Special Numbers ITT9132 Concrete Mathematics

Chapter Six Fibonacci Numbers Harmonic Numbers Bernoulli numbers

Contents

1 Fibonacci Numbers

2 Harmonic numbers

- Harmonic numbers
- Harmonic summation
- 3 Bernoulli numbers

Next section

1 Fibonacci Numbers

2 Harmonic numbers

- Harmonic numbers
- Harmonic summation

3 Bernoulli numbers

Some Fibonacci Identities

Cassini's Identity $f_{n+1}f_{n-1} - f_n^2 = (-1)^n$ for all n > 0

Some Fibonacci Identities

Cassini's Identity $f_{n+1}f_{n-1} - f_n^2 = (-1)^n$ for all n > 0

The Chessboard Paradox

Some Fibonacci Identities

Cassini's Identity $f_{n+1}f_{n-1} - f_n^2 = (-1)^n$ for all n > 0

Divisors f_n and f_{n+1} are relatively prime and f_k divides f_{nk} :

$$gcd(f_n, f_m) = f_{gcd(n,m)}$$

Cassini's Identity $f_{n+1}f_{n-1} - f_n^2 = (-1)^n$ for all n > 0

Divisors f_n and f_{n+1} are relatively prime and f_k divides f_{nk} :

$$\gcd(f_n, f_m) = f_{\gcd(n,m)}$$
Matrix Calculus If A is the 2×2 matrix $\begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$, then
$$A^n = \begin{pmatrix} f_{n+1} & f_n \\ f_n & f_{n-1} \end{pmatrix}, \quad \text{for } n > 0.$$

Note that this yields Cassini's identity, because $\det A = -1$.

Some Fibonacci Identities (2)

Some Fibonacci Identities (3)

Continued fractions

The continued fraction composed entirely of 1s equals the ratio of successive Fibonacci numbers:

where $a_1 = a_2 = \cdots = a_n = 1$.

For example

$$1 + \frac{1}{1 + \frac{1}{1 + \frac{1}{1 + \frac{1}{1}}}} = \frac{f_5}{f_4} = \frac{5}{3} = 1.(6)$$

Some Fibonacci Identities (3)

Continued fractions

The continued fraction composed entirely of 1s equals the ratio of successive Fibonacci numbers:

where $a_1 = a_2 = \cdots = a_n = 1$.

For example

$$1 + \frac{1}{1 + \frac{1}{1 + \frac{1}{1 + \frac{1}{1}}}} = \frac{f_5}{f_4} = \frac{5}{3} = 1.(6)$$

Some applications of Fibonacci numbers (1)

Let S_n denote the number of subsets of $\{1, 2, \ldots, n\}$ that do not contain consecutive elements.

For example, when n = 3 the "good" subsets are $\emptyset, \{1\}, \{2\}, \{3\}, \{1,3\}$: hence, $S_3 = 5$.

Theorem

For every $n \ge 1$, $S_n = f_{n+2}$.

Let S_n denote the number of subsets of $\{1, 2, ..., n\}$ that do not contain consecutive elements.

For example, when n = 3 the "good" subsets are $\emptyset, \{1\}, \{2\}, \{3\}, \{1,3\}$: hence, $S_3 = 5$.

Theorem

For every $n \ge 1$, $S_n = f_{n+2}$.

Proof:

- We can identify a subset A of $\{1, 2, ..., n\}$ with a binary word w of n bits, such that $i \in A$ if and only if the *i*th bit of w is 1.
- Then A has no consecutive elements if and only if 11 does not appear in w.
- For n = 1 both 0 and 1 are "good", so $S_1 = 2 = f_3$. For n = 2, 00, 01 and 10 are all "good", but 11 is "bad". Thus, $S_2 = 3 = f_4$
- For $n \ge 3$, a "good" word w of length n must be either w = u0 where u is a "good" word of length n-1, or w = v01 where v is a "good" word of length n-2.

Hence, $S_n = S_{n-1} + S_{n-2}$ for every $n \ge 3$.

• Then $S_n = f_{n+2}$ for every $n \ge 1$.

Some applications of Fibonacci numbers (2)

Draw n dots in a line. If each domino can cover exactly two such dots, in how many ways can (non-overlapping) dominoes be placed?

For example:

Theorem

The number of possible placements of dominoes with n dots is $D_n = f_{n+1}$.

