}\right\} x^{\underline{k}}+\sum_{k}\left\{\begin{array}{c}
n-1 \\
k
\end{array}\right\} k x^{\underline{k}} \\
& =\sum_{k}\left(\left\{\begin{array}{l}
n-1 \\
k-1
\end{array}\right\}+k\left\{\begin{array}{c}
n-1 \\
k
\end{array}\right\}\right) x^{\underline{k}}=\sum_{k}\left\{\begin{array}{l}
n \\
k
\end{array}\right\} x^{\underline{k}}
\end{aligned}
$$

Q.E.D.

Basic Stirling number identities (4)

Observation

$$
\begin{aligned}
& x^{\overline{0}}=x^{0} \\
& x^{\overline{1}}=x^{1} \\
& x^{\overline{2}}=x^{1}+x^{2} \\
& x^{\overline{3}}=2 x^{1}+3 x^{2}+x^{3} \\
& x^{\overline{4}}=6 x^{1}+11 x^{2}+6 x^{3}+x^{4}
\end{aligned}
$$

Generating function for Stirling cycle numbers:

$$
x^{\bar{n}}=\sum_{k}\left[\begin{array}{l}
n \\
k
\end{array}\right] x^{k}, \quad \text { for } n \geqslant 0
$$

Basic Stirling number identities (4a)

Generating function of the Stirling numbers of the first kind

$$
\sum_{k}\left[\begin{array}{l}
n \\
k
\end{array}\right] z^{k}=z^{\bar{n}} \forall n \geqslant 0
$$

The formula is clearly true for $n=0$ and $n=1$.
If it is true for $n-1$, then:

$$
\begin{aligned}
z^{\bar{n}} & =z^{\overline{n-1}}(z+n-1) \\
& =\left(\sum_{k}\left[\begin{array}{c}
n-1 \\
k
\end{array}\right] z^{k}\right)(z+n-1) \\
& =\sum_{k}\left[\begin{array}{c}
n-1 \\
k
\end{array}\right] z^{k+1}+(n-1) \sum_{k}\left[\begin{array}{c}
n-1 \\
k
\end{array}\right] z^{k} \\
& =\sum_{k}\left[\begin{array}{c}
n-1 \\
k-1
\end{array}\right] z^{k}+(n-1) \sum_{k}\left[\begin{array}{c}
n-1 \\
k
\end{array}\right] z^{k} \\
& =\sum_{k}\left((n-1)\left[\begin{array}{c}
n-1 \\
k
\end{array}\right]+\left[\begin{array}{c}
n-1 \\
k-1
\end{array}\right]\right) z^{k}
\end{aligned}
$$

whence the thesis.

Basic Stirling number identities (5)

Reversing the formulas for falling and rising factorials
For every $n \geqslant 0$,

$$
x^{n}=\sum_{k}\left\{\begin{array}{l}
n \\
k
\end{array}\right\}(-1)^{n-k} x^{\bar{k}} \text { and } x^{n}=\sum_{k}\left[\begin{array}{l}
n \\
k
\end{array}\right](-1)^{n-k} x^{k}
$$

Basic Stirling number identities (5)

Reversing the formulas for falling and rising factorials

For every $n \geqslant 0$,

$$
x^{n}=\sum_{k}\left\{\begin{array}{l}
n \\
k
\end{array}\right\}(-1)^{n-k} x^{\bar{k}} \text { and } x^{\underline{n}}=\sum_{k}\left[\begin{array}{l}
n \\
k
\end{array}\right](-1)^{n-k} x^{k}
$$

Proof

As $x^{\underline{k}}=(-1)^{k}(-x)^{\bar{k}}$, we can rewrite the known equalities as:

$$
x^{n}=\sum_{k}\left\{\begin{array}{l}
n \\
k
\end{array}\right\}(-1)^{k}(-x)^{\bar{k}} \text { and }(-1)^{n}(-x)^{n}=\sum_{k}\left[\begin{array}{l}
n \\
k
\end{array}\right] x^{k}
$$

But clearly $x^{n}=(-1)^{n}(-x)^{n}$, so by replacing x with $-x$ we get the thesis.

