Special Numbers
 ITT9132 Concrete Mathematics

Chapter Six
Fibonacci Numbers
Harmonic Numbers
Bernoulli numbers

TAL
TECH

Contents

1 Fibonacci Numbers

2 Harmonic numbers

- Harmonic numbers
- Harmonic summation

3 Bernoulli numbers

Next section

1 Fibonacci Numbers

2 Harmonic numbers
 - Harmonic numbers
 - Harmonic summation

3 Bernoulli numbers

Some Fibonacci Identities

Cassini's Identity $f_{n+1} f_{n-1}-f_{n}^{2}=(-1)^{n}$ for all $n>0$

Some Fibonacci Identities

Cassini's Identity $f_{n+1} f_{n-1}-f_{n}^{2}=(-1)^{n}$ for all $n>0$

The Chessboard Paradox

Some Fibonacci Identities

Cassini's Identity $f_{n+1} f_{n-1}-f_{n}^{2}=(-1)^{n}$ for all $n>0$

Divisors f_{n} and f_{n+1} are relatively prime and f_{k} divides $f_{n k}$:

$$
\operatorname{gcd}\left(f_{n}, f_{m}\right)=f_{\operatorname{gcd}(n, m)}
$$

Some Fibonacci Identities

Cassini's Identity $f_{n+1} f_{n-1}-f_{n}^{2}=(-1)^{n}$ for all $n>0$

Divisors f_{n} and f_{n+1} are relatively prime and f_{k} divides $f_{n k}$:

$$
\operatorname{gcd}\left(f_{n}, f_{m}\right)=f_{\operatorname{gcd}(n, m)}
$$

Matrix Calculus If A is the 2×2 matrix $\left(\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right)$, then

$$
A^{n}=\left(\begin{array}{cc}
f_{n+1} & f_{n} \\
f_{n} & f_{n-1}
\end{array}\right), \quad \text { for } n>0
$$

Note that this yields Cassini's identity, because $\operatorname{det} A=-1$.

Some Fibonacci Identities (2)

Fibonacci Numbers and Pascal's Triangle:

$f_{n+1}=\sum_{j=0}^{n / 2\rfloor}\binom{n-j}{j}$

Some Fibonacci Identities (3)

Continued fractions

The continued fraction composed entirely of 1 s equals the ratio of successive Fibonacci numbers:

$$
a_{1}+\frac{1}{a_{2}+\frac{1}{\frac{a_{n-2}+\frac{1}{a_{n-1}+\frac{1}{a_{n}}}}{}}}=\frac{f_{n+1}}{f_{n}},
$$

where $a_{1}=a_{2}=\cdots=a_{n}=1$.

For example

Some Fibonacci Identities (3)

Continued fractions

The continued fraction composed entirely of 1 s equals the ratio of successive Fibonacci numbers:

$$
a_{1}+\frac{1}{a_{2}+\frac{1}{\frac{a_{n-2}+\frac{1}{a_{n-1}+\frac{1}{a_{n}}}}{}}}=\frac{f_{n+1}}{f_{n}},
$$

where $a_{1}=a_{2}=\cdots=a_{n}=1$.
For example

$$
1+\frac{1}{1+\frac{1}{1+\frac{1}{1}}}=\frac{f_{5}}{f_{4}}=\frac{5}{3}=1 .(6)
$$

Some applications of Fibonacci numbers (1)

Let S_{n} denote the number of subsets of $\{1,2, \ldots, n\}$ that do not contain consecutive elements.
For example, when $n=3$ the "good" subsets are $\emptyset,\{1\},\{2\},\{3\},\{1,3\}$: hence, $S_{3}=5$.

Theorem

For every $n \geqslant 1, S_{n}=f_{n+2}$.

Some applications of Fibonacci numbers (1)

Let S_{n} denote the number of subsets of $\{1,2, \ldots, n\}$ that do not contain consecutive elements.
For example, when $n=3$ the "good" subsets are $\emptyset,\{1\},\{2\},\{3\},\{1,3\}$: hence, $S_{3}=5$.

Theorem

For every $n \geqslant 1, S_{n}=f_{n+2}$.

Proof:

- We can identify a subset A of $\{1,2, \ldots, n\}$ with a binary word w of n bits, such that $i \in A$ if and only if the i th bit of w is 1 .
- Then A has no consecutive elements if and only if 11 does not appear in w.
- For $n=1$ both 0 and 1 are "good", so $S_{1}=2=f_{3}$.

For $n=2,00,01$ and 10 are all "good", but 11 is "bad". Thus, $S_{2}=3=f_{4}$

- For $n \geqslant 3$, a "good" word w of length n must be either $w=u 0$ where u is a "good" word of length $n-1$, or $w=v 01$ where v is a "good" word of length $n-2$.
Hence, $S_{n}=S_{n-1}+S_{n-2}$ for every $n \geqslant 3$.
- Then $S_{n}=f_{n+2}$ for every $n \geqslant 1$.

Some applications of Fibonacci numbers (2)

Draw n dots in a line. If each domino can cover exactly two such dots, in how many ways can (non-overlapping) dominoes be placed?
For example:

Theorem

The number of possible placements of dominoes with n dots is $D_{n}=f_{n+1}$.

Some applications of Fibonacci numbers (2)

Draw n dots in a line. If each domino can cover exactly two such dots, in how many ways can (non-overlapping) dominoes be placed?
For example:

Theorem

The number of possible placements of dominoes with n dots is $D_{n}=f_{n+1}$.
Proof:

- Consider the rightmost dot in any such placement P.
- If this dot is not covered by a domino, then P minus the last dot determines a solution for $n-1$ dots.
- If the last dot is covered by a domino, then the last two dots in P are covered by this domino. Removing this rightmost domino then gives a solution for $n-2$ dots.
- Hence, $D_{n}=D_{n-1}+D_{n-2}$ for every $n \geqslant 3$.
- As $D_{2}=2=f_{3}$ (no dominos, one domino) and $D_{3}=3=f_{4}$, the thesis follows. TAL

Some applications of Fibonacci numbers (3)

An ordered composition of a positive integer n is a sum of the form $a_{1}+\ldots+a_{k}=n$, where a_{1}, \ldots, a_{k} are positive integers and the order of the summands is taken into account.
For example:

- $4=1+3=3+1=2+2=2+1+1=1+2+1=1+1+2=1+1+1+1$
- $5=4+1=1+4=1+1+3=1+3+1=3+1+1=\ldots=1+1+1+1+1$.