Some applications of Fibonacci numbers (2)

Draw n dots in a line. If each domino can cover exactly two such dots, in how many ways can (non-overlapping) dominoes be placed? For example:

Theorem

The number of possible placements of dominoes with *n* dots is $D_n = f_{n+1}$.

Proof:

- Consider the rightmost dot in any such placement *P*.
- If this dot is not covered by a domino, then P minus the last dot determines a solution for n-1 dots.
- If the last dot is covered by a domino, then the last two dots in P are covered by this domino. Removing this rightmost domino then gives a solution for n-2 dots.
- Hence, $D_n = D_{n-1} + D_{n-2}$ for every $n \ge 3$.
- As $D_2 = 2 = f_3$ (no dominos, one domino) and $D_3 = 3 = f_4$, the thesis follows.

An ordered composition of a positive integer n is a sum of the form $a_1 + \ldots + a_k = n$, where a_1, \ldots, a_k are positive integers and the order of the summands is taken into account.

For example:

- $\bullet 4 = 1 + 3 = 3 + 1 = 2 + 2 = 2 + 1 + 1 = 1 + 2 + 1 = 1 + 1 + 2 = 1 + 1 + 1 + 1$
- **5** = 4 + 1 = 1 + 4 = 1 + 1 + 3 = 1 + 3 + 1 = 3 + 1 + 1 = ... = 1 + 1 + 1 + 1 + 1 + 1.

Theorem

- The number of ordered compositions of the positive integer n into odd summands is $T_n = f_n$.
- The number of ordered compositions of the positive integer *n* where all summands are 1 or 2 is $B_n = f_{n+1}$.

Fibonacci number system

Zeckendorf's theorem

Every integer $n \ge 2$ has a unique writing

$$n = f_{k_1} + f_{k_2} + \ldots + f_{k_r}$$

such that:

1

$$k_1 > k_2 > \ldots > k_r > 1$$
, and

2 no two k_is are consecutive.

Fibonacci number system

Zeckendorf's theorem

Every integer $n \ge 2$ has a unique writing

$$n = f_{k_1} + f_{k_2} + \ldots + f_{k_r}$$

such that:

- 1 $k_1 > k_2 > \ldots > k_r > 1$, and
- 2 no two k_is are consecutive.

Proof:

- The thesis is true for $1 = f_2$, $2 = f_3$, $3 = f_4$ and $4 = 3 + 1 = f_4 + f_2$.
- Suppose the thesis is true for every positive m < n.
- Let k_1 be the largest such that $f_{k_1} \leq n$. If $f_{k_1} = n$ we are done.
- Otherwise, let $n' = n f_{k_1} > 0$. If n' = 1 we let $k_2 = 2$, and we are done.
- Otherwise, $n' \ge 2$, so by induction $n' = f_{k_2} + \ldots + f_{k_r}$ in a unique way under conditions 1 and 2.
- But it cannot be $k_2 = k_1 1$, otherwise we would have chosen $f_{k_1+1} = f_{k_1} + f_{k_2}$ when taking the largest Fibonacci number not larger than *n*. Hence, the writing **TACK** $n = f_{k_1} + f_{k_2} + \ldots + f_{k_r}$ is also unique.

Observation

$$\lim_{n\to\infty}\widehat{\Phi}^n=0$$

Observation

$$\lim_{n\to\infty}\widehat{\Phi}^n=0$$

•
$$f_n \asymp \frac{\Phi^n}{\sqrt{5}}$$
 as $n \to \infty$
• $f_n = \left\lfloor \frac{\Phi^n}{\sqrt{5}} + \frac{1}{2} \right\rfloor$

Observation

•
$$f_n \asymp \frac{\Phi^n}{\sqrt{5}}$$
 as $n \to \infty$
• $f_n = \left\lfloor \frac{\Phi^n}{\sqrt{5}} + \frac{1}{2} \right\rfloor$

For example:

$$f_{10} = \left\lfloor \frac{\Phi^{10}}{\sqrt{5}} + \frac{1}{2} \right\rfloor = \left\lfloor 55.00364... + \frac{1}{2} \right\rfloor = \left\lfloor 55.50364... \right\rfloor = 55$$
$$f_{11} = \left\lfloor \frac{\Phi^{11}}{\sqrt{5}} + \frac{1}{2} \right\rfloor = \left\lfloor 88.99775... + \frac{1}{2} \right\rfloor = \left\lfloor 89.49775... \right\rfloor = 89$$

Observation

$$f_n \asymp \frac{\Phi^n}{\sqrt{5}} \text{ as } n \to \infty$$

$$f_n = \left\lfloor \frac{\Phi^n}{\sqrt{5}} + \frac{1}{2} \right\rfloor$$

$$\frac{f_n}{f_{n-1}} \to \Phi \text{ as } n \to \infty$$

For example:

$$\frac{f_{11}}{f_{10}} = \frac{89}{55} \approx 1.61818182 \approx \Phi = 1.61803\dots$$

Fibonacci numbers with negative index: Idea

Question

What can f_n be when n is a negative integer?