Basic Stirling number identities (5)

Reversing the formulas for falling and rising factorials

For every $n \geqslant 0$,

$$
x^{n}=\sum_{k}\left\{\begin{array}{l}
n \\
k
\end{array}\right\}(-1)^{n-k} x^{\bar{k}} \text { and } x^{n}=\sum_{k}\left[\begin{array}{l}
n \\
k
\end{array}\right](-1)^{n-k} x^{k}
$$

Corollary

$$
\sum_{k}\left\{\begin{array}{l}
n \\
k
\end{array}\right\}\left[\begin{array}{l}
k \\
m
\end{array}\right](-1)^{n-k}=\sum_{k}\left[\begin{array}{l}
n \\
k
\end{array}\right]\left\{\begin{array}{l}
k \\
m
\end{array}\right\}(-1)^{n-k}=[m=n]
$$

Indeed, the following must hold for every x :

$$
x^{n}=\sum_{k}\left\{\begin{array}{l}
n \\
k
\end{array}\right\}(-1)^{n-k}\left(\sum_{m}\left[\begin{array}{c}
k \\
m
\end{array}\right] x^{m}\right)=\sum_{m}\left(\sum_{k}\left\{\begin{array}{l}
n \\
k
\end{array}\right\}\left[\begin{array}{l}
k \\
m
\end{array}\right](-1)^{n-k}\right) x^{m}
$$

which is only possible if $m=n$. The other equality is proved similarly.

Stirling's inversion formula (cf. Exercise 6.12)

Statement

Let f and g be two functions defined on \mathbb{N} with values in \mathbb{C}.
The following are equivalent:
1 For every $n \geqslant 0$,

$$
g(n)=\sum_{k}\left\{\begin{array}{l}
n \\
k
\end{array}\right\}(-1)^{k} f(k) .
$$

2 For every $n \geqslant 0$,

$$
f(n)=\sum_{k}\left[\begin{array}{l}
n \\
k
\end{array}\right](-1)^{k} g(k) .
$$

Stirling's inversion formula (cf. Exercise 6.12)

Proof

If $g(n)=\sum_{k}\left\{\begin{array}{l}n \\ k\end{array}\right\}(-1)^{k} f(k)$ for every $n \geqslant 0$, then also for $n \geqslant 0$

$$
\begin{aligned}
\sum_{k}\left[\begin{array}{l}
n \\
k
\end{array}\right](-1)^{k} g(k) & =\sum_{k}\left[\begin{array}{l}
n \\
k
\end{array}\right](-1)^{k} \sum_{m}\left\{\begin{array}{l}
k \\
m
\end{array}\right\}(-1)^{m} f(m) \\
& =\sum_{k, m}(-1)^{k+m} f(m)\left[\begin{array}{l}
n \\
k
\end{array}\right]\left\{\begin{array}{l}
k \\
m
\end{array}\right\} \\
& =\sum_{k, m}(-1)^{2 n-k-m} f(m)\left[\begin{array}{l}
n \\
k
\end{array}\right]\left\{\begin{array}{l}
k \\
m
\end{array}\right\} \\
& =\sum_{m}(-1)^{n-m} f(m) \sum_{k}(-1)^{n-k}\left[\begin{array}{l}
n \\
k
\end{array}\right]\left\{\begin{array}{c}
k \\
m
\end{array}\right\} \\
& =\sum_{m}(-1)^{n-m} f(m)[m=n] \\
& =f(n) .
\end{aligned}
$$

The other implication is proved similarly.