Theorem

- The number of ordered compositions of the positive integer n into odd summands is $T_{n}=f_{n}$.
- The number of ordered compositions of the positive integer n where all summands are 1 or 2 is $B_{n}=f_{n+1}$.

Fibonacci number system

Zeckendorf's theorem

Every integer $n \geqslant 2$ has a unique writing

$$
n=f_{k_{1}}+f_{k_{2}}+\ldots+f_{k_{r}}
$$

such that:
$1 k_{1}>k_{2}>\ldots>k_{r}>1$, and
2 no two k_{i} s are consecutive.

Fibonacci number system

Zeckendorf's theorem

Every integer $n \geqslant 2$ has a unique writing

$$
n=f_{k_{1}}+f_{k_{\mathbf{2}}}+\ldots+f_{k_{r}}
$$

such that:
$1 k_{1}>k_{2}>\ldots>k_{r}>1$, and
2 no two $k_{i} s$ are consecutive.
Proof:

- The thesis is true for $1=f_{2}, 2=f_{3}, 3=f_{4}$ and $4=3+1=f_{4}+f_{2}$.
- Suppose the thesis is true for every positive $m<n$.
- Let k_{1} be the largest such that $f_{k_{1}} \leqslant n$. If $f_{k_{1}}=n$ we are done.
- Otherwise, let $n^{\prime}=n-f_{k_{1}}>0$. If $n^{\prime}=1$ we let $k_{2}=2$, and we are done.
- Otherwise, $n^{\prime} \geqslant 2$, so by induction $n^{\prime}=f_{k_{\mathbf{2}}}+\ldots+f_{k_{r}}$ in a unique way under conditions 1 and 2.
- But it cannot be $k_{2}=k_{1}-1$, otherwise we would have chosen $f_{k_{1}+1}=f_{k_{1}}+f_{k_{2}}$ when taking the largest Fibonacci number not larger than n. Hence, the writing TAL $n=f_{k_{1}}+f_{k_{\mathbf{2}}}+\ldots+f_{k_{r}}$ is also unique.

Approximations

Observation

$$
\lim _{n \rightarrow \infty} \widehat{\Phi}^{n}=0
$$

Approximations

Observation

$$
\lim _{n \rightarrow \infty} \widehat{\Phi}^{n}=0
$$

- $f_{n} \asymp \frac{\phi^{n}}{\sqrt{5}}$ as $n \rightarrow \infty$
- $f_{n}=\left\lfloor\frac{\Phi^{n}}{\sqrt{5}}+\frac{1}{2}\right\rfloor$

Approximations

Observation

$$
\lim _{n \rightarrow \infty} \widehat{\Phi}^{n}=0
$$

- $f_{n} \asymp \frac{\phi^{n}}{\sqrt{5}}$ as $n \rightarrow \infty$
- $f_{n}=\left\lfloor\frac{\phi^{n}}{\sqrt{5}}+\frac{1}{2}\right\rfloor$

For example:

$$
\begin{aligned}
& f_{10}=\left\lfloor\frac{\phi^{10}}{\sqrt{5}}+\frac{1}{2}\right\rfloor=\left\lfloor 55.00364 \ldots+\frac{1}{2}\right\rfloor=\lfloor 55.50364 \ldots\rfloor=55 \\
& f_{11}=\left\lfloor\frac{\phi^{11}}{\sqrt{5}}+\frac{1}{2}\right\rfloor=\left\lfloor 88.99775 \ldots+\frac{1}{2}\right\rfloor=\lfloor 89.49775 \ldots\rfloor=89
\end{aligned}
$$

Approximations

Observation

$$
\lim _{n \rightarrow \infty} \widehat{\Phi}^{n}=0
$$

- $f_{n} \asymp \frac{\phi^{n}}{\sqrt{5}}$ as $n \rightarrow \infty$
- $f_{n}=\left\lfloor\frac{\phi^{n}}{\sqrt{5}}+\frac{1}{2}\right\rfloor$
- $\frac{f_{n}}{f_{n-1}} \rightarrow \Phi$ as $n \rightarrow \infty$

For example:

$$
\frac{f_{11}}{f_{10}}=\frac{89}{55} \approx 1.61818182 \approx \Phi=1.61803 \ldots
$$

Fibonacci numbers with negative index: Idea

Question

What can f_{n} be when n is a negative integer?

We want the basic properties to be satisfied for every $n \in \mathbb{Z}$:

- Defining formula:

$$
f_{n}=f_{n-1}+f_{n-2} .
$$

- Expression by golden ratio:

$$
f_{n}=\frac{1}{\sqrt{5}}\left(\phi^{n}-\hat{\phi}^{n}\right) .
$$

- Matrix form:

$$
A^{n}=\left(\begin{array}{cc}
f_{n+1} & f_{n} \\
f_{n} & f_{n-1}
\end{array}\right) \text { where } A=\left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right) .
$$

(Consequently, Cassini's identity too.)
Note: For $n=0$, the above suggest $f_{-1}=1 \ldots$

Fibonacci numbers with negative index: Formula

Theorem
For every $n \geqslant 1$,

$$
f_{-n}=(-1)^{n-1} f_{n}
$$

Fibonacci numbers with negative index: Formula

Theorem

For every $n \geqslant 1$,

$$
f_{-n}=(-1)^{n-1} f_{n}
$$

Proof: As $(1-\phi z) \cdot(1-\hat{\phi} z)=1-z-z^{2}$, it is $\phi^{-1}=-\hat{\phi}=0.618 \ldots$ Then for every $n \geqslant 1$,

$$
\begin{aligned}
f_{-n} & =\frac{1}{\sqrt{5}}\left(\phi^{-n}-\hat{\phi}^{-n}\right) \\
& =\frac{1}{\sqrt{5}}\left((-\hat{\phi})^{n}-(-\phi)^{n}\right) \\
& =\frac{(-1)^{n+1}}{\sqrt{5}}\left(\phi^{n}-\hat{\phi}^{n}\right) \\
& =(-1)^{n-1} f_{n}
\end{aligned}
$$