We want the basic properties to be satisfied for every $n \in \mathbb{Z}$:

Defining formula:

$$f_n = f_{n-1} + f_{n-2}$$
.

Expression by golden ratio:

$$f_n = \frac{1}{\sqrt{5}} \left(\phi^n - \hat{\phi}^n \right) \,.$$

Matrix form:

$$A^{n} = \begin{pmatrix} f_{n+1} & f_{n} \\ f_{n} & f_{n-1} \end{pmatrix} \text{ where } A = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}.$$

(Consequently, Cassini's identity too.) Note: For n = 0, the above suggest $f_{-1} = 1$...

Fibonacci numbers with negative index: Formula

Theorem

For every $n \ge 1$,

$$f_{-n} = (-1)^{n-1} f_n$$

Fibonacci numbers with negative index: Formula

Theorem

For every $n \ge 1$,

$$f_{-n} = (-1)^{n-1} f_n$$

Proof: As $(1 - \phi z) \cdot (1 - \hat{\phi} z) = 1 - z - z^2$, it is $\phi^{-1} = -\hat{\phi} = 0.618...$ Then for every $n \ge 1$,

$$\begin{split} \bar{f}_{-n} &= \frac{1}{\sqrt{5}} \left(\phi^{-n} - \hat{\phi}^{-n} \right) \\ &= \frac{1}{\sqrt{5}} \left((-\hat{\phi})^n - (-\phi)^n \right) \\ &= \frac{(-1)^{n+1}}{\sqrt{5}} \left(\phi^n - \hat{\phi}^n \right) \\ &= (-1)^{n-1} f_n \,, \end{split}$$

Q.E.D.

Fibonacci numbers with negative index: Formula

Theorem

For every $n \ge 1$,

$$f_{-n} = (-1)^{n-1} f_n$$

Proof: As $(1 - \phi z) \cdot (1 - \hat{\phi} z) = 1 - z - z^2$, it is $\phi^{-1} = -\hat{\phi} = 0.618...$ Then for every $n \ge 1$,

$$f_{-n} = \frac{1}{\sqrt{5}} \left(\phi^{-n} - \hat{\phi}^{-n} \right)$$

= $\frac{1}{\sqrt{5}} \left((-\hat{\phi})^n - (-\phi)^n \right)$
= $\frac{(-1)^{n+1}}{\sqrt{5}} \left(\phi^n - \hat{\phi}^n \right)$
= $(-1)^{n-1} f_n$,

Q.E.D.

Another proof is by induction with the defining relation in the form $f_{n-2} = f_n - f_{n-1}$, with initial conditions $f_1 = 1$, $f_0 = 0$.

Theorem

For every $n, k \in \mathbb{Z}$,

$$f_{n+k} = f_{n+1}f_k + f_n f_{k-1}$$

Theorem

For every $n, k \in \mathbb{Z}$,

$$f_{n+k} = f_{n+1}f_k + f_nf_{k-1}$$

Why generalized?

Because for k = 1 - n we get

$$f_1 = (-1)^{n-2} f_{n-1} f_{n+1} + (-1)^{n-1} f_n^2,$$

which is Cassini's identity multiplied by $(-1)^n$.

Theorem

For every $n, k \in \mathbb{Z}$,

$$f_{n+k} = f_{n+1}f_k + f_nf_{k-1}$$

Proof:

• Let
$$A = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$$
.

