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Some Fibonacci Identities

Cassini's Identity fry1fy1—f2=(—1)" for all n>0

Divisors f, and f,11 are relatively prime and f; divides f,:

ng(fnv fm) = fgcd(n,m)
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Some Fibonacci Identities

Cassini's Identity foy1fy_1—f2 = (—1)" for all n>0

Divisors f, and f,11 are relatively prime and f; divides f,:

ng(fﬂ’ fm) = fgcd(n,m)

Matrix Calculus If A is the 2 x 2 matrix ( 1 é ), then

A" = ( f";rl ff”l > , for n> 0.
n n—

Note that this yields Cassini's identity, because det A= —1.
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Some Fibonacci Identities (2)

Fibonacci Numbers and Pascal’s Triangle:

n o @ @O @ 6 6@ 6 @ @ 6
0o 0 1
/
1 1 1 1
/
2 1 2 1
3 2 / 3 1
4 3 4 1
5 5 0 5 1
6 8 15 20 15 6 1
7 13 7 21 3% 35 21 7 1
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Some Fibonacci Identities (3)

Continued fractions

The continued fraction composed entirely of 1s equals the ratio of successive
Fibonacci numbers:

a + =
az +

an—2+
an-1+ —
an

where a1 =ax =---=a,=1.
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Some Fibonacci Identities (3)

Continued fractions

The continued fraction composed entirely of 1s equals the ratio of successive
Fibonacci numbers:

1 f,
31+ : _ n;—l’
az + !
1
an—2+ 1
an-1+—
n
where a1 =ax =---=a,=1.
1 fs 5
1 —=-=1.(6
i 1 fa 3 @)
1-|——1
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Some applications of Fibonacci numbers (1)

Let S, denote the number of subsets of {1,2,...,n} that do not contain consecutive

elements.
For example, when n =3 the “good” subsets are 0,{1},{2},{3},{1,3}: hence, S3 =5.

For every n>1, S, = f42.
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Some applications of Fibonacci numbers (1)

Let S, denote the number of subsets of {1,2,...,n} that do not contain consecutive
elements.

For example, when n =3 the “good” subsets are 0,{1},{2},{3},{1,3}: hence, S3 =5.

For every n>1, S, = fpy2.

Proof:

m We can identify a subset A of {1,2,...,n} with a binary word w of n bits, such
that i € A if and only if the ith bit of w is 1.

m Then A has no consecutive elements if and only if 11 does not appear in w.

m For n=1 both 0 and 1 are “good”, so $; =2=1;.
For n=2, 00, 01 and 10 are all “good"”, but 11 is “bad”. Thus, So =3=1

m For n >3, a “good’ word w of length n must be either w = u0 where u is a
“good” word of length n—1, or w = v01 where v is a “good” word of length
n—2.

Hence, S, =S, 1+ 5,2 for every n>3.

m Then S, = f,;2 for every n>1.
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Some applications of Fibonacci numbers (2)

Draw n dots in a line. If each domino can cover exactly two such dots, in how many
ways can (non-overlapping) dominoes be placed?
For example:

n=2 ee [ 9

n=3 eeo e [Foe o [e 9]

n=4 eeee [0 olee e[ e]e
L ) i ) | |

The number of possible placements of dominoes with n dots is D, = f41.
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Some applications of Fibonacci numbers (2)

Draw n dots in a line. If each domino can cover exactly two such dots, in how many
ways can (non-overlapping) dominoes be placed?
For example:

n=4 eeee [0 eee o[ e]e
e o[F] [EEE

The number of possible placements of dominoes with n dots is D, = f41.

Proof:
m Consider the rightmost dot in any such placement P.

m If this dot is not covered by a domino, then P minus the last dot determines a
solution for n—1 dots.

m If the last dot is covered by a domino, then the last two dots in P are covered
by this domino. Removing this rightmost domino then gives a solution for n—2
dots.

m Hence, D, = D,_1+ D,_> for every n> 3.
m As D, =2 = f3 (no dominos, one domino) and D3 = 3 = f;, the thesis follows. ;e(L:H



Some applications of Fibonacci numbers (3)

An ordered composition of a positive integer n is a sum of the form a; +...4+a, = n,

where aj,...,a, are positive integers and the order of the summands is taken into
account.

