Special Numbers ITT9132 Concrete Mathematics

Chapter Six

Stirling Numbers

Contents

1 Stirling numbers

- Stirling numbers of the second kind
- Stirling numbers of the first kind
- Basic Stirling number identities, for integer $n \ge 0$
- Extension of Stirling numbers

Next section

1 Stirling numbers

- Stirling numbers of the second kind
- Stirling numbers of the first kind
- Basic Stirling number identities, for integer $n \ge 0$
- Extension of Stirling numbers

Next subsection

1 Stirling numbers

Stirling numbers of the second kind

- Stirling numbers of the first kind
- Basic Stirling number identities, for integer n ≥ 0
- Extension of Stirling numbers

Definition

The Stirling number of the second kind $\binom{n}{k}$, read "*n* subset *k*", is the number of ways to partition a set with *n* elements into *k* non-empty subsets.

Definition

The Stirling number of the second kind $\binom{n}{k}$, read "*n* subset *k*", is the number of ways to partition a set with *n* elements into *k* non-empty subsets.

Example: splitting a four-element set into two nonempty parts

 $\begin{array}{cccc} \{1,2,3\} \bigcup \{4\} & \{1,2,4\} \bigcup \{3\} & \{1,3,4\} \bigcup \{2\} & \{2,3,4\} \cup \{1\} \\ \{1,2\} \bigcup \{3,4\} & \{1,3\} \bigcup \{2,4\} & \{1,4\} \bigcup \{2,3\} \end{array} \\ \\ \mbox{Hence } \left\{ \begin{array}{c} 4\\ 2 \end{array} \right\} = 7 \end{array}$

Definition

The Stirling number of the second kind $\binom{n}{k}$, read "*n* subset *k*", is the number of ways to partition a set with *n* elements into *k* non-empty subsets.

Some special cases: (1)

- k = 0 We can partition a set into no nonempty parts if and only if the set is empty. That is: ${n \choose 0} = [n = 0]$.
- k = 1 We can partition a set into one nonempty part if and only if the set is nonempty. That is: ${n \choose 1} = [n > 0]$.

Definition

The Stirling number of the second kind $\binom{n}{k}$, read "*n* subset *k*", is the number of ways to partition a set with *n* elements into *k* non-empty subsets.

Some special cases: (2)

- k = n If n > 0, the only way to partition a set with *n* elements into *n* nonempty parts, is to put every element by itself. That is: $\binom{n}{n} = 1$. (This also matches the case n = 0.)
- k = n-1 Choosing a partition of a set with *n* elements into n-1 nonempty subsets, is the same as choosing the two elements that go together. That is: $\binom{n}{n-1} = \binom{n}{2}$.

Definition

The Stirling number of the second kind $\binom{n}{k}$, read "*n* subset *k*", is the number of ways to partition a set with *n* elements into *k* non-empty subsets.

Some special cases (3)

h

k = 2 Let X be a set with two or more elements.

- Each partition of X into two subsets is identified by two ordered pairs $(A, X \setminus A)$ for $A \subseteq X$.
- There are 2ⁿ such pairs, but (Ø, X) and (X, Ø) do not satisfy the nonemptiness condition.

Then
$$\binom{n}{2} = \frac{2^n - 2}{2} = 2^{n-1} - 1$$
 for $n \ge 2$.
a general, $\binom{n}{2} = (2^{n-1} - 1) [n \ge 2]$

Definition

The Stirling number of the second kind $\binom{n}{k}$, read "*n* subset *k*", is the number of ways to partition a set with *n* elements into *k* non-empty subsets.

In the general case:

For $n \ge 1$, what are the options where to put the *n*th element?

1 Together with some other elements. To do so, we can first subdivide the other n-1 remaining objects into k nonempty groups, then decide which group to add the *n*th element to.

2 By itself.

Then we are only left to decide how to make the remaining k-1 nonempty groups out of the remaining n-1 objects.