Theorem

For every $n, k \in \mathbb{Z}$,

$$f_{n+k} = f_{n+1}f_k + f_nf_{k-1}$$

Proof:

Let
$$A = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$$
. We know that $A^n = \begin{pmatrix} f_{n+1} & f_n \\ f_n & f_{n-1} \end{pmatrix}$ for every $n \ge 0$.
But $B = A^{-1} = \begin{pmatrix} 0 & 1 \\ 1 & -1 \end{pmatrix} = \begin{pmatrix} f_0 & f_{-1} \\ f_{-1} & f_{-2} \end{pmatrix}$ satisfies the same recurrence with negative indices:

$$\begin{aligned} B^{n} \cdot B &= \begin{pmatrix} f_{-n+1} & f_{-n} \\ f_{-n} & f_{-n-1} \end{pmatrix} \cdot \begin{pmatrix} 0 & 1 \\ 1 & -1 \end{pmatrix} \\ &= \begin{pmatrix} f_{-n} & f_{-n+1} - f_{-n} \\ f_{-n-1} & f_{-n} - f_{-n-1} \end{pmatrix} \\ &= \begin{pmatrix} f_{-(n+1)+1} & f_{-(n+1)} \\ f_{-(n+1)} & f_{-(n+1)-1} \end{pmatrix} \end{aligned}$$

Theorem

For every $n, k \in \mathbb{Z}$,

$$f_{n+k} = f_{n+1}f_k + f_nf_{k-1}$$

Proof:

• Let
$$A = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$$
. Then $A^n = \begin{pmatrix} f_{n+1} & f_n \\ f_n & f_{n-1} \end{pmatrix}$ for every $n \in \mathbb{Z}$.

By associativity of matrix product, $A^{n+k} = A^n \cdot A^k$ for every $n, k \in \mathbb{Z}$ that is,

$$\begin{pmatrix} f_{n+k+1} & f_{n+k} \\ f_{n+k} & f_{n+k-1} \end{pmatrix} = \begin{pmatrix} f_{n+1} & f_n \\ f_n & f_{n-1} \end{pmatrix} \cdot \begin{pmatrix} f_{k+1} & f_k \\ f_k & f_{k-1} \end{pmatrix}$$

The thesis then follows by comparing the elements in the upper right corner.

Theorem

For every $n, k \in \mathbb{Z}$,

$$f_{n+k} = f_{n+1}f_k + f_nf_{k-1}$$

Alternative proof by induction:

For every $n \in \mathbb{Z}$ let P(n) be the following proposition:

$$\forall k \in \mathbb{Z} \, f_{n+k} = f_k f_{n+1} + f_{k-1} f_n \, dk$$

For
$$n = 0$$
 we get $f_k = f_k \cdot 1 + 0$.
For $n = 1$ we get $f_{k+1} = f_k \cdot 1 + f_{k-1} \cdot 1$.
If $n \ge 2$ and $P(n-1)$ and $P(n-2)$ hold, then:
$$f_{n+k} = f_{n-1+k} + f_{n-2+k}$$

$$= f_k f_n + f_{k-1} f_{n-1} + f_k f_{n-1} + f_{k-1} f_{n-2}$$

= $f_k f_{n+1} + f_{k-1} f_n$.

• If n < 0 and P(n+1) and P(n+2) hold, then

$$\begin{aligned} f_{n+k} &= f_{n+2-k} - f_{n+1-k} \\ &= f_k f_{n+3} + f_{k-1} f_{n+2} - f_k f_{n+2} - f_{k-1} f_{n+1} \\ &= f_k f_{n+1} + f_{k-1} f_n. \end{aligned}$$

A note on generating functions for bi-infinite sequences

Question

Can we define f_n for every $n \in \mathbb{Z}$ via a single power series which depends from both positive and negative powers of the variable? (We can renounce such G(z) to be defined in z = 0.)

Question

Can we define f_n for every $n \in \mathbb{Z}$ via a single power series which depends from both positive and negative powers of the variable? (We can renounce such G(z) to be defined in z = 0.)

Answer: Yes, but it would not be practical!

A generalization of Laurent's theorem goes as follows: Let f be an analytic function defined in an annulus $A = \{z \in \mathbb{C} \mid r < |z| < R\}$. Then there exists a bi-infinite sequence $\langle a_n \rangle_{n \in \mathbb{Z}}$ such that:

- 1 the series $\sum_{n\geq 0} a_n z^n$ has convergence radius $\geq R$;
- 2 the series $\sum_{n\geq 1} a_{-n} z^n$ has convergence radius $\geq 1/r$;

3 for every
$$z \in A$$
 it is $\sum_{n \in \mathbb{Z}} a_n z^n = f(z)$

We could set r = 0, but the power series $\sum_{n \ge 1} a_{-n} z^n$ would then need to have infinite convergence radius! (i.e., $\lim_{n \to \infty} \sqrt[n]{|a_{-n}|} = 0$.) However, $\lim_{n \to \infty} \sqrt[n]{f_n} = \phi$. Also, the intersection of two annuli can be empty: making controls on feasibility of operations much more difficult to check. (Not so for "disks with a hole in zero".)