For example:

m4=1+43=3+1=2+2=241+1=142+41=1+1+42=1+1+1+1
m5=441=14+4=1+4+1+4+3=143+1=3+41+1=...=14+1+1+1+1.

m The number of ordered compositions of the positive integer n into odd
summands is T, = f,.

m The number of ordered compositions of the positive integer n where all
summands are 1 or 2 is B, = fpy1.
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Fibonacci number system

Zeckendorf's theorem

Every integer n > 2 has a unique writing
n:fkl +fk2+~~~+fk,

such that:
ki>ky>...>k->1, and

no two k;js are consecutive.
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Fibonacci number system

Zeckendorf's theorem

Every integer n > 2 has a unique writing
n="fi, +fi,+...+f,

such that:
ki > ko >...>k,>1, and
no two k;s are consecutive.

Proof:
m The thesisistruefor1=15,2=f,3=fL and4=3+1=1+5h.
m Suppose the thesis is true for every positive m < n.
m Let ki be the largest such that fi, <n. If i, = n we are done.
m Otherwise, let N =n—fi, >0. If =1 we let ko =2, and we are done.

m Otherwise, n’ > 2, so by induction n’ = f, +...+f;_in a unique way under
conditions 1 and 2.

m But it cannot be k» = k; — 1, otherwise we would have chosen fi, .1 = fi, +fi,
when taking the largest Fibonacci number not larger than n. Hence, the writing TAL
n=fi, +fi, +...+f, is also unique. TECH



Approximations

lim " =0

n—oo
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Approximations

lim ®" =

n—oo

n
u fnx%as n— o

%+

m £,
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Approximations

lim " =0

n—oo

[ ] fnx% as n— oo
=[5

For example:

¢10 1 1
fio = {% + EJ = {55.00364...—1— EJ = |55.50364...| =55

fr= |22 4 L] |ssio077s.. 4 L = 89.49775...| =89
11— \/g 2 —_— . e 2 — o e —_—
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Approximations

Observation

lim " =0

n—oo

[ ] fnx%as n— oo

N
fn

= —®asn— oo
n—1

For example:

iz 89
— = — ~1.61818182~$ =1.61
o 55 6181818 61803
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Fibonacci numbers with negative index: Idea

What can f, be when n is a negative integer?

We want the basic properties to be satisfied for every n € Z:

m Defining formula:
fo=fo1+f 2.

m Expression by golden ratio:

m Matrix form:
7 f, 1 1
n__ n+1 n _
A,( £, f,,,l)WhereAi(l 0).

(Consequently, Cassini's identity too.)

Note: For n =0, the above suggest -1 =1 ... TAL
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Fibonacci numbers with negative index: Formula

For every n > 1,
foo=(-1)""1f
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Fibonacci numbers with negative index: Formula

For every n > 1,
= (71)"_11‘,,

Proof: As (1—¢z) - (1—¢z)=1—z—22,itis ¢ 1 =—¢=0618...
Then for every n>1,

ffn = — ((P—n_q’)‘—n)

Q.E.D.
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Fibonacci numbers with negative index: Formula

For every n > 1,
foo=(-1)""1f

Proof: As (1—¢z) (1—¢z)=1—z—22,itis ¢ 1 =—¢=0618...
Then for every n>1,

fo = (07-47)

= S (H—cor)
_q\n+1 ~

_ (ii/)g (¢n_¢n)

= (U6,

Q.E.D.

Another proof is by induction with the defining relation in the form f,_» = f, — f,_1, TAL
with initial conditions f =1, fop =0. TECH



Warmup: The generalized Cassini's identity

For every n,k € Z,
ok = forafi +fofk 1
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Warmup: The generalized Cassini's identity

For every n,k € Z,
ok = forafi + fafi 1

Why generalized?
Because for k =1 —n we get

= (_1)n72 fa-1fot1 +(_1)n—1fnz7

which is Cassini's identity multiplied by (—1)".
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Warmup: The generalized Cassini's identity

For every n,k € Z,
ok = forafi + fafi 1
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Warmup: The generalized Cassini's identity

For every n,k € Z,
fosk = forafi +fafi1

Proof:

] LetA:(1 L

1 O)' We know that A” = (fnﬂ Fn

£ fnfl) for every n> 0.