These two cases can be joined as the recurrent equation

$$\binom{n}{k} = k \binom{n-1}{k} + \binom{n-1}{k-1}, \quad \text{for } n > 0,$$

that yields the following triangle:

Stirling's triangle for subsets

n	{ <i>n</i> 0}	$\binom{n}{1}$	{ <i>n</i> 2}	{ <i>n</i> 3 }	$\binom{n}{4}$	<pre>{ n 5 }</pre>	{ <i>n</i> 6}	$\binom{n}{7}$	{ <i>n</i> 8	{ <i>n</i> 9}
0	1									
1	0	1								
2	0	1	1							
3	0	1	3	1						
4	0	1	7	6	1					
5	0	1	15	25	10	1				
6	0	1	31	90	65	15	1			
7	0	1	63	301	350	140	21	1		
8	0	1	127	966	1701	1050	266	28	1	
9	0	1	255	3025	7770	6951	2646	462	36	1

Next subsection

1 Stirling numbers

Stirling numbers of the second kind

Stirling numbers of the first kind

- Basic Stirling number identities, for integer n ≥ 0
- Extension of Stirling numbers

Definition

The Stirling number of the first kind $\begin{bmatrix} n \\ k \end{bmatrix}$, read "*n* cycle *k*", is the number of ways to partition of a set with *n* elements into *k* non-empty circles.

A circle is a cyclic arrangement

- The circle can be written as [A, B, C, D];
- It means that [A, B, C, D] = [B, C, D, A] = [C, D, A, B] = [D, A, B, C];
- It is not same as [A, B, D, C] or [D, C, B, A].

Definition

The Stirling number of the first kind $\begin{bmatrix} n \\ k \end{bmatrix}$, read "*n* cycle *k*", is the number of ways to partition of a set with *n* elements into *k* non-empty circles.

Example: splitting a four-element set into two circles

[1,2,3] [4]	[1,2,4] [3]	[1,3,4] [2]	[2,3,4] $[1]$
[1,3,2] [4]	[1,4,2] [3]	[1,4,3] [2]	[2,4,3] [1]
[1,2] [3,4]	[1,3] [2,4]	[1,4] [2,3]	

Hence $\begin{bmatrix} 4 \\ 2 \end{bmatrix} = 11$

Definition

The Stirling number of the first kind $\begin{bmatrix} n \\ k \end{bmatrix}$, read "*n* cycle *k*", is the number of ways to partition of a set with *n* elements into *k* non-empty circles.

Some special cases (1):

k = 1 To arrange one circle of *n* objects: choose the order, and forget which element was the first. That is: $\begin{bmatrix} n \\ 1 \end{bmatrix} = \frac{n!}{n} = (n-1)!$.

Definition

The Stirling number of the first kind $\begin{bmatrix} n \\ k \end{bmatrix}$, read "*n* cycle *k*", is the number of ways to partition of a set with *n* elements into *k* non-empty circles.

Some special cases (2):

- k = 0 The only way to arrange objects into no nonempty cycles, is if there are no objects. Then: $\begin{bmatrix} n \\ 0 \end{bmatrix} = [n = 0]$.
- k = n Every cycle is a singleton and there is just one partition into circles. That is, $\begin{bmatrix} n \\ n \end{bmatrix} = 1$ for any n:

[1] [2] [3] [4]

k = n-1 The partition into circles consists of n-2 singletons and one pair. So $\begin{bmatrix} n\\ n-1 \end{bmatrix} = \begin{pmatrix} n\\ 2 \end{bmatrix}$, the number of ways to choose a pair:

 [1,2]
 [3]
 [4]
 [1,3]
 [2]
 [4]
 [1,4]
 [2]
 [3]

 [2,3]
 [1]
 [4]
 [2,4]
 [1]
 [3]
 [3,4]
 [1]
 [2]

Definition

The Stirling number of the first kind $\begin{bmatrix} n \\ k \end{bmatrix}$, read "*n* cycle *k*", is the number of ways to partition of a set with *n* elements into *k* non-empty circles.

In the general case:

For $n \ge 1$, what are the options where to put the *n*th element?

1 Together with some other elements. To do so, we can first subdivide the other n-1 remaining objects into k nonempty cycles, then decide which element to put the *n*th one *after*.

2 By itself.

Then we are only left to decide how to make the remaining k-1 nonempty cycles out of the remaining n-1 objects.