Next subsection

1 Stirling numbers

- Extension of Stirling numbers

2 Fibonacci Numbers

Stirling's triangles in tandem

Basic recurrences of Stirling numbers yield for every integers k, n a simple law:

$$
\left[\begin{array}{l}
n \\
k
\end{array}\right]=\left\{\begin{array}{l}
-k \\
-n
\end{array}\right\} \quad \text { with }\left[\begin{array}{l}
n \\
0
\end{array}\right]=\left\{\begin{array}{l}
n \\
0
\end{array}\right\}=[n=0] \text { and }\left[\begin{array}{l}
0 \\
k
\end{array}\right]=\left\{\begin{array}{l}
0 \\
k
\end{array}\right\}=[k=0]
$$

| n | $\left\{\begin{array}{c}n \\ -5\end{array}\right\}$ | $\left\{\begin{array}{c}n \\ -4\end{array}\right\}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |\(\quad\left\{\begin{array}{c}n

-3\end{array}\right\}\)

Stirling numbers cheat sheet

- $\left\{\begin{array}{l}n \\ 0\end{array}\right\}=\left[\begin{array}{l}n \\ 0\end{array}\right]=[n=0]$
- $\left\{\begin{array}{l}n \\ 1\end{array}\right\}=[n>0] \quad$ and $\quad\left[\begin{array}{l}n \\ 1\end{array}\right]=(n-1)![n \geqslant 2]$
- $\left\{\begin{array}{l}n \\ 2\end{array}\right\}=\left(2^{n-1}-1\right)[n \geqslant 2]$
and

$$
\left[\begin{array}{l}
n \\
2
\end{array}\right]=(n-1)!H_{n-1}[n>0]
$$

- $\left\{\begin{array}{c}n \\ n-1\end{array}\right\}=\left[\begin{array}{c}n \\ n-1\end{array}\right]=\binom{n}{2}=\frac{n(n-1)}{2}$
- $\left\{\begin{array}{l}n \\ n\end{array}\right\}=\left[\begin{array}{l}n \\ n\end{array}\right]=\binom{n}{n}=1$
- $\left\{\begin{array}{l}n \\ k\end{array}\right\}=\left[\begin{array}{l}n \\ k\end{array}\right]=\binom{n}{k}=0$, if $k>n$ or $k<0$
- $\left\{\begin{array}{l}n \\ k\end{array}\right\}=k\left\{\begin{array}{c}n-1 \\ k\end{array}\right\}+\left\{\begin{array}{c}n-1 \\ k-1\end{array}\right\} \quad$ and $\quad\left[\begin{array}{c}n \\ k\end{array}\right]=(n-1)\left[\begin{array}{c}n-1 \\ k\end{array}\right]+\left[\begin{array}{c}n-1 \\ k-1\end{array}\right]$
- $\sum_{k}\left\{\begin{array}{l}n \\ k\end{array}\right\} x^{k}=x^{n} \quad$ and $\quad \sum_{k}\left[\begin{array}{l}n \\ k\end{array}\right] x^{k}=x^{n}$
- $\sum_{k}\left[\begin{array}{l}n \\ k\end{array}\right]=n!$
- $\sum_{k}\left\{\begin{array}{l}n \\ k\end{array}\right\}(-1)^{n-k} x^{\bar{k}}=x^{n} \quad$ and $\quad \sum_{k}\left[\begin{array}{l}n \\ k\end{array}\right](-1)^{n-k} x^{k}=x^{n}$
- $\sum_{k}\left\{\begin{array}{l}n \\ k\end{array}\right\}\left[\begin{array}{l}k \\ m\end{array}\right](-1)^{k}=\sum_{k}\left[\begin{array}{l}n \\ k\end{array}\right\}\left\{\begin{array}{l}k \\ m\end{array}\right\}(-1)^{k}=[m=n]$

Next section

1 Stirling numbers

- Stirling numbers of the second kind - Stirling numbers of the first kind
- Basic Stirling number identities, for integer $n \geqslant 0$
- Extension of Stirling numbers

2 Fibonacci Numbers

Fibonacci numbers: Idea

Fibonacci's problem

A pair of baby rabbits is left on an island.

- A baby rabbit becomes adult in one month.
- A pair of adult rabbits produces a pair of baby rabbits each month.

How many pairs of rabbits will be on the island ofter n months? How many of them will be adult, and how many will be babies?

Leonardo Fibonacci
(1175-1235)

Fibonacci numbers: Idea

Fibonacci's problem

A pair of baby rabbits is left on an island.

- A baby rabbit becomes adult in one month.
- A pair of adult rabbits produces a pair of baby rabbits each month.

How many pairs of rabbits will be on the island ofter n months? How many of them will be adult, and how many will be babies?