Fibonacci numbers cheat sheet

Recurrence:

$$\begin{aligned} &f_0 = 0; \ f_1 = 1; \\ &f_n = f_{n-1} + f_{n-2} & \forall n \ge 2; \\ &f_{-n} = (-1)^{n-1} f_n & \forall n > 0. \end{aligned}$$

Generating function:

$$\sum_{n\geq 0}f_nz^n=\frac{z}{1-z-z^2} \ \forall z\in\mathbb{C}\,,\ |z|<\frac{1}{\phi}\,.$$

Matrix form:

$$\begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}^n = \begin{pmatrix} f_{n+1} & f_n \\ f_n & f_{n-1} \end{pmatrix} \quad \forall n \in \mathbb{Z}.$$

Generalized Cassini's identity:

$$f_{n+k} = f_k f_{n+1} + f_{k-1} f_n \quad \forall n, k \in \mathbb{Z}.$$

Greatest common divisor:

$$\operatorname{gcd}(f_m, f_n) = f_{\operatorname{gcd}(m,n)} \quad \forall m, n \in \mathbb{Z}.$$

Next section

1 Fibonacci Numbers

2 Harmonic numbers

- Harmonic numbersHarmonic summation
- 3 Bernoulli numbers

Next subsection

1 Fibonacci Numbers

2 Harmonic numbers
a Harmonic numbers
b Harmonic summation

3 Bernoulli numbers

Harmonic numbers

Definition

The harmonic numbers are given by the formula

$$H_n = \sum_{k=1}^n \frac{1}{k} \qquad \text{for } n \ge 0, \text{ with } H_0 = 0$$

- H_n is the discrete analogue of the natural logarithm.
- The first twelve harmonic numbers are shown in the following table:

	n	0	1	2	3	4	5	6	7	8	9	10	11
Ι	H _n	0	1	$\frac{3}{2}$	$\frac{11}{6}$	$\frac{25}{12}$	$\frac{137}{60}$	$\frac{49}{20}$	$\frac{363}{140}$	$\frac{761}{280}$	$\frac{7129}{2520}$	$\frac{7381}{2520}$	83711 27720

The graph of $f(n) = H_n$

TAL TECH

The graph of $f(n) = H_n$

Looks a bit like the graph of the logarithm

Harmonic numbers and binary logarithms

Theorem

For every positive integer n:

$$1 + \frac{1}{2} \lfloor \lg n \rfloor \leqslant H_n \leqslant 1 + \lfloor \lg n \rfloor$$

Proof:

• Let $m = \lfloor \lg n \rfloor$ be the unique natural number such that $2^m \leq n \leq 2^{m+1} - 1$.

• Then
$$H_{2^m} \leqslant H_n \leqslant H_{2^{m+1}-1}$$
, that is

$$1 + \sum_{k=0}^{m-1} \sum_{j=2^{k}+1}^{2^{k+1}} \frac{1}{2^{k+1}} \leq 1 + \sum_{k=0}^{m-1} \sum_{j=2^{k}+1}^{2^{k+1}} \frac{1}{j} \leq H_n \leq \sum_{k=0}^{m} \sum_{j=2^{k}}^{2^{k+1}-1} \frac{1}{j} \leq \sum_{k=0}^{m} \sum_{j=2^{k}}^{2^{k+1}-1} \frac{1}{2^{k}} \leq \frac{1}{2^{k}} \sum_{j=2^{k}+1}^{2^{k}-1} \frac{1}{2^{k}} \geq \frac{1}{2^{k}} \sum_{j=2^{k}+1}^{2^{k}$$

Clearly, the left-hand side is $1 + \sum_{k=0}^{m-1} \frac{1}{2} = 1 + \frac{m}{2}$ and the right-hand side is $\sum_{k=0}^{m} 1 = 1 + m$. Q.E.D.

Harmonic numbers and natural logarithms

Theorem

For every positive integer n:

 $\ln n < H_n < 1 + \ln n$

Proof:

First, let
$$f(x) = \frac{1}{n} [n < x \le n+1]$$
 for $x > 1$.

• Then
$$f(x) > 1/x$$
 for every $x > 1$, so:

$$H_n = \int_1^{n+1} f(x) \, dx > \int_1^n \frac{dx}{x} = \ln n \, dx$$

Now, let
$$g(x) = \frac{1}{n} [n-1 \le x < n]$$
 for $x > 0$.