These two cases can be joined as the recurrent equation

$$\begin{bmatrix} n \\ k \end{bmatrix} = (n-1) \begin{bmatrix} n-1 \\ k \end{bmatrix} + \begin{bmatrix} n-1 \\ k-1 \end{bmatrix}$$
, for $n > 0$,

that yields the following triangle:

Stirling's triangle for circles

n	[<i>n</i>]	[<i>n</i>]	[ⁿ]	[ⁿ]	$\begin{bmatrix} n\\4 \end{bmatrix}$	[<i>n</i>] 5]	[<i>n</i>]	$\begin{bmatrix} n \\ 7 \end{bmatrix}$	[<i>n</i>] 8]	[ⁿ]
0	1	1								
2	0	1	1							
3	0	2	3	1						
4	0	6	11	6	1					
5	0	24	50	35	10	1				
6	0	120	274	225	85	15	1			
7	0	720	1764	1624	735	175	21	1		
8	0	5040	13068	13132	6769	1960	322	28	1	
9	0	40320	109584	118124	67284	22449	4536	546	36	1

Warmup: A closed formula for $\binom{n}{2}$

Theorem

$$\begin{bmatrix}n\\2\end{bmatrix} = (n-1)!H_{n-1}[n \ge 2]$$

Warmup: A closed formula for $\binom{n}{2}$

Theorem

$$\begin{bmatrix}n\\2\end{bmatrix} = (n-1)!H_{n-1}[n \ge 2]$$

The formula is true for n = 2, so let $n \ge 3$.

- For k = 1, ..., n-1 there are $\binom{n}{k}$ ways of splitting *n* objects into a group of *k* and one of n-k. Each such way appears once for *k*, and once for n-k.
- To each splitting correspond $\begin{bmatrix} k \\ 1 \end{bmatrix} \begin{bmatrix} n-k \\ 1 \end{bmatrix} = (k-1)!(n-k-1)!$ pairs of cycles.
- Then:

$$\begin{bmatrix} n \\ 2 \end{bmatrix} = \frac{1}{2} \sum_{k=1}^{n-1} {n \choose k} (k-1)! (n-k-1)!$$
$$= \frac{n!}{2} \sum_{k=1}^{n-1} \frac{1}{k(n-k)}$$
$$= \frac{n!}{2} \sum_{k=1}^{n-1} \frac{1}{n} \left(\frac{1}{k} + \frac{1}{n-k}\right)$$
$$= (n-1)! H_{n-1}$$

Next subsection

1 Stirling numbers

- Stirling numbers of the second kind
- Stirling numbers of the first kind
- Basic Stirling number identities, for integer $n \ge 0$
- Extension of Stirling numbers

Basic Stirling number identities, for integer $n \ge 0$

Some identities and inequalities we have already observed:

Basic Stirling number identities (2)

For any integer $n \ge 0$, $\sum_{k=0}^{n} {n \brack k} = n!$

Basic Stirling number identities (2)

For any integer $n \ge 0$, $\sum_{k=0}^{n} {n \brack k} = n!$

Thus the permutation $\pi=$ 384729156 of $\{1,2,3,4,5,6,7,8,9\}$ is equivalent to the circle arrangement

[1,3,4,7] [2,8,5] [6,9]

Basic Stirling number identities (2)

For any integer $n \ge 0$, $\sum_{k=0}^{n} {n \brack k} = n!$

Thus the permutation $\pi =$ 384729156 of {1,2,3,4,5,6,7,8,9} is equivalent to the circle arrangement

[1,3,4,7] [2,8,5] [6,9]

Basic Stirling number identities (3)

Observation

$$x^{0} = x^{0}$$

$$x^{1} = x^{1}$$

$$x^{2} = x^{1} + x^{2}$$

$$x^{3} = x^{1} + 3x^{2} + x^{3}$$

$$x^{4} = x^{1} + 7x^{2} + 6x^{3} + x^{4}$$

n	$\left\{ \begin{matrix} n \\ 0 \end{matrix} \right\}$	$\binom{n}{1}$	$\binom{n}{2}$	$\binom{n}{3}$	$\binom{n}{4}$	$\binom{n}{5}$
0	1					
1	0	1				
2	0	1	1			
23	0	1	3	1		
4	0	1	7	6	1	
5	0	1	15	25	10	1

Does the following general formula hold?

$$x^n = \sum_k \binom{n}{k} x^{\underline{k}}$$

Basic Stirling number identities (3a)

Inductive proof of $x^n = \sum_k {n \\ k} x^{\underline{k}}$

- Considering that $x^{\underline{k+1}} = x^{\underline{k}}(x-k)$ we obtain that $x \cdot x^{\underline{k}} = x^{\underline{k+1}} + kx^{\underline{k}}$
- Hence

$$\begin{aligned} x \cdot x^{n-1} &= x \sum_{k} \left\{ \binom{n-1}{k} x^{\underline{k}} = \sum_{k} \left\{ \binom{n-1}{k} x^{\underline{k+1}} + \sum_{k} \left\{ \binom{n-1}{k} x^{\underline{k}} \right\} \\ &= \sum_{k} \left\{ \binom{n-1}{k-1} x^{\underline{k}} + \sum_{k} \left\{ \binom{n-1}{k} x^{\underline{k}} \right\} \\ &= \sum_{k} \left(\left\{ \binom{n-1}{k-1} + k \left\{ \binom{n-1}{k} \right\} \right) x^{\underline{k}} = \sum_{k} \left\{ \binom{n}{k} x^{\underline{k}} \right\} \end{aligned}$$

Q.E.D.