Fibonacci numbers with negative index: Formula

Theorem

For every $n \geqslant 1$,

$$
f_{-n}=(-1)^{n-1} f_{n}
$$

Proof: As $(1-\phi z) \cdot(1-\hat{\phi} z)=1-z-z^{2}$, it is $\phi^{-1}=-\hat{\phi}=0.618 \ldots$ Then for every $n \geqslant 1$,

$$
\begin{aligned}
f_{-n} & =\frac{1}{\sqrt{5}}\left(\phi^{-n}-\hat{\phi}^{-n}\right) \\
& =\frac{1}{\sqrt{5}}\left((-\hat{\phi})^{n}-(-\phi)^{n}\right) \\
& =\frac{(-1)^{n+1}}{\sqrt{5}}\left(\phi^{n}-\hat{\phi}^{n}\right) \\
& =(-1)^{n-1} f_{n}
\end{aligned}
$$

Q.E.D.

Another proof is by induction with the defining relation in the form $f_{n-2}=f_{n}-f_{n-\mathbf{1}}$, with initial conditions $f_{1}=1, f_{0}=0$.

Warmup: The generalized Cassini's identity

Theorem
For every $n, k \in \mathbb{Z}$,

$$
f_{n+k}=f_{n+1} f_{k}+f_{n} f_{k-1}
$$

Warmup: The generalized Cassini's identity

Theorem

For every $n, k \in \mathbb{Z}$,

$$
f_{n+k}=f_{n+1} f_{k}+f_{n} f_{k-1}
$$

Why generalized?

Because for $k=1-n$ we get

$$
f_{1}=(-1)^{n-2} f_{n-1} f_{n+1}+(-1)^{n-1} f_{n}^{2},
$$

which is Cassini's identity multiplied by $(-1)^{n}$.

Warmup: The generalized Cassini's identity

Theorem

For every $n, k \in \mathbb{Z}$,

$$
f_{n+k}=f_{n+1} f_{k}+f_{n} f_{k-1}
$$

Proof:

- Let $A=\left(\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right)$.

Warmup: The generalized Cassini's identity

Theorem

For every $n, k \in \mathbb{Z}$,

$$
f_{n+k}=f_{n+1} f_{k}+f_{n} f_{k-1}
$$

Proof:

- Let $A=\left(\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right)$. We know that $A^{n}=\left(\begin{array}{cc}f_{n+1} & f_{n} \\ f_{n} & f_{n-1}\end{array}\right)$ for every $n \geqslant 0$.
- But $B=A^{-1}=\left(\begin{array}{cc}0 & 1 \\ 1 & -1\end{array}\right)=\left(\begin{array}{cc}f_{0} & f_{-1} \\ f_{-1} & f_{-2}\end{array}\right)$ satisfies the same recurrence with negative indices:

$$
\begin{aligned}
B^{n} \cdot B & =\left(\begin{array}{cc}
f_{-n+1} & f_{-n} \\
f_{-n} & f_{-n-1}
\end{array}\right) \cdot\left(\begin{array}{cc}
0 & 1 \\
1 & -1
\end{array}\right) \\
& =\left(\begin{array}{cc}
f_{-n} & f_{-n+1}-f_{-n} \\
f_{-n-1} & f_{-n}-f_{-n-1}
\end{array}\right) \\
& =\left(\begin{array}{cc}
f_{-(n+1)+1} & f_{-(n+1)} \\
f_{-(n+1)} & f_{-(n+1)-1}
\end{array}\right)
\end{aligned}
$$

Warmup: The generalized Cassini's identity

Theorem

For every $n, k \in \mathbb{Z}$,

$$
f_{n+k}=f_{n+1} f_{k}+f_{n} f_{k-1}
$$

Proof:

- Let $A=\left(\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right)$. Then $A^{n}=\left(\begin{array}{cc}f_{n+1} & f_{n} \\ f_{n} & f_{n-1}\end{array}\right)$ for every $n \in \mathbb{Z}$.
- By associativity of matrix product, $A^{n+k}=A^{n} \cdot A^{k}$ for every $n, k \in \mathbb{Z}$: that is,

$$
\left(\begin{array}{cc}
f_{n+k+1} & f_{n+k} \\
f_{n+k} & f_{n+k-1}
\end{array}\right)=\left(\begin{array}{cc}
f_{n+1} & f_{n} \\
f_{n} & f_{n-1}
\end{array}\right) \cdot\left(\begin{array}{cc}
f_{k+1} & f_{k} \\
f_{k} & f_{k-1}
\end{array}\right)
$$

- The thesis then follows by comparing the elements in the upper right corner.

Warmup: The generalized Cassini's identity

Theorem

For every $n, k \in \mathbb{Z}$,

$$
f_{n+k}=f_{n+1} f_{k}+f_{n} f_{k-1}
$$

Alternative proof by induction:

- For every $n \in \mathbb{Z}$ let $P(n)$ be the following proposition:

$$
\forall k \in \mathbb{Z} \cdot f_{n+k}=f_{k} f_{n+1}+f_{k-1} f_{n}
$$

- For $n=0$ we get $f_{k}=f_{k} \cdot 1+0$.

$$
\text { For } n=1 \text { we get } f_{k+1}=f_{k} \cdot 1+f_{k-1} \cdot 1
$$

- If $n \geqslant 2$ and $P(n-1)$ and $P(n-2)$ hold, then:

$$
\begin{aligned}
f_{n+k} & =f_{n-1+k}+f_{n-2+k} \\
& =f_{k} f_{n}+f_{k-1} f_{n-1}+f_{k} f_{n-1}+f_{k-1} f_{n-2} \\
& =f_{k} f_{n+1}+f_{k-1} f_{n} .
\end{aligned}
$$

- If $n<0$ and $P(n+1)$ and $P(n+2)$ hold, then

$$
\begin{aligned}
f_{n+k} & =f_{n+2-k}-f_{n+1-k} \\
& =f_{k} f_{n+3}+f_{k-1} f_{n+2}-f_{k} f_{n+2}-f_{k-1} f_{n+1} \\
& =f_{k} f_{n+1}+f_{k-1} f_{n} .
\end{aligned}
$$

A note on generating functions for bi-infinite sequences

Question

Can we define f_{n} for every $n \in \mathbb{Z}$ via a single power series which depends from both positive and negative powers of the variable?
(We can renounce such $G(z)$ to be defined in $z=0$.)