• Then g(x) < 1/x for every x > 0, so:

$$H_n = 1 + \int_1^n g(x) \, dx < 1 + \int_1^n \frac{dx}{x} = 1 + \ln n \, .$$

A card trick: Formulation

The problem

We have a deck of cards, and want to stack them on a table so that:

- 1 the stack hangs as much as possible out of the table;
- 2 the edge of the cards is parallel to that of the table; and
- 3 the stack does not fall down, according to the law of gravity.

Question:

What is the maximum overhang that we can reach? (provided we have enough many cards)

A card trick: Formulation

The problem

We have a deck of cards, and want to stack them on a table so that:

- 1 the stack hangs as much as possible out of the table;
- 2 the edge of the cards is parallel to that of the table; and
- 3 the stack does not fall down, according to the law of gravity.

Question:

What is the maximum overhang that we can reach? (provided we have enough many cards)

Solution:

The stack can overhang by as much as we want! (provided we have enough many cards)

A card trick: Experiment

With one card:

- We can put the card so that its center of gravity is precisely on the edge of the table.
- Let's call this overhang an overhang unit, so that a card is 2 overhang units long.

With two cards:

- We count cards from top to bottom, rather than from bottom to top.
- We put the second card so that it hangs by half a unit over the table, and the first card to that it hangs by one unit over the first card.
- Then the center of gravity of the stack is precisely on the edge of the table. With three cards:
 - We put the third card so that it hangs by one third of a unit over the table.
 - We put the second card so that it hangs by half a unit over the third card.
 - We put the first card to that it hangs by one unit over the second card.
 - Then the center of gravity of the stack is precisely on the edge of the table.

A card trick: General idea and solution

Given *n* cards in the stack, we count the topmost at first, and identify the table with an n+1st card.

- Call d_k the overhang of the first card over the kth, so $d_1 = 0$. For example, with n = 3 we had $d_2 = 1$, $d_3 = 3/2$, and $d_4 = 11/6$ was the overhang over the table.
- If we want that the center of gravity of the entire stack is on the edge of the table, we must also have the center of gravity of the first k cards over the edge of the k+1st card. Then:

$$d_{k+1} = \frac{(d_1+1) + (d_2+1) + \ldots + (d_k+1)}{k}$$
 for every $1 \le k \le n$

By multiplying by k and writing for two consecutive values, we have:

$$kd_{k+1} = k + d_1 + d_2 + \ldots + d_k$$

(k-1)d_k = k-1 + d_1 + d_2 + \ldots + d_{k-1}

and by subtracting,

$$kd_{k+1} - (k-1)d_k = 1 + d_k$$

A card trick: General idea and solution

Given *n* cards in the stack, we count the topmost at first, and identify the table with an n+1st card.

- Call d_k the overhang of the first card over the kth, so $d_1 = 0$. For example, with n = 3 we had $d_2 = 1$, $d_3 = 3/2$, and $d_4 = 11/6$ was the overhang over the table.
- If we want that the center of gravity of the entire stack is on the edge of the table, we must also have the center of gravity of the first k cards over the edge of the k+1st card.
- We have thus found that *d_k* must satisfy:

$$d_1 = 0,$$

$$kd_{k+1} = (k-1)d_k + 1 + d_k = kd_k + 1 \text{ for every } k \ge 1.$$

But the recurrence $d_{k+1} = d_k + \frac{1}{k}$ with the initial condition $d_1 = 0$ has the solution:

$$d_{k+1} = H_k$$
 for every $k \ge 0$.

This is also the maximum possible overhang with k cards, because as soon as we move a card far from the edge of the table, the stack topples.

Generating function of harmonic numbers

Theorem

$$\sum_{n\geq 0} H_n z^n = \frac{1}{1-z} \ln \frac{1}{1-z}$$

Indeed,
$$\frac{1}{1-z} = \sum_{n \ge 0} z^n$$
, $\ln \frac{1}{1-z} = \sum_{n \ge 0} \frac{1}{n} [n \ge 1] z^n$, and

$$H_n = \sum_{k=1}^n \frac{1}{k} = \sum_{k=0}^n \frac{1}{k} [k \ge 1] 1^{n-k}$$

Generating function of harmonic numbers

Theorem

$$\sum_{n \ge 0} H_n z^n = \frac{1}{1-z} \ln \frac{1}{1-z}$$

Indeed,
$$\frac{1}{1-z} = \sum_{n \ge 0} z^n$$
, $\ln \frac{1}{1-z} = \sum_{n \ge 0} \frac{1}{n} [n \ge 1] z^n$, and

$$H_n = \sum_{k=1}^n \frac{1}{k} = \sum_{k=0}^n \frac{1}{k} [k \ge 1] 1^{n-k}$$

A general remark

If G(z) is the generating function of the sequence $\langle g_0, g_1, g_2, ... \rangle$, then G(z)/(1-z) is the generating function of the sequence of the prefix sums of the original sequence:

if
$$G(z) = \sum_{n \ge 0} g_n z^n$$
 then $\frac{G(z)}{1-z} = \sum_{n \ge 0} \left(\sum_{k=0}^n g_k\right) z^n$