Basic Stirling number identities (4)

Observation

$$x^{\overline{0}} = x^{0}$$

$$x^{\overline{1}} = x^{1}$$

$$x^{\overline{2}} = x^{1} + x^{2}$$

$$x^{\overline{3}} = 2x^{1} + 3x^{2} + x^{3}$$

$$x^{\overline{4}} = 6x^{1} + 11x^{2} + 6x^{3} + x^{4}$$
.....

Generating function for Stirling cycle numbers:

$$x^{\overline{n}} = \sum_{k} \begin{bmatrix} n \\ k \end{bmatrix} x^{k}, \quad \text{for } n \ge 0$$

Basic Stirling number identities (4a)

Generating function of the Stirling numbers of the first kind

$$\sum_{k} \begin{bmatrix} n \\ k \end{bmatrix} z^{k} = z^{\overline{n}} \ \forall n \ge 0$$

The formula is clearly true for n = 0 and n = 1. If it is true for n-1, then:

$$z^{\overline{n}} = z^{\overline{n-1}}(z+n-1) = \left(\sum_{k} {\binom{n-1}{k}} z^{k}\right)(z+n-1) = \sum_{k} {\binom{n-1}{k}} z^{k+1} + (n-1)\sum_{k} {\binom{n-1}{k}} z^{k} = \sum_{k} {\binom{n-1}{k-1}} z^{k} + (n-1)\sum_{k} {\binom{n-1}{k}} z^{k} = \sum_{k} {\binom{(n-1)\binom{n-1}{k}} + {\binom{n-1}{k-1}} z^{k},$$

whence the thesis.

Basic Stirling number identities (5)

Reversing the formulas for falling and rising factorials

For every $n \ge 0$,

$$x^{n} = \sum_{k} {n \choose k} (-1)^{n-k} x^{\overline{k}} \text{ and } x^{\underline{n}} = \sum_{k} {n \choose k} (-1)^{n-k} x^{k}$$

Basic Stirling number identities (5)

Reversing the formulas for falling and rising factorials

For every $n \ge 0$,

$$x^{n} = \sum_{k} {n \choose k} (-1)^{n-k} x^{\overline{k}} \text{ and } x^{\underline{n}} = \sum_{k} {n \choose k} (-1)^{n-k} x^{k}$$

Proof

As $x^{\underline{k}} = (-1)^k (-x)^{\overline{k}}$, we can rewrite the known equalities as:

$$x^{n} = \sum_{k} \begin{Bmatrix} n \\ k \end{Bmatrix} (-1)^{k} (-x)^{\overline{k}} \text{ and } (-1)^{n} (-x)^{\underline{n}} = \sum_{k} \begin{Bmatrix} n \\ k \end{Bmatrix} x^{k}$$

But clearly $x^n = (-1)^n (-x)^n$, so by replacing x with -x we get the thesis.

Basic Stirling number identities (5)

Reversing the formulas for falling and rising factorials

For every $n \ge 0$,

$$x^{n} = \sum_{k} {n \choose k} (-1)^{n-k} x^{\overline{k}} \text{ and } x^{\underline{n}} = \sum_{k} {n \choose k} (-1)^{n-k} x^{k}$$

Corollary

$$\sum_{k} {n \\ k} {k \\ m} (-1)^{n-k} = \sum_{k} {n \\ k} {k \\ m} (-1)^{n-k} = [m=n]$$

Indeed, the following must hold for every x:

$$x^{n} = \sum_{k} {n \\ k} (-1)^{n-k} \left(\sum_{m} {k \\ m} \right] x^{m} \right) = \sum_{m} \left(\sum_{k} {n \\ k} {k \\ m} \right] (-1)^{n-k} \right) x^{m}$$

which is only possible if m = n. The other equality is proved similarly.