A note on generating functions for bi-infinite sequences

Question

Can we define f_{n} for every $n \in \mathbb{Z}$ via a single power series which depends from both positive and negative powers of the variable?
(We can renounce such $G(z)$ to be defined in $z=0$.)

Answer: Yes, but it would not be practical!

A generalization of Laurent's theorem goes as follows:
Let f be an analytic function defined in an annulus $A=\{z \in \mathbb{C}|r<|z|<R\}$.
Then there exists a bi-infinite sequence $\left\langle a_{n}\right\rangle_{n \in \mathbb{Z}}$ such that:
1 the series $\sum_{n \geqslant 0} a_{n} z^{n}$ has convergence radius $\geqslant R$;
2 the series $\sum_{n \geqslant 1} a_{-n} z^{n}$ has convergence radius $\geqslant 1 / r$;
3 for every $z \in A$ it is $\sum_{n \in \mathbb{Z}} a_{n} z^{n}=f(z)$.
We could set $r=0$, but the power series $\sum_{n \geqslant 1} a_{-n} z^{n}$ would then need to have infinite convergence radius! (i.e., $\lim _{n \rightarrow \infty} \sqrt[n]{\left|a_{-n}\right|}=0$.) However, $\lim _{n \rightarrow \infty} \sqrt[n]{f_{n}}=\phi$. Also, the intersection of two annuli can be empty: making controls on feasibility of operations much more difficult to check. (Not so for "disks with a hole in zero".)

Fibonacci numbers cheat sheet

- Recurrence:

$$
\begin{array}{ll}
f_{0}=0 ; f_{1}=1 ; & \\
f_{n}=f_{n-1}+f_{n-2} & \forall n \geqslant 2 ; \\
f_{-n}=(-1)^{n-1} f_{n} & \forall n>0 .
\end{array}
$$

- Generating function:

$$
\sum_{n \geqslant 0} f_{n} z^{n}=\frac{z}{1-z-z^{2}} \forall z \in \mathbb{C},|z|<\frac{1}{\phi}
$$

- Matrix form:

$$
\left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right)^{n}=\left(\begin{array}{cc}
f_{n+1} & f_{n} \\
f_{n} & f_{n-1}
\end{array}\right) \forall n \in \mathbb{Z}
$$

- Generalized Cassini's identity:

$$
f_{n+k}=f_{k} f_{n+1}+f_{k-1} f_{n} \forall n, k \in \mathbb{Z}
$$

- Greatest common divisor:

$$
\operatorname{gcd}\left(f_{m}, f_{n}\right)=f_{\operatorname{gcd}(m, n)} \forall m, n \in \mathbb{Z}
$$

Next section

1 Fibonacci Numbers

2 Harmonic numbers

- Harmonic numbers
- Harmonic summation

3 Bernoulli numbers

Next subsection

1 Fibonacci Numbers

2 Harmonic numbers

- Harmonic numbers
- Harmonic summation

3 Bernoulli numbers

Harmonic numbers

Definition

The harmonic numbers are given by the formula

$$
H_{n}=\sum_{k=1}^{n} \frac{1}{k} \quad \text { for } n \geqslant 0, \text { with } H_{0}=0
$$

- H_{n} is the discrete analogue of the natural logarithm.
- The first twelve harmonic numbers are shown in the following table:

n	0	1	2	3	4	5	6	7	8	9	10	11
H_{n}	0	1	$\frac{3}{2}$	$\frac{11}{6}$	$\frac{25}{12}$	$\frac{137}{60}$	$\frac{49}{20}$	$\frac{363}{140}$	$\frac{761}{280}$	$\frac{7129}{2520}$	$\frac{7381}{2520}$	$\frac{83711}{27720}$

The graph of $f(n)=H_{n}$

$$
\begin{array}{||c|cccccccccccc||}
n & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 \\
\hline H_{n} & 0 & 1 & \frac{3}{2} & \frac{11}{6} & \frac{25}{12} & \frac{137}{60} & \frac{49}{20} & \frac{363}{140} & \frac{761}{280} & \frac{7129}{2520} & \frac{7381}{2520} & \frac{83711}{27720}
\end{array}
$$

The graph of $f(n)=H_{n}$

n	0	1	2	3	4	5	6	7	8	9	10	11
H_{n}	0	1	$\frac{3}{2}$	$\frac{11}{6}$	$\frac{25}{12}$	$\frac{137}{60}$	$\frac{49}{20}$	$\frac{363}{140}$	$\frac{761}{280}$	$\frac{7129}{2520}$	$\frac{7381}{2520}$	$\frac{83711}{27720}$

Looks a bit like the graph of the logarithm ...

Harmonic numbers and binary logarithms

Theorem

For every positive integer n :

$$
1+\frac{1}{2}\lfloor\lg n\rfloor \leqslant H_{n} \leqslant 1+\lfloor\lg n\rfloor
$$

Proof:

- Let $m=\lfloor\lg n\rfloor$ be the unique natural number such that $2^{m} \leqslant n \leqslant 2^{m+1}-1$.
- Then $H_{2^{m}} \leqslant H_{n} \leqslant H_{2^{m+1}-1}$, that is:

$$
1+\sum_{k=0}^{m-1} \sum_{j=2^{k}+1}^{2^{k+1}} \frac{1}{2^{k+1}} \leqslant 1+\sum_{k=0}^{m-1} \sum_{j=2^{k}+1}^{2^{k+1}} \frac{1}{j} \leqslant H_{n} \leqslant \sum_{k=0}^{m} \sum_{j=2^{k}}^{2^{k+1}-1} \frac{1}{j} \leqslant \sum_{k=0}^{m} \sum_{j=2^{k}}^{2^{k+1}-1} \frac{1}{2^{k}}
$$

- Clearly, the left-hand side is $1+\sum_{k=0}^{m-1} \frac{1}{2}=1+\frac{m}{2}$ and the right-hand side is $\sum_{k=0}^{m} 1=1+m$.
Q.E.D.