Solution (see Exercise 6.6)

- On the first month, the two baby rabbits will have become adults.
- On the second month, the two adult rabbits will have produced a

Leonardo Fibonacci
(1175-1235) pair of baby rabbits.

- On the third month, the two adult rabbits will have produced another pair of baby rabbits, while the other two baby rabbits will have become adults.
- And so on, and so on ...

Fibonacci numbers: Idea

Fibonacci's problem

A pair of baby rabbits is left on an island.

- A baby rabbit becomes adult in one month.
- A pair of adult rabbits produces a pair of baby rabbits each month.

How many pairs of rabbits will be on the island ofter n months? How many of them will be adult, and how many will be babies?

Solution (see Exercise 6.6)

month	0	1	2	3	4	5	6	7	8	9	10
baby	1	0	1	1	2	3	5	8	13	21	34
adult	0	1	1	2	3	5	8	13	21	34	55
total	1	1	2	3	5	8	13	21	34	55	89

That is: at month n, there are f_{n+1} pair of rabbits, of which f_{n} pairs of adults, and f_{n-1} pairs of babies.
(Note: this seems to suggest $f_{-1}=1 \ldots$)

Leonardo
Fibonacci
(1175-1235)

$$
2
$$

Fibonacci Numbers: Definition

n	0	1	2	3	4	5	6	7	8	9	10
f_{n}	0	1	1	2	3	5	8	13	21	34	55

Formulae for computing:

```
\square}\mp@subsup{f}{n}{}=\mp@subsup{f}{n-1}{}+\mp@subsup{f}{n-2}{},\mathrm{ where form}=0\mathrm{ and }\mp@subsup{f}{1}{}=
=f}=\frac{\mp@subsup{\Phi}{}{n}-\mp@subsup{\hat{\phi}}{}{n}}{\sqrt{}{5}}\mathrm{ ("DDinat form|)
```


The golden ratio

The constant $\phi=\frac{1+\sqrt{5}}{2} \approx 1.61803$ is called golden ratio

If a line segment a is divided into two sub-segments b and $a-b$ so that $a: b=b:(a-b)$, then

Fibonacci Numbers: Definition

n	0	1	2	3	4	5	6	7	8	9	10
f_{n}	0	1	1	2	3	5	8	13	21	34	55

Formulae for computing:

■ $f_{n}=f_{n-1}+f_{n-2}$, where $f_{0}=0$ and $f_{1}=1$

- $f_{n}=\frac{\Phi^{n}-\hat{\phi}^{n}}{\sqrt{5}}$ ("Binet form")

The golden ratio

The constant $\Phi=\frac{1+\sqrt{5}}{2} \approx 1.61803$ is called golden ratio :
If a line segment a is divided into two sub-segments b and $a-b$ so that

$$
\begin{gathered}
a: b=b:(a-b), \text { then } \\
\frac{a}{b}=\Phi \text { and } \frac{b}{a}=-\hat{\Phi}
\end{gathered}
$$

Generating Function for Fibonacci Numbers

$$
F(Z)=f_{0}+f_{1} z+f_{2} z^{2}+f_{3} z^{3}+f_{4} z^{4}+\cdots
$$

Generating Function for Fibonacci Numbers

$$
F(Z)=f_{0}+f_{1} z+f_{2} z^{2}+f_{3} z^{3}+f_{4} z^{4}+\cdots
$$

$$
\left.\begin{array}{cccccc}
\left\langle f_{0},\right. & f_{1}, & f_{2}, & f_{3}, & f_{4}, & \ldots\rangle \\
\langle 0, & 1, & f_{1}+f_{0}, & f_{2}+f_{1}, & f_{3}+f_{2}, & \ldots\rangle
\end{array}\right\} \leftrightarrow F(z)
$$

Generating Function for Fibonacci Numbers

$$
F(Z)=f_{0}+f_{1} z+f_{2} z^{2}+f_{3} z^{3}+f_{4} z^{4}+\cdots
$$

$$
\left.\begin{array}{cccccc}
\left\langle f_{0},\right. & f_{1}, & f_{2}, & f_{3}, & f_{4}, & \ldots\rangle \\
\langle 0, & 1, & f_{1}+f_{0}, & f_{2}+f_{1}, & f_{3}+f_{2}, & \ldots\rangle
\end{array}\right\} \leftrightarrow F(z)
$$