Stirling's inversion formula (cf. Exercise 6.12)

Statement

2

Let f and g be two functions defined on $\mathbb N$ with values in $\mathbb C$. The following are equivalent:

1 For every
$$n \ge 0$$
,

$$g(n) = \sum_{k} {n \\ k} (-1)^{k} f(k).$$

For every $n \ge 0$,

$$f(n) = \sum_{k} \begin{bmatrix} n \\ k \end{bmatrix} (-1)^{k} g(k).$$

Proof

If
$$g(n) = \sum_k {n \choose k} (-1)^k f(k)$$
 for every $n \ge 0$, then also for $n \ge 0$

$$\sum_{k} {n \brack k} (-1)^{k} g(k) = \sum_{k} {n \brack k} (-1)^{k} \sum_{m} {k \atop m} (-1)^{m} f(m)$$

$$= \sum_{k,m} (-1)^{k+m} f(m) {n \brack k} {k \atop m}$$

$$= \sum_{k,m} (-1)^{2n-k-m} f(m) {n \brack k} {k \atop m}$$

$$= \sum_{m} (-1)^{n-m} f(m) \sum_{k} (-1)^{n-k} {n \atop k} {k \atop m}$$

$$= \sum_{m} (-1)^{n-m} f(m) [m=n]$$

$$= f(n).$$

The other implication is proved similarly.

Next subsection

1 Stirling numbers

- Stirling numbers of the second kind
- Stirling numbers of the first kind
- Basic Stirling number identities, for integer $n \ge 0$
- Extension of Stirling numbers

Stirling's triangles in tandem

Basic recurrences of Stirling numbers yield for every integers k, n a simple law:

$$\begin{bmatrix} n \\ k \end{bmatrix} = \begin{cases} -k \\ -n \end{cases} \quad \text{with } \begin{bmatrix} n \\ 0 \end{bmatrix} = \begin{cases} n \\ 0 \end{cases} = \begin{bmatrix} n = 0 \end{bmatrix} \text{ and } \begin{bmatrix} 0 \\ k \end{bmatrix} = \begin{cases} 0 \\ k \end{cases} = \begin{bmatrix} k = 0 \end{bmatrix}$$

n	$\binom{n}{-5}$	$\binom{n}{-4}$	$\binom{n}{-3}$	$\binom{n}{-2}$	$\binom{n}{-1}$	$\binom{n}{0}$	$\binom{n}{1}$	$\binom{n}{2}$	{ <i>n</i> 3 }	{ <i>n</i> 4}	{ <i>n</i> 5}
-5	1										
-4	10	1									
-3	35	6	1								
-2	50	11	3	1							
-1	24	6	2	1	1						
0	0	0	0	0	0	1					
1	0	0	0	0	0	0	1				
2	0	0	0	0	0	0	1	1			
3	0	0	0	0	0	0	1	3	1		
4	0	0	0	0	0	0	1	7	6	1	
5	0	0	0	0	0	0	1	15	25	10	1

Stirling numbers cheat sheet

Next section

1 Stirling numbers

- Stirling numbers of the second kind
- Stirling numbers of the first kind
- Basic Stirling number identities, for integer $n \ge 0$
- Extension of Stirling numbers

2 Fibonacci Numbers

Fibonacci numbers: Idea

Fibonacci's problem

A pair of baby rabbits is left on an island.

- A baby rabbit becomes adult in one month.
- A pair of adult rabbits produces a pair of baby rabbits each month.

How many pairs of rabbits will be on the island ofter n months? How many of them will be adult, and how many will be babies?

Leonardo Fibonacci (1175–1235)

Fibonacci numbers: Idea

Fibonacci's problem

A pair of baby rabbits is left on an island.

- A baby rabbit becomes adult in one month.
- A pair of adult rabbits produces a pair of baby rabbits each month.

How many pairs of rabbits will be on the island ofter n months? How many of them will be adult, and how many will be babies?

Solution (see Exercise 6.6)

- On the first month, the two baby rabbits will have become adults.
- On the second month, the two adult rabbits will have produced a pair of baby rabbits.
- On the third month, the two adult rabbits will have produced another pair of baby rabbits, while the other two baby rabbits will have become adults.

Leonardo Fibonacci (1175–1235)

Fibonacci numbers: Idea

Fibonacci's problem

A pair of baby rabbits is left on an island.

- A baby rabbit becomes adult in one month.
- A pair of adult rabbits produces a pair of baby rabbits each month.

How many pairs of rabbits will be on the island ofter n months? How many of them will be adult, and how many will be babies?