1 -1 fo1

n _ f—n+1 f;n 0 1
o = (7 )0 )
_ ffn f7n+1*f—n
- f—n—l f—n - f—n—l

_ (ff(n+1)+1 f (nt1) )
f 1) fo(nr1)-1

m ButB=Al= (O L ) = ( fo ;’1> satisfies the same recurrence with
2

negative indices:
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Warmup: The generalized Cassini's identity

For every n,k € Z,
fopk = fopafe +fafia

Proof:

(1 1 n_ (forr 1
m Let A= (1 0). Then A _( £ fioy for every neZ.

m By associativity of matrix product, A"tk = A7. A for every n,k € Z: that is,

forktr  Fope \ _ (forr o\ (fipr fi
fn+k fn+k—1 fa fo1 fk fk—l

m The thesis then follows by comparing the elements in the upper right corner.
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Warmup: The generalized Cassini's identity

For every n,k € Z,

fn+k = fn+1 e+ fofi—1

Alternative proof by induction:
m For every n€Z let P(n) be the following proposition:

Vk € Z. f,,+k = fefoy1+ fe—1fn.

m For n=0 we get fy = f,-1+0.
For n=1 we get fy11 =f-1+1f_1-1.
m If n>2and P(n—1) and P(n—2) hold, then:
fork = fooiikt+fook
fifo+ fu—afo1+ fiefo1 + fi_afo2
fifor1+fiafn.
m If n<0 and P(n+1) and P(n+2) hold, then

fn+k = fn+2—k - fn+1—k
fifor3 +fe1foro — o2 — fe1fpa TAL
fifnr1 +fi_1fn. TECH



A note on generating functions for bi-infinite sequences

Question

Can we define f, for every n € Z via a single power series which depends from both
positive and negative powers of the variable?
(We can renounce such G(z) to be defined in z=0.)
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A note on generating functions for bi-infinite sequences

Question

Can we define f, for every n € Z via a single power series which depends from both
positive and negative powers of the variable?
(We can renounce such G(z) to be defined in z=10.)

Answer: Yes, but it would not be practical!

A generalization of Laurent’s theorem goes as follows:
Let f be an analytic function defined in an annulus A={ze C|r<|z| < R}.
Then there exists a bi-infinite sequence (ap),cz such that:

the series }.,~0 a»z" has convergence radius > R;
the series )~ a ,z" has convergence radius > 1/r;
for every z€ A it is ¥ ez anz" = f(2).
We could set r =0, but the power series ¥~ a_,z" would then need to have infinite

convergence radius! (i.e., limpe {/|a_n| =0.) However, lim,_e V/fn = ¢.
Also, the intersection of two annuli can be empty: making controls on feasibility of
operations much more difficult to check. (Not so for “disks with a hole in zero".)
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Fibonacci numbers cheat sheet

m Recurrence:

n—1+fn—2 Vn>2;
fn=(-1)""1f, Vn>0.

m Generating function:

1
Zf,,z ——— Vz€C, \z|<$.

n=0

1 1 n_ fn+1 fn
( 1 0> _< fo faoa VneL.

m Generalized Cassini's identity:

m Matrix form:

f,,+k = fkfn+1 + fi_1fn Vn,k €Z.

Greatest common divisor:

ged (i, o) = fecd(mn) VM, n € Z. TAL
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Next section

Harmonic numbers
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Next subsection

Harmonic numbers
m Harmonic numbers
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Harmonic numbers

The harmonic numbers are given by the formula

H, =

1=
x| =

for n >0, with Hp =0

x
||
-

m H, is the discrete analogue of the natural logarithm.

m The first twelve harmonic numbers are shown in the following table:

3 4 5 6 7 8 9 10 11

6 12 60 20 140 280 2520 2520 27720

| n]o 1
IEACEE

NIW N
=
=
N
ol
-
[®
~
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The graph of f(n) = H,

[ n]0O 1 2 3 4 5 6 7 8 9 10 11
H,Jo 1 3 & = Dr x 761
w 2 6 12 60 20 140 280 2520 2520 27720

o 1 2 3 4 5 6 7 8 9 1 1 12 13 14 15 16 17 18 19 20
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The graph of f(n) = H,

| n]Jo 1 2 3 4 5 6 7 8 9 10 11
||H|01§£§E£7
n 2 6 12 60 20 14 80 2520 2520 27720
.
.
s
.
:
05
o 0 1 2 3 4 5 6 7 8 9 10 1" 12 13 14 15 16 17 18 19 20

Looks a bit like the graph of the logarithm ... TAL
ke the grap ear TECH



Harmonic numbers and binary logarithms

For every positive integer n:

142 llgn] < Ha <1+ ign]

Proof:
m Let m= [Ign] be the unique natural number such that 2™ < n<2m+1 —1.
m Then Hom < Hy < Hymia_q, that is:

=il 2k+1 1 —1 2k+1 1 m 2k+1711 m 2k+1 1 1
1+ Y g+ L L o<m<PE <YL g
k=0 j=2k 11 k=0 j=2k+1 k=0 j=2k k=0 j=2k

m Clearly, the left-hand side is 1+Zk 05 —1+ — and the right-hand side is
Yiiol=1+m. Q.E.D.