Applying Addition to some known generating functions:

$$
\begin{array}{cccccccc}
\langle 0, & 1, & 0, & 0, & 0, & \cdots\rangle & \leftrightarrow & z \\
\langle 0, & f_{0}, & f_{1}, & f_{2}, & f_{3}, & \cdots\rangle & \leftrightarrow & z F(z) \\
+ & \langle 0, & 0, & f_{0}, & f_{1}, & f_{2}, & \cdots\rangle & \leftrightarrow \\
\hline\langle 0, & 1+f_{0}, & f_{1}+f_{0}, & f_{2}+f_{1}, & f_{3}+f_{2}, & \cdots\rangle & \leftrightarrow & z+z F(z)+z^{2} F(z)
\end{array}
$$

Generating Function for Fibonacci Numbers

$$
F(Z)=f_{0}+f_{1} z+f_{2} z^{2}+f_{3} z^{3}+f_{4} z^{4}+\cdots
$$

$$
\left.\begin{array}{cccccc}
\left\langle f_{0},\right. & f_{1}, & f_{2}, & f_{3}, & f_{4}, & \ldots\rangle \\
\langle 0, & 1, & f_{1}+f_{0}, & f_{2}+f_{1}, & f_{3}+f_{2}, & \ldots\rangle
\end{array}\right\} \leftrightarrow F(z)
$$

Applying Addition to some known generating functions:

$$
\begin{array}{cccccccc}
\langle 0, & 1, & 0, & 0, & 0, & \cdots\rangle & \leftrightarrow & z \\
\langle 0, & f_{0}, & f_{1}, & f_{2}, & f_{3}, & \cdots\rangle & \leftrightarrow & z F(z) \\
+ & \langle 0, & 0, & f_{0}, & f_{1}, & f_{2}, & \cdots\rangle & \leftrightarrow \\
\hline\langle 0, & 1+f_{0}, & f_{1}+f_{0}, & f_{2}+f_{1}, & f_{3}+f_{2}, & \cdots\rangle & \leftrightarrow & z+z F(z)+z^{2} F(z)
\end{array}
$$

Closed form of the generating function: $F(z)=\frac{z}{1-z-z^{2}}$

Evaluation of Coefficients: Factorization

- We know from the previous lecture that

$$
\frac{1}{1-\alpha z}=1+\alpha z+\alpha^{2} z^{2}+\alpha^{3} z^{3}+\cdots
$$

Evaluation of Coefficients: Factorization

- We know from the previous lecture that

$$
\frac{1}{1-\alpha z}=1+\alpha z+\alpha^{2} z^{2}+\alpha^{3} z^{3}+\cdots
$$

- Let's try to represent a generating function in the form:

$$
\begin{aligned}
G(z) & =\frac{A}{1-\alpha z}+\frac{B}{1-\beta z} \\
& =A \sum_{n \geqslant 0}(\alpha z)^{n}+B \sum_{n \geqslant 0}(\beta z)^{n} \\
& =\sum_{n \geqslant 0}\left(A \alpha^{n}+B \beta^{n}\right) z^{n}
\end{aligned}
$$

Evaluation of Coefficients: Factorization

- We know from the previous lecture that

$$
\frac{1}{1-\alpha z}=1+\alpha z+\alpha^{2} z^{2}+\alpha^{3} z^{3}+\cdots
$$

- Let's try to represent a generating function in the form:

$$
\begin{aligned}
G(z) & =\frac{A}{1-\alpha z}+\frac{B}{1-\beta z} \\
& =A \sum_{n \geqslant 0}(\alpha z)^{n}+B \sum_{n \geqslant 0}(\beta z)^{n} \\
& =\sum_{n \geqslant 0}\left(A \alpha^{n}+B \beta^{n}\right) z^{n}
\end{aligned}
$$