Solution (see Exercise 6.6)

month	0	1	2	3	4	5	6	7	8	9	10
baby	1	0	1	1	2	3	5	8	13	21	34
adult	0	1	1	2	3	5	8	13	21	34	55
total	1	1	2	3	5	8	13	21	34	55	89

Leonardo Fibonacci (1175–1235)

> **TAL** TECH

That is: at month n, there are f_{n+1} pair of rabbits, of which f_n pairs of adults, and f_{n-1} pairs of babies. (Note: this seems to suggest $f_{-1} = 1 \dots$)

Fibonacci Numbers: Definition

Formulae for computing:

•
$$f_n = f_{n-1} + f_{n-2}$$
, where $f_0 = 0$ and $f_1 = 1$
• $f_n = \frac{\Phi^n - \hat{\Phi}^n}{2}$ ("Binet form")

The golden ratio

The constant
$$\Phi=rac{1+\sqrt{5}}{2}pprox 1.61803$$
 is called golden ratio :

If a line segment a is divided into two sub-segments b and a-b so that a:b=b:(a-b), then

$$\frac{a}{b} = \Phi$$
 and $\frac{b}{a} = -\hat{\Phi}$

Fibonacci Numbers: Definition

Formulae for computing:

•
$$f_n = f_{n-1} + f_{n-2}$$
, where $f_0 = 0$ and $f_1 = 1$

$$f_n = \frac{\Phi'' - \Phi''}{\sqrt{5}}$$
("Binet form")

The golden ratio

The constant
$$\Phi=rac{1+\sqrt{5}}{2}pprox 1.61803$$
 is called golden ratio :

If a line segment *a* is divided into two sub-segments *b* and a-b so that a:b=b:(a-b), then

$$\frac{a}{b} = \Phi$$
 and $\frac{b}{a} = -\hat{\Phi}$

$$F(Z) = f_0 + f_1 z + f_2 z^2 + f_3 z^3 + f_4 z^4 + \cdots$$

$$F(Z) = f_0 + f_1 z + f_2 z^2 + f_3 z^3 + f_4 z^4 + \cdots$$

$$\langle f_0, \quad f_1, \quad f_2, \quad f_3, \quad f_4, \quad \cdots \rangle$$

$$\langle 0, \quad 1, \quad f_1 + f_0, \quad f_2 + f_1, \quad f_3 + f_2, \quad \cdots \rangle$$

$$F(Z) = f_0 + f_1 z + f_2 z^2 + f_3 z^3 + f_4 z^4 + \cdots$$

$$\begin{array}{cccc} \langle f_0, & f_1, & f_2, & f_3, & f_4, & \dots \rangle \\ \\ \langle 0, & 1, & f_1 + f_0, & f_2 + f_1, & f_3 + f_2, & \dots \rangle \end{array} \} \leftrightarrow F(z)$$

Applying Addition to some known generating functions:

$$F(Z) = f_0 + f_1 z + f_2 z^2 + f_3 z^3 + f_4 z^4 + \cdots$$

$$\langle f_0, f_1, f_2, f_3, f_4, \ldots \rangle$$

 $\langle 0, 1, f_1 + f_0, f_2 + f_1, f_3 + f_2, \ldots \rangle$ \Leftrightarrow $F(z)$

Applying Addition to some known generating functions:

Closed form of the generating function: $F(z) = \frac{z}{1-z-z^2}$

Evaluation of Coefficients: Factorization

We know from the previous lecture that

$$\frac{1}{1-\alpha z} = 1 + \alpha z + \alpha^2 z^2 + \alpha^3 z^3 + \cdots$$

Let's try to represent a generating function in the form

$$G(z) = \frac{A}{1 - \alpha z} + \frac{B}{1 - \beta z}$$
$$= A \sum_{n \ge 0} (\alpha z)^n + B \sum_{n \ge 0} (\beta z)^n$$
$$= \sum_{n \ge 0} (A\alpha^n + B\beta^n) z^n$$

The task is to find such constants A, B, α, β that

$$G(z) = \frac{A}{1-\alpha z} + \frac{B}{1-\beta z} = \frac{A-A\beta z + B - B\alpha z}{(1-\alpha z)(1-\beta z)}$$

Evaluation of Coefficients: Factorization

We know from the previous lecture that

$$\frac{1}{1-\alpha z} = 1 + \alpha z + \alpha^2 z^2 + \alpha^3 z^3 + \cdots$$

Let's try to represent a generating function in the form:

$$G(z) = \frac{A}{1 - \alpha z} + \frac{B}{1 - \beta z}$$
$$= A \sum_{n \ge 0} (\alpha z)^n + B \sum_{n \ge 0} (\beta z)^n$$
$$= \sum_{n \ge 0} (A\alpha^n + B\beta^n) z^n$$