Definition

For $n \ge 1$ and $m \ge 2$ integer, the *n*th harmonic number of order *m* is

$$\mathcal{H}_n^{(m)} = \sum_{k=1}^n \frac{1}{k^m}$$

As with the "first order" harmonic numbers, we put $H_0^{(m)} = 0$ as an empty sum.

For $m \ge 2$ the quantities

$$H^{(m)}_{\infty} = \lim_{n \to \infty} H^{(m)}_n$$

exist finite: they are the values of the Riemann zeta function

$$\zeta(s) = \sum_{n \ge 1} \frac{1}{n^s}, \ s > 1$$

for s = m.

Euler's γ constant

Euler's approximation of harmonic numbers

For every $n \ge 1$,

$$H_n - \ln n = 1 - \sum_{m \ge 2} \frac{1}{m} \left(H_n^{(m)} - 1 \right)$$

Euler's γ constant

Euler's approximation of harmonic numbers

For every $n \ge 1$,

$$H_n - \ln n = 1 - \sum_{m \ge 2} \frac{1}{m} \left(H_n^{(m)} - 1 \right)$$

For $k \ge 2$ we can write:

$$\ln \frac{k}{k-1} = \ln \frac{1}{1 - \frac{1}{k}} = \sum_{m \ge 1} \frac{1}{m \cdot k^m}$$

As $\ln(a/b) = \ln a - \ln b$ and $\ln 1 = 0$, by summing for k from 2 to n we get:

$$\ln n = \sum_{k=2}^{n} \sum_{m \ge 1} \frac{1}{m \cdot k^m} = \sum_{m \ge 1} \sum_{k=2}^{n} \frac{1}{m \cdot k^m} = H_n - 1 + \sum_{m \ge 2} \left(H_n^{(m)} - 1 \right)$$

Euler's approximation of harmonic numbers

For every $n \ge 1$,

$$H_n - \ln n = 1 - \sum_{m \ge 2} \frac{1}{m} \left(H_n^{(m)} - 1 \right)$$

For $m \ge 2$, $H_n^{(m)}$ converges from below to $\zeta(m)$. It turns out that $\zeta(s) - 1 \sim 2^{-s}$, therefore the series $\sum_{m \ge 2} \frac{1}{m} (\zeta(m) - 1)$ converges. The quantity

$$\gamma = 1 - \sum_{m \ge 2} \frac{1}{m} (\zeta(m) - 1)$$

is called Euler's constant. The following approximation holds:

$$H_n = \ln n + \gamma + \frac{1}{2n} - \frac{1}{12n^2} + o\left(\frac{1}{n^3}\right)$$

Next subsection

1 Fibonacci Numbers

2 Harmonic numbers a Harmonic numbers a Harmonic summation

3 Bernoulli numbers

Harmonic numbers

Properties:

Harmonic and Stirling cyclic numbers: $H_n = \frac{1}{n!} {n+1 \brack 2}$ for every $n \ge 1$; $\sum_{k=1}^n H_k = (n+1)(H_{n+1}-1) \text{ for every } n \ge 1$; $\sum_{k=1}^n kH_k = {n+1 \choose 2} \left(H_{n+1} - \frac{1}{2}\right) \text{ for every } n \ge 1$; $\sum_{k=1}^n {k \choose m} H_k = {n+1 \choose m+1} \left(H_{n+1} - \frac{1}{m+1}\right) \text{ for every } n \ge 1$; $\prod_{n \to \infty}^n H_n = \infty$; $H_n \sim \ln n + \gamma + \frac{1}{2n} - \frac{1}{12n^2} + \frac{\varepsilon_n}{120n^4} \text{ where } \gamma \approx 0.577215664901533 \text{ denotes}$

Euler's constant.