- The task is to find such constants A, B, α, β that

$$
G(z)=\frac{A}{1-\alpha z}+\frac{B}{1-\beta z}=\frac{A-A \beta z+B-B \alpha z}{(1-\alpha z)(1-\beta z)}
$$

Factorization for Fibonacci (2)

- For the generating function of Fibonacci Numbers we need to solve the equations:

$$
\left\{\begin{array}{ccc}
(1-\alpha z)(1-\beta z) & = & 1-z-z^{2} \\
(A+B)-(A \beta+B \alpha) z & = & z
\end{array}\right.
$$

Factorization for Fibonacci (2)

- For the generating function of Fibonacci Numbers we need to solve the equations:

$$
\left\{\begin{array}{ccc}
(1-\alpha z)(1-\beta z) & = & 1-z-z^{2} \\
(A+B)-(A \beta+B \alpha) z & = & z
\end{array}\right.
$$

To factorize $1-z-z^{2}$

- Solve the equation $w^{2}-w z-z^{2}=0$ (i.e. $w=1$ gives the special case $1-z-z^{2}=0$):

$$
w_{1,2}=\frac{z \pm \sqrt{x^{2}+4 x^{2}}}{2}=\frac{1 \pm \sqrt{5}}{2} z
$$

- Therefore

$$
w^{2}-w z-z^{2}=\left(w-\frac{1+\sqrt{5}}{2} z\right)\left(w-\frac{1-\sqrt{5}}{2} z\right)
$$

and

$$
1-z-z^{2}=\left(1-\frac{1+\sqrt{5}}{2} z\right)\left(1-\frac{1-\sqrt{5}}{2} z\right)
$$

Factorization for Fibonacci (2)

- For the generating function of Fibonacci Numbers we need to solve the equations:

$$
\left\{\begin{array}{ccc}
(1-\alpha z)(1-\beta z) & = & 1-z-z^{2} \\
(A+B)-(A \beta+B \alpha) z & = & z
\end{array}\right.
$$

A general trick

Let $p(x)=\sum_{k=0}^{n} a_{k} z^{k}$ be a polynomial over \mathbb{C} of degree n such that

$$
a_{0}=p(0) \neq 0 .
$$

- Then all the roots of p have a multiplicative inverse.
- Consider the "reverse" polynomial

$$
p_{R}(z)=\sum_{k=0}^{n} a_{k} z^{n-k}=z^{n} p\left(\frac{1}{z}\right)
$$

- Then α is a root of p if and only if $1 / \alpha$ is a root of p_{R}, because if $p(x)=a_{n}\left(z-\alpha_{1}\right) \cdots\left(z-\alpha_{n}\right)$, then $p_{R}(z)=a_{n}\left(1-\alpha_{1} z\right) \cdots\left(1-\alpha_{n} z\right)$.

Factorization for Fibonacci (3)

- For the generating function of Fibonacci Numbers we need to solve the equations:

$$
\left\{\begin{array}{ccc}
(1-\alpha z)(1-\beta z) & = & 1-z-z^{2} \\
(A+B)-(A \beta+B \alpha) z & = & z
\end{array}\right.
$$

Denote $\Phi=\frac{1+\sqrt{5}}{2}$ (golden ratio):

- "phi hat" is

$$
\widehat{\Phi}=1-\Phi=1-\frac{1+\sqrt{5}}{2}=\frac{2-1-\sqrt{5}}{2}=\frac{1-\sqrt{5}}{2}
$$

- and we have

Factorization for Fibonacci (3)

- For the generating function of Fibonacci Numbers we need to solve the equations:

$$
\left\{\begin{array}{ccc}
(1-\alpha z)(1-\beta z) & = & 1-z-z^{2} \\
(A+B)-(A \beta+B \alpha) z & = & z
\end{array}\right.
$$

Denote $\Phi=\frac{1+\sqrt{5}}{2}$ (golden ratio):

- "phi hat" is

$$
\widehat{\Phi}=1-\Phi=1-\frac{1+\sqrt{5}}{2}=\frac{2-1-\sqrt{5}}{2}=\frac{1-\sqrt{5}}{2}
$$