Harmonic numbers and natural logarithms

Theorem

For every positive integer n :

$$
\ln n<H_{n}<1+\ln n
$$

Proof:

- First, let $f(x)=\frac{1}{n}[n<x \leqslant n+1]$ for $x>1$.
- Then $f(x)>1 / x$ for every $x>1$, so:

$$
H_{n}=\int_{1}^{n+1} f(x) d x>\int_{1}^{n} \frac{d x}{x}=\ln n
$$

- Now, let $g(x)=\frac{1}{n}[n-1 \leqslant x<n]$ for $x>0$.
- Then $g(x)<1 / x$ for every $x>0$, so:

$$
H_{n}=1+\int_{1}^{n} g(x) d x<1+\int_{1}^{n} \frac{d x}{x}=1+\ln n
$$

A card trick: Formulation

The problem

We have a deck of cards, and want to stack them on a table so that:
1 the stack hangs as much as possible out of the table;
2 the edge of the cards is parallel to that of the table; and
3 the stack does not fall down, according to the law of gravity.
Question:
What is the maximum overhang that we can reach? (provided we have enough many cards)

A card trick: Formulation

The problem

We have a deck of cards, and want to stack them on a table so that:
1 the stack hangs as much as possible out of the table;
2 the edge of the cards is parallel to that of the table; and
3 the stack does not fall down, according to the law of gravity.
Question:
What is the maximum overhang that we can reach? (provided we have enough many cards)

Solution:
The stack can overhang by as much as we want!
(provided we have enough many cards)

A card trick: Experiment

With one card:

- We can put the card so that its center of gravity is precisely on the edge of the table.
- Let's call this overhang an overhang unit, so that a card is 2 overhang units long.

With two cards:

- We count cards from top to bottom, rather than from bottom to top.
- We put the second card so that it hangs by half a unit over the table, and the first card to that it hangs by one unit over the first card.
- Then the center of gravity of the stack is precisely on the edge of the table.

With three cards:

- We put the third card so that it hangs by one third of a unit over the table.
- We put the second card so that it hangs by half a unit over the third card.
- We put the first card to that it hangs by one unit over the second card.
- Then the center of gravity of the stack is precisely on the edge of the table.

A card trick: General idea and solution

Given n cards in the stack, we count the topmost at first, and identify the table with an $n+1$ st card.

- Call d_{k} the overhang of the first card over the k th, so $d_{1}=0$. For example, with $n=3$ we had $d_{2}=1, d_{3}=3 / 2$, and $d_{4}=11 / 6$ was the overhang over the table.
- If we want that the center of gravity of the entire stack is on the edge of the table, we must also have the center of gravity of the first k cards over the edge of the $k+1$ st card. Then:

$$
d_{k+1}=\frac{\left(d_{1}+1\right)+\left(d_{2}+1\right)+\ldots+\left(d_{k}+1\right)}{k} \text { for every } 1 \leqslant k \leqslant n
$$

- By multiplying by k and writing for two consecutive values, we have:

$$
\begin{aligned}
k d_{k+1} & =k+d_{1}+d_{2}+\ldots+d_{k} \\
(k-1) d_{k} & =k-1+d_{1}+d_{2}+\ldots+d_{k-1}
\end{aligned}
$$

and by subtracting,

$$
k d_{k+1}-(k-1) d_{k}=1+d_{k}
$$

A card trick: General idea and solution

Given n cards in the stack, we count the topmost at first, and identify the table with an $n+1$ st card.

- Call d_{k} the overhang of the first card over the k th, so $d_{1}=0$. For example, with $n=3$ we had $d_{2}=1, d_{3}=3 / 2$, and $d_{4}=11 / 6$ was the overhang over the table.
- If we want that the center of gravity of the entire stack is on the edge of the table, we must also have the center of gravity of the first k cards over the edge of the $k+1$ st card.
- We have thus found that d_{k} must satisfy:

$$
\begin{aligned}
d_{1} & =0, \\
k d_{k+1} & =(k-1) d_{k}+1+d_{k}=k d_{k}+1 \text { for every } k \geqslant 1 .
\end{aligned}
$$

- But the recurrence $d_{k+1}=d_{k}+\frac{1}{k}$ with the initial condition $d_{1}=0$ has the solution:

$$
d_{k+1}=H_{k} \text { for every } k \geqslant 0 .
$$

This is also the maximum possible overhang with k cards, because as soon as we move a card far from the edge of the table, the stack topples.

Generating function of harmonic numbers

Theorem

$$
\sum_{n \geqslant 0} H_{n} z^{n}=\frac{1}{1-z} \ln \frac{1}{1-z}
$$

Indeed, $\frac{1}{1-z}=\sum_{n \geqslant 0} z^{n}, \ln \frac{1}{1-z}=\sum_{n \geqslant 0} \frac{1}{n}[n \geqslant 1] z^{n}$, and

$$
H_{n}=\sum_{k=1}^{n} \frac{1}{k}=\sum_{k=0}^{n} \frac{1}{k}[k \geqslant 1] 1^{n-k}
$$

Generating function of harmonic numbers

Theorem

$$
\sum_{n \geqslant 0} H_{n} z^{n}=\frac{1}{1-z} \ln \frac{1}{1-z}
$$

Indeed, $\frac{1}{1-z}=\sum_{n \geqslant 0} z^{n}, \ln \frac{1}{1-z}=\sum_{n \geqslant 0} \frac{1}{n}[n \geqslant 1] z^{n}$, and

$$
H_{n}=\sum_{k=1}^{n} \frac{1}{k}=\sum_{k=0}^{n} \frac{1}{k}[k \geqslant 1] 1^{n-k}
$$