TAL
TECH



Harmonic numbers and natural logarithms

For every positive integer n:
Inn<H,<1l+Inn

Proof:

m First, let f(x) = £l [n<x<n+1] for x> 1.
n

Then f(x) >1/x for every x > 1, so:
n+1 n dx
H,,:/ f(x)dx>/ X —Inn.
1 1 X

1
Now, let g(x):; [n—1<x < n] for x> 0.

Then g(x) <1/x for every x >0, so:

n ndx
H,,:1+/ g(x)dx<1+/ 7:1+Inn.
1 1
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A card trick: Formulation

The problem

We have a deck of cards, and want to stack them on a table so that:
the stack hangs as much as possible out of the table;
the edge of the cards is parallel to that of the table; and
the stack does not fall down, according to the law of gravity.
Question:

What is the maximum overhang that we can reach?
(provided we have enough many cards)
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A card trick: Formulation

The problem

We have a deck of cards, and want to stack them on a table so that:

the stack hangs as much as possible out of the table;
the edge of the cards is parallel to that of the table; and
the stack does not fall down, according to the law of gravity.

Question:

What is the maximum overhang that we can reach?
(provided we have enough many cards)

Solution:

The stack can overhang by as much as we want!
(provided we have enough many cards)
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A card trick: Experiment

With one card:

m We can put the card so that its center of gravity is precisely on the edge of the
table.

m Let's call this overhang an overhang unit, so that a card is 2 overhang units long.
With two cards:
m We count cards from top to bottom, rather than from bottom to top.

m We put the second card so that it hangs by half a unit over the table, and the
first card to that it hangs by one unit over the first card.

m Then the center of gravity of the stack is precisely on the edge of the table.
With three cards:

m We put the third card so that it hangs by one third of a unit over the table.

m We put the second card so that it hangs by half a unit over the third card.

m We put the first card to that it hangs by one unit over the second card.

m Then the center of gravity of the stack is precisely on the edge of the table.

TAL
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A card trick: General idea and solution

Given n cards in the stack, we count the topmost at first, and identify the table with
an n+ 1st card.
m Call di the overhang of the first card over the kth, so di = 0.
For example, with n =3 we had d» =1, d3 =3/2, and ds =11/6 was the
overhang over the table.
m If we want that the center of gravity of the entire stack is on the edge of the
table, we must also have the center of gravity of the first k cards over the edge
of the k+ 1st card. Then:

_ (d1+1)+(d2+1)+...+(dk+1)
k

di+1 foreveryl < k< n

m By multiplying by k and writing for two consecutive values, we have:

kdkr1 = k+di+da+...+di
(k—l)dk = k—1+di+da+...+dx 1

and by subtracting,
kdg+1— (k=1)dk =1+ dg
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TECH



A card trick: General idea and solution

Given n cards in the stack, we count the topmost at first, and identify the table with
an n+1st card.

m Call di the overhang of the first card over the kth, so di = 0.
For example, with n =3 we had d» =1, d3 =3/2, and ds =11/6 was the
overhang over the table.

m If we want that the center of gravity of the entire stack is on the edge of the
table, we must also have the center of gravity of the first k cards over the edge
of the k + 1st card.

m We have thus found that dy must satisfy:

d = o,
kdkri = (k—1)dk+1+dx = kdy+1 forevery k > 1.

1
m But the recurrence di1 = di + % with the initial condition d; =0 has the

solution:
dy+1 = Hy forevery k > 0.