- and we have

$$
1-z-z^{2}=(1-\Phi z)(1-\widehat{\Phi} z)
$$

Factorization for Fibonacci (4)

- For the generating function of Fibonacci Numbers we need to solve the equations:

$$
\left\{\begin{array}{ccc}
(1-\Phi z)\left(1-\widehat{\Phi}_{z}\right) & = & 1-z-z^{2} \\
(A+B)-(A \widehat{\Phi}+B \Phi) z & = & z
\end{array}\right.
$$

To find A and B :

- Solve

$$
\left\{\begin{array}{c}
A+B=0 \\
A \widehat{\Phi}+B \Phi=-1
\end{array}\right.
$$

- This is $A=1 /(\Phi-\widehat{\Phi})$:

Factorization for Fibonacci (4)

- For the generating function of Fibonacci Numbers we need to solve the equations:

$$
\left\{\begin{array}{ccc}
(1-\Phi z)\left(1-\widehat{\Phi}_{z}\right) & = & 1-z-z^{2} \\
(A+B)-(A \widehat{\Phi}+B \Phi) z & = & z
\end{array}\right.
$$

To find A and B :

- Solve

$$
\left\{\begin{array}{c}
A+B=0 \\
A \widehat{\Phi}+B \Phi=-1
\end{array}\right.
$$

- This is $A=1 /(\Phi-\widehat{\Phi})$:

$$
\begin{aligned}
A & =1 /(\Phi-\widehat{\Phi}) \\
& =1 /\left(\frac{1+\sqrt{5}}{2}-\frac{1-\sqrt{5}}{2}\right) \\
& =\frac{2}{1+\sqrt{5}-1+\sqrt{5}}=\frac{1}{\sqrt{5}}
\end{aligned}
$$

Factorization for Fibonacci (5)

To conclude:

- We have $\alpha=\Phi=(1+\sqrt{5}) / 2, \beta=\widehat{\Phi}=(1-\sqrt{5}) / 2, A=1 / \sqrt{5}$ and $B=-1 / \sqrt{5}$
- Generating function:

$$
\begin{aligned}
F(z) & =\frac{A}{1-\alpha z}+\frac{B}{1-\beta z} \\
& =\frac{1}{\sqrt{5}}\left(\frac{1}{1-\Phi z}-\frac{1}{1-\widehat{\Phi} z}\right)
\end{aligned}
$$

- Closed formula for f_{n} :

$$
\begin{aligned}
f_{n} & =A \alpha^{n}+B \beta^{n} \\
& =\frac{1}{\sqrt{5}}\left(\Phi^{n}-\widehat{\Phi}^{n}\right)
\end{aligned}
$$

Some Fibonacci Identities

Cassini's Identity $f_{n+1} f_{n-1}-f_{n}^{2}=(-1)^{n}$ for all $n>0$

Some Fibonacci Identities

Cassini's Identity $f_{n+1} f_{n-1}-f_{n}^{2}=(-1)^{n}$ for all $n>0$

The Chessboard Paradox

Some Fibonacci Identities

Cassini's Identity $f_{n+1} f_{n-1}-f_{n}^{2}=(-1)^{n}$ for all $n>0$

Divisors f_{n} and f_{n+1} are relatively prime and f_{k} divides $f_{n k}$:

$$
\operatorname{gcd}\left(f_{n}, f_{m}\right)=f_{\operatorname{gcd}(n, m)}
$$

Some Fibonacci Identities

Cassini's Identity $f_{n+1} f_{n-1}-f_{n}^{2}=(-1)^{n}$ for all $n>0$

Divisors f_{n} and f_{n+1} are relatively prime and f_{k} divides $f_{n k}$:

$$
\operatorname{gcd}\left(f_{n}, f_{m}\right)=f_{\operatorname{gcd}(n, m)}
$$

Matrix Calculus If A is the 2×2 matrix $\left(\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right)$, then

$$
A^{n}=\left(\begin{array}{cc}
f_{n+1} & f_{n} \\
f_{n} & f_{n-1}
\end{array}\right), \quad \text { for } n>0
$$

Note that this yields Cassini's identity, because $\operatorname{det} A=-1$.