A general remark

If $G(z)$ is the generating function of the sequence $\left\langle g_{0}, g_{1}, g_{2}, \ldots\right\rangle$, then $G(z) /(1-z)$ is the generating function of the sequence of the prefix sums of the original sequence:

$$
\text { if } G(z)=\sum_{n \geqslant 0} g_{n} z^{n} \text { then } \frac{G(z)}{1-z}=\sum_{n \geqslant 0}\left(\sum_{k=0}^{n} g_{k}\right) z^{n}
$$

Harmonic numbers of higher order

Definition

For $n \geqslant 1$ and $m \geqslant 2$ integer, the nth harmonic number of order m is

$$
H_{n}^{(m)}=\sum_{k=1}^{n} \frac{1}{k^{m}}
$$

As with the "first order" harmonic numbers, we put $H_{0}^{(m)}=0$ as an empty sum.
For $m \geqslant 2$ the quantities

$$
H_{\infty}^{(m)}=\lim _{n \rightarrow \infty} H_{n}^{(m)}
$$

exist finite: they are the values of the Riemann zeta function

$$
\zeta(s)=\sum_{n \geqslant 1} \frac{1}{n^{s}}, s>1
$$

for $s=m$.

Euler's γ constant

Euler's approximation of harmonic numbers
For every $n \geqslant 1$,

$$
H_{n}-\ln n=1-\sum_{m \geqslant 2} \frac{1}{m}\left(H_{n}^{(m)}-1\right)
$$

Euler's γ constant

Euler's approximation of harmonic numbers

For every $n \geqslant 1$,

$$
H_{n}-\ln n=1-\sum_{m \geqslant 2} \frac{1}{m}\left(H_{n}^{(m)}-1\right)
$$

For $k \geqslant 2$ we can write:

$$
\ln \frac{k}{k-1}=\ln \frac{1}{1-\frac{1}{k}}=\sum_{m \geqslant 1} \frac{1}{m \cdot k^{m}}
$$

As $\ln (a / b)=\ln a-\ln b$ and $\ln 1=0$, by summing for k from 2 to n we get:

$$
\ln n=\sum_{k=2}^{n} \sum_{m \geqslant 1} \frac{1}{m \cdot k^{m}}=\sum_{m \geqslant 1} \sum_{k=2}^{n} \frac{1}{m \cdot k^{m}}=H_{n}-1+\sum_{m \geqslant 2}\left(H_{n}^{(m)}-1\right)
$$

Euler's γ constant

Euler's approximation of harmonic numbers

For every $n \geqslant 1$,

$$
H_{n}-\ln n=1-\sum_{m \geqslant 2} \frac{1}{m}\left(H_{n}^{(m)}-1\right)
$$

For $m \geqslant 2, H_{n}^{(m)}$ converges from below to $\zeta(m)$.
It turns out that $\zeta(s)-1 \sim 2^{-s}$, therefore the series $\sum_{m \geqslant 2} \frac{1}{m}(\zeta(m)-1)$ converges.
The quantity

$$
\gamma=1-\sum_{m \geqslant 2} \frac{1}{m}(\zeta(m)-1)
$$

is called Euler's constant. The following approximation holds:

$$
H_{n}=\ln n+\gamma+\frac{1}{2 n}-\frac{1}{12 n^{2}}+o\left(\frac{1}{n^{3}}\right)
$$

Next subsection

1 Fibonacci Numbers

2 Harmonic numbers

- Harmonic numbers
- Harmonic summation

3 Bernoulli numbers

Harmonic numbers

Properties:

- Harmonic and Stirling cyclic numbers: $H_{n}=\frac{1}{n!}\left[\begin{array}{c}n+1 \\ 2\end{array}\right]$ for every $n \geqslant 1$;
- $\sum_{k=1}^{n} H_{k}=(n+1)\left(H_{n+1}-1\right)$ for every $n \geqslant 1$;
- $\sum_{k=1}^{n} k H_{k}=\binom{n+1}{2}\left(H_{n+1}-\frac{1}{2}\right)$ for every $n \geqslant 1$;
- $\sum_{k=1}^{n}\binom{k}{m} H_{k}=\binom{n+1}{m+1}\left(H_{n+1}-\frac{1}{m+1}\right)$ for every $n \geqslant 1$;
- $\lim _{n \rightarrow \infty} H_{n}=\infty$;
- $H_{n} \sim \ln n+\gamma+\frac{1}{2 n}-\frac{1}{12 n^{2}}+\frac{\varepsilon_{n}}{120 n^{4}}$ where $\gamma \approx 0.577215664901533$ denotes Euler's constant.

Approximation

- $H_{10} \approx 2.928968257896$
- $H_{1000000} \approx 14.3927267228657236313811275$

Harmonic numbers

Properties:

- Harmonic and Stirling cyclic numbers: $H_{n}=\frac{1}{n!}\left[\begin{array}{c}n+1 \\ 2\end{array}\right]$ for every $n \geqslant 1$;
- $\sum_{k=1}^{n} H_{k}=(n+1)\left(H_{n+1}-1\right)$ for every $n \geqslant 1$;
- $\sum_{k=1}^{n} k H_{k}=\binom{n+1}{2}\left(H_{n+1}-\frac{1}{2}\right)$ for every $n \geqslant 1$;
- $\sum_{k=1}^{n}\binom{k}{m} H_{k}=\binom{n+1}{m+1}\left(H_{n+1}-\frac{1}{m+1}\right)$ for every $n \geqslant 1$;
- $\lim _{n \rightarrow \infty} H_{n}=\infty$;
- $H_{n} \sim \ln n+\gamma+\frac{1}{2 n}-\frac{1}{12 n^{2}}+\frac{\varepsilon_{n}}{120 n^{4}}$ where $\gamma \approx 0.577215664901533$ denotes Euler's constant.