This is also the maximum possible overhang with k cards, because as soon as
we move a card far from the edge of the table, the stack topples.
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Generating function of harmonic numbers

1 1
Ltz =i

n=0 -

1 1 1
Indeed, 12 =Yp>02", In 13 :):,,20; [n>1]z", and
npom1 .
= — = —[k>1]1""
Fin kgﬁ k ;o k lle=>1]
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Generating function of harmonic numbers

Z:H,,z":ilnL
1-z 1-z

1
=Ynzo [n>1]2" and

A general remark

If G(z) is the generating function of the sequence (go,g1,82,...), then G(z)/(1—2z) is
the generating function of the sequence of the prefix sums of the original sequence:

if G(z)= Zg,,z then G(_z Z <Z gk>z

n>0 n=0 \ k=

[AL
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Harmonic numbers of higher order

For n>1 and m > 2 integer, the nth harmonic number of order m is

(m_ vy L
Hy™ = e

HM:

As with the “first order” harmonic numbers, we put H((,'") =0 as an empty sum.

For m > 2 the quantities
H™ = fim H{™
n—oo

exist finite: they are the values of the Riemann zeta function

;(s):Z%, 551l

n>1

fors=m
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Euler's ¥ constant

Euler's approximation of harmonic numbers

For every n> 1,
H,—Inn=1— Z l(H,(,m)—1>

m>2
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Euler's ¥ constant

Euler's approximation of harmonic numbers
' L/ pym
Ho—nn=1- Y = (H{™-1)

For every n>1
L _
m>2 m

For k > 2 we can write:
k
|
"k-17 % g m- k'"
As In(a/b) =Ina—Inb and In1 =0, by summing for k from 2 to n we get
n 1 n
~1+ Y (MM -1)
m>2

k=2m>1
TAL
TECH



Euler's ¥ constant

Euler's approximation of harmonic numbers

For every n > 1,

Hy—Inn=1-Y l(H,‘,"'Ll)

m=2 i

For m>2, H,(,m) converges from below to §(m).

It turns out that {(s) —1~27°, therefore the series }¥,,~» = (§(m)—1) converges.
The quantity

y=1- ¥ —({m)-1)

m>2

is called Euler’s constant. The following approximation holds:

Ho=Inn+y+—— ——+o &
o = A 2n 12n2 " %\ B

TAL
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Next subsection

Harmonic numbers

m Harmonic summation
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Harmonic numbers

Harmonic and Stirling cyclic numbers: H, = L ["3'] for every n>1;

n
Y Hie=(n+1)(Hpy1—1) for every n>1;

k=1

k=1

2 ()= () (#

lim H, = ;
n—soo
11
Hy ~1 L
ne Nyt T T2

Euler’s constant.

n
Y kH( = (n—;—l) (Hn+1 - %) for every n>1;

1
1 — TH) for every n>1;

€n

12007 where Yy~ 0.57721 56649 01533 denotes

[AL
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Harmonic numbers

= Harmonic and Stirling cyclic numbers: H, = L ["5"] for every n>1;

n
B Y Hie=(n+1)(Hn1—1) for every n>1;
k=1

n
[ ] Z kH, = (n—l—l) (Hn+1 — 1) for every n>1;
=) 2 2

"k n+1 1
n k; <m> H, = <m+1> <Hn+1 - m) for every n>1;

m lim H, =o;
n—oo

1, &
12n2 © 120n*

1
m Hy~Inn+y+——
2n
Euler’s constant.

m Hip ~2.92896 82578 96
®m Hipooooo ~ 14.39272 67228 65723 63138 11275

where Yy~ 0.57721 56649 01533 denotes

[AL
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Harmonic numbers and binomial coefficients

7k n+1 1
L ()= () (- 757)

TAL
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Harmonic numbers and binomial coefficients

7k n+1 1
k;, (m)”k - <m+1> (H"*“ m+1)

Proof:
= For v(x) = (pia) itis Av() = (311) = (1) = ()
m Summing by parts with u(x) = Hy:

n+1
Z (:1) Hy 6x

0

Il
7N
3
T x
N
T

TAL
Q.E.D.TECH



Harmonic numbers and binomial coefficients

Corollary

For m =0 we get:

i Hi=(n+1)(Hp+1—1)=(n+1)H,—n
k=0

g n(n+1 1 n(n+1 n(n+1
ORGSR ST S DAL LS
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Sum of averaged harmonic numbers

Proof:

Sn = Z%Zk‘,lz Y i
i kST 1Skentk
1 1 & (1)\2
B 2(1<jgn1<k<njk+k§1(k)>
- 3((5) (3)+24)
- ep)

TAL
Q.E.D.TECH



Next section

Bernoulli numbers
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Bernoulli numbers: History

Jakob Bernoulli (1654-1705) worked on the functions:
n
Sm(n)=0"+1"+... +(n—1)" = Z k™M= ZX"'SX
0