The task is to find such constants A, B, α, β that

$$G(z) = \frac{A}{1-\alpha z} + \frac{B}{1-\beta z} = \frac{A-A\beta z + B-B\alpha z}{(1-\alpha z)(1-\beta z)}$$

Evaluation of Coefficients: Factorization

We know from the previous lecture that

$$\frac{1}{1-\alpha z} = 1 + \alpha z + \alpha^2 z^2 + \alpha^3 z^3 + \cdots$$

Let's try to represent a generating function in the form:

$$G(z) = \frac{A}{1 - \alpha z} + \frac{B}{1 - \beta z}$$
$$= A \sum_{n \ge 0} (\alpha z)^n + B \sum_{n \ge 0} (\beta z)^n$$
$$= \sum_{n \ge 0} (A\alpha^n + B\beta^n) z^n$$

• The task is to find such constants A, B, α, β that

$$G(z) = \frac{A}{1-\alpha z} + \frac{B}{1-\beta z} = \frac{A-A\beta z + B-B\alpha z}{(1-\alpha z)(1-\beta z)}$$

Factorization for Fibonacci (2)

 For the generating function of Fibonacci Numbers we need to solve the equations:

$$\begin{cases} (1-\alpha z)(1-\beta z) &= 1-z-z^2\\ (A+B)-(A\beta+B\alpha)z &= z \end{cases}$$

Factorization for Fibonacci (2)

 For the generating function of Fibonacci Numbers we need to solve the equations:

$$\begin{cases} (1-\alpha z)(1-\beta z) &= 1-z-z^2\\ (A+B)-(A\beta+B\alpha)z &= z \end{cases}$$

To factorize $1 - z - z^2$

Solve the equation $w^2 - wz - z^2 = 0$ (i.e. w = 1 gives the special case $1 - z - z^2 = 0$):

$$w_{1,2} = \frac{z \pm \sqrt{x^2 + 4x^2}}{2} = \frac{1 \pm \sqrt{5}}{2}z$$

Therefore

$$w^2 - wz - z^2 = \left(w - \frac{1 + \sqrt{5}}{2}z\right)\left(w - \frac{1 - \sqrt{5}}{2}z\right)$$

and

$$1-z-z^2 = \left(1-\frac{1+\sqrt{5}}{2}z\right)\left(1-\frac{1-\sqrt{5}}{2}z\right)$$

Factorization for Fibonacci (2)

 For the generating function of Fibonacci Numbers we need to solve the equations:

$$\begin{cases} (1-\alpha z)(1-\beta z) &= 1-z-z^2\\ (A+B)-(A\beta+B\alpha)z &= z \end{cases}$$

A general trick

Let $p(x) = \sum_{k=0}^{n} a_k z^k$ be a polynomial over \mathbb{C} of degree n such that $a_0 = p(0) \neq 0$.

- Then all the roots of p have a multiplicative inverse.
- Consider the "reverse" polynomial

$$p_R(z) = \sum_{k=0}^n a_k z^{n-k} = z^n p\left(\frac{1}{z}\right)$$

Then α is a root of p if and only if $1/\alpha$ is a root of p_R , because if $p(x) = a_n(z - \alpha_1) \cdots (z - \alpha_n)$, then $p_R(z) = a_n(1 - \alpha_1 z) \cdots (1 - \alpha_n z)$.

Factorization for Fibonacci (3)

For the generating function of Fibonacci Numbers we need to solve the equations: $(-(1 - \alpha z)(1 - \beta z)) = -(1 - z)^2$

$$\begin{cases} (1-\alpha z)(1-\beta z) &= 1-z-z\\ (A+B)-(A\beta+B\alpha)z &= z \end{cases}$$

Denote $\Phi = \frac{1+\sqrt{5}}{2}$ (golden ratio):

• "phi hat" is

$$\widehat{\Phi} = 1 - \Phi = 1 - \frac{1 + \sqrt{5}}{2} = \frac{2 - 1 - \sqrt{5}}{2} = \frac{1 - \sqrt{5}}{2}$$
• and we have

$$1 - z - z^2 = (1 - \Phi z) \left(1 - \widehat{\Phi} z\right)$$

Factorization for Fibonacci (3)