Approximation

- $H_{10} \approx 2.928968257896$
- $H_{1000000} \approx 14.3927267228657236313811275$

Harmonic numbers and binomial coefficients

Theorem

$$
\sum_{k=0}^{n}\binom{k}{m} H_{k}=\binom{n+1}{m+1}\left(H_{n+1}-\frac{1}{m+1}\right)
$$

Harmonic numbers and binomial coefficients

Theorem

$$
\sum_{k=0}^{n}\binom{k}{m} H_{k}=\binom{n+1}{m+1}\left(H_{n+1}-\frac{1}{m+1}\right)
$$

Proof:

- For $v(x)=\binom{x}{m+1}$ it is $\Delta v(x)=\binom{x+1}{m+1}-\binom{x}{m+1}=\binom{x}{m}$
- Summing by parts with $u(x)=H_{x}$:

$$
\begin{aligned}
& \sum_{0}^{n+1}\binom{x}{m} H_{x} \delta x=\left.\binom{x}{m+1} H_{x}\right|_{0} ^{n+1}-\sum_{0}^{n+1}\binom{x+1}{m+1} x-1 \\
& m \\
&=\binom{n+1}{m+1} H_{n+1}-\frac{1}{m+1} \sum_{0}^{n+1}\binom{x}{m} \delta x \\
&=\binom{n+1}{m+1} H_{n+1}-\left.\frac{1}{m+1}\binom{x}{m+1}\right|_{0} ^{n+1} \\
&=\binom{n+1}{m+1} H_{n+1}-\frac{1}{m+1}\binom{n+1}{m+1}
\end{aligned}
$$

Harmonic numbers and binomial coefficients

Theorem

$$
\sum_{k=0}^{n}\binom{k}{m} H_{k}=\binom{n+1}{m+1}\left(H_{n+1}-\frac{1}{m+1}\right)
$$

Corollary

For $m=0$ we get:

$$
\sum_{k=0}^{n} H_{k}=(n+1)\left(H_{n+1}-1\right)=(n+1) H_{n}-n
$$

For $m=1$ we get:

$$
\sum_{k=0}^{n} k H_{k}=\frac{n(n+1)}{2}\left(H_{n+1}-\frac{1}{2}\right)=\frac{n(n+1)}{2} H_{n+1}-\frac{n(n+1)}{4}
$$

Sum of averaged harmonic numbers

Theorem

$$
\sum_{k=1}^{n} \frac{H_{k}}{k}=\frac{H_{n}^{2}+H_{n}^{(2)}}{2}
$$

Proof:

- Let $S_{n}=\sum_{k=1}^{n} \frac{H_{k}}{k}$. Then, as $H_{k}=\sum_{j=1}^{k} \frac{1}{j}$, we have:

$$
\begin{aligned}
S_{n} & =\sum_{k=1}^{n} \frac{1}{k} \sum_{j=1}^{k} \frac{1}{j}=\sum_{1 \leqslant j \leqslant k \leqslant n} \frac{1}{j k} \\
& =\frac{1}{2}\left(\sum_{1 \leqslant j \leqslant n, 1 \leqslant k \leqslant n} \frac{1}{j k}+\sum_{k=1}^{n}\left(\frac{1}{k}\right)^{2}\right) \\
& =\frac{1}{2}\left(\left(\sum_{j=1}^{n} \frac{1}{j}\right) \cdot\left(\sum_{k=1}^{n} \frac{1}{k}\right)+\sum_{k=1}^{n} \frac{1}{k^{2}}\right) \\
& =\frac{1}{2}\left(H_{n}^{2}+H_{n}^{(2)}\right)
\end{aligned}
$$

Next section

1 Fibonacci Numbers

2 Harmonic numbers

- Harmonic numbers
- Harmonic summation

3 Bernoulli numbers

Bernoulli numbers: History

Jakob Bernoulli (1654-1705) worked on the functions:

$$
S_{m}(n)=0^{m}+1^{m}+\ldots+(n-1)^{m}=\sum_{k=0}^{n-1} k^{m}=\sum_{0}^{n} x^{m} \delta x
$$

Plotting an expansion with respect to n yields:

$$
\begin{array}{llllll}
S_{0}(n) & =n & & & & \\
S_{1}(n) & =\frac{1}{2} n^{2} & -\frac{1}{2} n & & & \\
S_{2}(n) & =\frac{1}{3} n^{3} & -\frac{1}{2} n^{2} & +\frac{1}{6} n & & \\
S_{3}(n) & = & \frac{1}{4} n^{4} & -\frac{1}{2} n^{3} & +\frac{1}{4} n^{2} & \\
S_{4}(n) & =\frac{1}{5} n^{5} & -\frac{1}{2} n^{4} & +\frac{1}{3} n^{3} & -\frac{1}{30} n & \\
S_{5}(n) & =\frac{1}{6} n^{6} & -\frac{1}{2} n^{5} & +\frac{5}{12} n^{4} & -\frac{1}{12} n^{2} & \\
S_{6}(n) & =\frac{1}{7} n^{7} & -\frac{1}{2} n^{6} & +\frac{1}{2} n^{5} & -\frac{1}{6} n^{3} & +\frac{1}{42} n \\
S_{7}(n) & =\frac{1}{8} n^{8} & -\frac{1}{2} n^{7} & +\frac{7}{12} n^{6} & -\frac{7}{24} n^{4} & +\frac{1}{12} n^{2} \\
S_{8}(n) & =\frac{1}{9} n^{9} & -\frac{1}{2} n^{8} & +\frac{2}{3} n^{7} & -\frac{7}{15} n^{5} & +\frac{2}{9} n^{3} \\
S_{9}(n) & =\frac{1}{10} n^{10} & -\frac{1}{2} n^{9} & +\frac{3}{4} n^{8} & -\frac{7}{10} n^{6} & +\frac{1}{2} n^{4}
\end{array}
$$

Bernoulli numbers: History

Jakob Bernoulli (1654-1705) worked on the functions:

$$
S_{m}(n)=0^{m}+1^{m}+\ldots+(n-1)^{m}=\sum_{k=0}^{n-1} k^{m}=\sum_{0}^{n} x^{m} \delta x
$$

Bernoulli observed the following regularities:

- The leading coefficient of S_{m} is always $\frac{1}{m+1}=\frac{1}{m+1}\binom{m+1}{0}$.
- The coefficient of n^{m} in S_{m} is always $-\frac{1}{2}=-\frac{1}{2} \cdot \frac{1}{m+1} \cdot\binom{m+1}{1}$.
- The coefficient of n^{m-1} in S_{m} is always $\frac{m}{12}=\frac{1}{6} \cdot \frac{1}{m+1} \cdot\binom{m+1}{2}$.
- The coefficient of n^{m-2} in S_{m} is always 0 .
- The coefficient of n^{m-3} in S_{m} is always $-\frac{m(m-1)(m-2)}{720}=-\frac{1}{30} \cdot \frac{1}{m+1} \cdot\binom{m+1}{4}$.
- The coefficient of n^{m-4} in S_{m} is always 0 .
- The coefficient of n^{m-5} in S_{m} is always $\frac{1}{42} \cdot \frac{1}{m+1} \cdot\binom{m+1}{6}$.
- And so on, and so on ...

Bernoulli numbers

Definition

The k th Bernoulli number is the unique value B_{k} such that, for every $m \geqslant 0$,

$$
S_{m}(n)=\frac{1}{m+1} \sum_{k=0}^{m}\binom{m+1}{k} B_{k} n^{m+1-k}
$$

As $S_{m}(1)=0^{m}=[m=0]$, we can also use the following recurrence:

$$
\sum_{k=0}^{m}\binom{m+1}{k} B_{k}=[m=0]
$$

Bernoulli numbers

Definition

The k th Bernoulli number is the unique value B_{k} such that, for every $m \geqslant 0$,

$$
S_{m}(n)=\frac{1}{m+1} \sum_{k=0}^{m}\binom{m+1}{k} B_{k} n^{m+1-k}
$$

As $S_{m}(1)=0^{m}=[m=0]$, we can also use the following recurrence:

$$
\sum_{k=0}^{m}\binom{m+1}{k} B_{k}=[m=0]
$$

Examples:

$$
\begin{array}{lll}
m=0 & B_{0}=1 & \\
m=1 & B_{0}+2 B_{1}=0 & B_{1}=-\frac{1}{2} \\
m=2 & B_{0}+3 B_{1}+3 B_{2}=0 & B_{2}=\frac{1}{6} \\
m=3 & B_{0}+4 B_{1}+6 B_{2}+4 B_{3}=0 & B_{3}=0 \\
m=4 & B_{0}+5 B_{1}+10 B_{2}+10 B_{3}+5 B_{4}=0 & B_{4}=-\frac{1}{30}
\end{array}
$$

Bernoulli numbers

Definition

The k th Bernoulli number is the unique value B_{k} such that, for every $m \geqslant 0$,

$$
S_{m}(n)=\frac{1}{m+1} \sum_{k=0}^{m}\binom{m+1}{k} B_{k} n^{m+1-k}
$$

As $S_{m}(1)=0^{m}=[m=0]$, we can also use the following recurrence:

$$
\sum_{k=0}^{m}\binom{m+1}{k} B_{k}=[m=0]
$$

n	0	1	2	3	4	5	6	7	8	9	10	11	12
B_{n}	1	$-\frac{1}{2}$	$\frac{1}{6}$	0	$-\frac{1}{30}$	0	$\frac{1}{42}$	0	$-\frac{1}{30}$	0	$\frac{5}{66}$	0	$-\frac{691}{2730}$

Bernoulli numbers and the Riemann zeta function

Theorem

For every $n \geqslant 1$,

$$
B_{n}=-n \zeta(1-n)
$$

Theorem

For every $n \geqslant 1$,

$$
\zeta(2 n)=(-1)^{n-1} \frac{2^{2 n-1} \pi^{2 n} B_{2 n}}{(2 n)!}
$$

In particular,

$$
\zeta(2)=\sum_{n \geqslant 1} \frac{1}{n^{2}}=\frac{\pi^{2}}{6}
$$

From this and Stirling's approximation we get:

$$
\left|B_{2 n}\right| \sim 4 \sqrt{\pi n}\left(\frac{n}{\pi e}\right)^{2 n} \text { for } n \rightarrow \infty
$$

Generating function of the Bernoulli numbers . . . almost

Because of the approximation in the previous slide,

$$
\limsup _{n \geqslant 0} \sqrt[n]{\left|B_{n}\right|}=\limsup _{n \geqslant 0} \frac{n}{2 \pi e}=+\infty,
$$

and the Bernoulli numbers do not have a generating function.

Generating function of the Bernoulli numbers . . . almost

Because of the approximation in the previous slide,

$$
\limsup _{n \geqslant 0} \sqrt[n]{\left|B_{n}\right|}=\limsup _{n \geqslant 0} \frac{n}{2 \pi e}=+\infty,
$$

and the Bernoulli numbers do not have a generating function. However:

$$
\sum_{n \geqslant 0} \frac{B_{n}}{n!} z^{n}=\frac{z}{e^{z}-1} .
$$

Generating function of the Bernoulli numbers . . . almost

Because of the approximation in the previous slide,

$$
\limsup _{n \geqslant 0} \sqrt[n]{\left|B_{n}\right|}=\limsup _{n \geqslant 0} \frac{n}{2 \pi e}=+\infty,
$$

and the Bernoulli numbers do not have a generating function.
However:

$$
\sum_{n \geqslant 0} \frac{B_{n}}{n!} z^{n}=\frac{z}{e^{z}-1} .
$$

This function is analytic in a neighborhood of the origin because of:

Singularity removal theorem

Let $f(z)$ be analytic in the open disk $D_{r}(c)$ of center c and radius r, except at most the center c itself.
If $f(z)$ is bounded in $D_{r}(c) \backslash\{c\}$, then it can be extended to an analytic function in the entire $D_{r}(c)$.

In particular, if $\lim _{z \rightarrow c} f(z)$ exists, then $f(z)$ has an analytic continuation.
This is the case of $\frac{z}{e^{z}-1}$, which converges to 1 for $z \rightarrow 0$.