Plotting an expansion with respect to n yields:

So(n) = n

Si(n) = %nz 7%n

Sa(n) = §n3 7?n2 +%n

S3(n) = gn“ —§n3 —l—§n2

Sa(n) = §"5 —gn“ +§5n3 —%n

Ss(n) = §n6 —gns -i—}—zn4 —fznz

Se(n) = ?"7 —gne +3n° =&l +%n

Sz(n) = gn®  —gn’ +5n° —Lnt + 55 n?
R (U e A s (e
59(") = 1170n10 7§n9 +Zn8 7ﬁn6 +5n 7%n2

TAL
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Bernoulli numbers: History

Jakob Bernoulli (1654-1705) worked on the functions:
n
Sm(n)=0"+1"+... +(n—1)" Z k™M= ZX"'SX

Bernoulli observed the following regularities:

m The leading coefficient of S, is always m%*_l = it

1 m+1
("o")

= The coefficient of n™ in Sy, is always —3 = —3 - -1 ("f*
m The coefficient of ™~ in S, is always 2 = %%ﬂ (™
m The coefficient of ™2 in S, is always 0.
m The coefficient of n™=3 in S, is always —%)0('"2) - #ﬂ (™.
m The coefficient of n™~% in S, is always 0.
m The coefficient of ™5 in S, is always 2 - mi_l (™).

= And soon,andsoon ...

TAL
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Bernoulli numbers

The kth Bernoulli number is the unique value By such that, for every m >0,

1 & (m+1
—_ B m+1—k
Sm(n) m+1 = ( k ) kN

As Sp(1) = 0" = [m = 0], we can also use the following recurrence:

¥ ("’jl)Bk:[m:OI

k=0

TAL
TECH



Bernoulli numbers

The kth Bernoulli number is the unique value By such that, for every m >0,

S (,,):L v (M1 g m1-k
m m—|—1k:0 k ks

As S5,,(1) =0" = [m = 0], we can also use the following recurrence:

¥ (’"jl)skzlm:O]

k=0
Examples:
m=20 B():].
m=1 Bo+281:0 BIZ_%
m=2 By+3B;1+3B>=0 BZ:%
m=3 Byg+4B1+6B>+4B3 =0 B3 =0
m=4 By+5B1+10B;+10B3+5B, =0 Bi=—-2%
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Bernoulli numbers

The kth Bernoulli number is the unique value By such that, for every m >0,

1 & (m+1 M1k
Sm(n)_im_i_lkzo( B )Bkn

As 5,(1) =0™ = [m = 0], we can also use the following recurrence:

)3 (m:1)3k=[m=01

k=0
n|o 1 2 3 4 5 6 7 8§ 9 10 11 12
BT -3 § 0 -3 0 45 0 —5 0 g 0 —37%
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Bernoulli numbers and the Riemann zeta function

For every n > 1,

For every n > 1,

2n—1_.2n
C(2n) = (_1)n71 2 (27:1)! =2l
In particular, ,
1 T
(=Y =%

From this and Stirling’s approximation we get:
n \2n
\BZn|~4\/nn(n—) for n — oo
e

TAL
TECH



Generating function of the Bernoulli numbers ... almost

Because of the approximation in the previous slide,
a . n
limsup {/|Bn| = limsup —— = +o0,
n=0 n=0 2re

and the Bernoulli numbers do not have a generating function.
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Generating function of the Bernoulli numbers ... almost

Because of the approximation in the previous slide,
. . n
limsup {/|By| = limsup —— = oo,
n=>0 n>0 27e

and the Bernoulli numbers do not have a generating function.

However:
B

z
len:ezfl'

|
>0 n!
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Generating function of the Bernoulli numbers ... almost

Because of the approximation in the previous slide,
limsup v/|Bn| _||msup— +o0,
n=0 2me

and the Bernoulli numbers do not have a generating function.

However:
By , z

ez—1"

|
>0 n!

This function is analytic in a neighborhood of the origin because of:

Singularity removal theorem

Let f(z) be analytic in the open disk D(c) of center c and radius r, except at most
the center c itself.

If f(z) is bounded in D,(c)\{c}, then it can be extended to an analytic function in
the entire D,(c).

In particular, if lim,_,c f(z) exists, then f(z) has an analytic continuation.

This is the case of = , which converges to 1 for z — 0.
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