For the generating function of Fibonacci Numbers we need to solve the equations: $(-(1 - \alpha z)(1 - \beta z)) = -(1 - z)^2$

$$\begin{cases} (1-\alpha z)(1-\beta z) &= 1-z-z\\ (A+B)-(A\beta+B\alpha)z &= z \end{cases}$$

Denote $\Phi = \frac{1+\sqrt{5}}{2}$ (golden ratio):

"phi hat" is
$$\widehat{\Phi} = 1 - \Phi = 1 - \frac{1 + \sqrt{5}}{2} = \frac{2 - 1 - \sqrt{5}}{2} = \frac{1 - \sqrt{5}}{2}$$
and we have
$$1 - z - z^2 = (1 - \Phi z) \left(1 - \widehat{\Phi} z\right)$$

Factorization for Fibonacci (4)

 For the generating function of Fibonacci Numbers we need to solve the equations:

$$\begin{cases} (1-\Phi z)(1-\widehat{\Phi} z) &= 1-z-z^2\\ (A+B)-(A\widehat{\Phi}+B\Phi)z &= z \end{cases}$$

To find A and B:

Solve

$$\begin{cases} A+B=0\\ A\widehat{\Phi}+B\Phi=-1 \end{cases}$$

• This is $A = 1/(\Phi - \widehat{\Phi})$:

$$A = 1/(\Phi - \widehat{\Phi})$$

= $1/\left(\frac{1+\sqrt{5}}{2} - \frac{1-\sqrt{5}}{2}\right)$
= $\frac{2}{1+\sqrt{5}-1+\sqrt{5}} = \frac{1}{\sqrt{5}}$

Factorization for Fibonacci (4)

 For the generating function of Fibonacci Numbers we need to solve the equations:

$$\begin{cases} (1-\Phi z)(1-\widehat{\Phi}z) &= 1-z-z^2\\ (A+B)-(A\widehat{\Phi}+B\Phi)z &= z \end{cases}$$

To find A and B:

Solve

$$\begin{cases} A+B=0\\ A\widehat{\Phi}+B\Phi=-1 \end{cases}$$

• This is
$$A = 1/(\Phi - \widehat{\Phi})$$
.

$$A = 1/(\Phi - \widehat{\Phi})$$

= $1/\left(\frac{1+\sqrt{5}}{2} - \frac{1-\sqrt{5}}{2}\right)$
= $\frac{2}{1+\sqrt{5}-1+\sqrt{5}} = \frac{1}{\sqrt{5}}$

Factorization for Fibonacci (5)

To conclude:

- We have $\alpha = \Phi = (1 + \sqrt{5})/2$, $\beta = \widehat{\Phi} = (1 \sqrt{5})/2$, $A = 1/\sqrt{5}$ and $B = -1/\sqrt{5}$
- Generating function:

$$F(z) = \frac{A}{1 - \alpha z} + \frac{B}{1 - \beta z}$$
$$= \frac{1}{\sqrt{5}} \left(\frac{1}{1 - \Phi z} - \frac{1}{1 - \widehat{\Phi} z} \right)$$

Closed formula for f_n:

$$f_n = A \alpha^n + B \beta^n$$

 $= \frac{1}{\sqrt{5}} \left(\Phi^n - \widehat{\Phi}^n \right)$

Some Fibonacci Identities

Cassini's Identity $f_{n+1}f_{n-1} - f_n^2 = (-1)^n$ for all n > 0

Some Fibonacci Identities

Cassini's Identity $f_{n+1}f_{n-1} - f_n^2 = (-1)^n$ for all n > 0

The Chessboard Paradox

Some Fibonacci Identities

Cassini's Identity $f_{n+1}f_{n-1} - f_n^2 = (-1)^n$ for all n > 0

Divisors f_n and f_{n+1} are relatively prime and f_k divides f_{nk} :

$$gcd(f_n, f_m) = f_{gcd(n,m)}$$

Cassini's Identity $f_{n+1}f_{n-1} - f_n^2 = (-1)^n$ for all n > 0

Divisors f_n and f_{n+1} are relatively prime and f_k divides f_{nk} :

$$\gcd(f_n, f_m) = f_{\gcd(n,m)}$$
Matrix Calculus If A is the 2×2 matrix $\begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$, then
$$A^n = \begin{pmatrix} f_{n+1} & f_n \\ f_n & f_{n-1} \end{pmatrix}, \quad \text{for } n > 0.$$

Note that this yields Cassini's identity, because $\det A = -1$.