Approximation

- $H_{10} \approx 2.92896 82578 96$
- $\blacksquare \ H_{10\,000\,00} \approx 14.39272\ 67228\ 65723\ 63138\ 11275$

Harmonic numbers

Properties:

Harmonic and Stirling cyclic numbers: $H_n = \frac{1}{n!} {n+1 \brack 2}$ for every $n \ge 1$; $\sum_{k=1}^{n} H_k = (n+1)(H_{n+1}-1)$ for every $n \ge 1$; $\sum_{k=1}^{n} kH_k = {n+1 \choose 2} (H_{n+1} - \frac{1}{2})$ for every $n \ge 1$; $\sum_{k=1}^{n} {k \choose m} H_k = {n+1 \choose m+1} (H_{n+1} - \frac{1}{m+1})$ for every $n \ge 1$; $\prod_{n \to \infty} H_n = \infty$; $H_n \sim \ln n + \gamma + \frac{1}{2n} - \frac{1}{12n^2} + \frac{\varepsilon_n}{120n^4}$ where $\gamma \approx 0.577215664901533$ denotes

Euler's constant.

Approximation

- $H_{10} \approx 2.92896\ 82578\ 96$
- $H_{1000000} \approx 14.39272\ 67228\ 65723\ 63138\ 11275$

Harmonic numbers and binomial coefficients

Theorem

$$\sum_{k=0}^{n} \binom{k}{m} H_{k} = \binom{n+1}{m+1} \left(H_{n+1} - \frac{1}{m+1} \right)$$

Harmonic numbers and binomial coefficients

Theorem

$$\sum_{k=0}^{n} \binom{k}{m} H_{k} = \binom{n+1}{m+1} \left(H_{n+1} - \frac{1}{m+1} \right)$$

Proof:

- For $v(x) = \begin{pmatrix} x \\ m+1 \end{pmatrix}$ it is $\Delta v(x) = \begin{pmatrix} x+1 \\ m+1 \end{pmatrix} \begin{pmatrix} x \\ m+1 \end{pmatrix} = \begin{pmatrix} x \\ m \end{pmatrix}$
- Summing by parts with $u(x) = H_x$:

$$\begin{split} \stackrel{+1}{\overset{-1}{_{0}}} \begin{pmatrix} x \\ m \end{pmatrix}} H_{x} \, \delta x &= \begin{pmatrix} x \\ m+1 \end{pmatrix} H_{x} \Big|_{0}^{n+1} - \sum_{0}^{n+1} \begin{pmatrix} x+1 \\ m+1 \end{pmatrix} x^{-1} \delta x \\ &= \begin{pmatrix} n+1 \\ m+1 \end{pmatrix} H_{n+1} - \frac{1}{m+1} \sum_{0}^{n+1} \begin{pmatrix} x \\ m \end{pmatrix} \delta x \\ &= \begin{pmatrix} n+1 \\ m+1 \end{pmatrix} H_{n+1} - \frac{1}{m+1} \begin{pmatrix} x \\ m+1 \end{pmatrix} \Big|_{0}^{n+1} \\ &= \begin{pmatrix} n+1 \\ m+1 \end{pmatrix} H_{n+1} - \frac{1}{m+1} \begin{pmatrix} n+1 \\ m+1 \end{pmatrix} \end{split}$$

Harmonic numbers and binomial coefficients

Theorem

$$\sum_{k=0}^{n} \binom{k}{m} H_{k} = \binom{n+1}{m+1} \left(H_{n+1} - \frac{1}{m+1} \right)$$

Corollary

For m = 0 we get:

$$\sum_{k=0}^{n} H_{k} = (n+1)(H_{n+1}-1) = (n+1)H_{n} - n$$

For m = 1 we get:

$$\sum_{k=0}^{n} kH_{k} = \frac{n(n+1)}{2} \left(H_{n+1} - \frac{1}{2} \right) = \frac{n(n+1)}{2} H_{n+1} - \frac{n(n+1)}{4}$$

Sum of averaged harmonic numbers

Theorem

$$\sum_{k=1}^{n} \frac{H_k}{k} = \frac{H_n^2 + H_n^{(2)}}{2}.$$

Proof:

Let
$$S_n = \sum_{k=1}^n \frac{H_k}{k}$$
. Then, as $H_k = \sum_{j=1}^k \frac{1}{j}$, we have:

$$S_n = \sum_{k=1}^n \frac{1}{k} \sum_{j=1}^k \frac{1}{j} = \sum_{1 \le j \le k \le n} \frac{1}{jk}$$

$$= \frac{1}{2} \left(\sum_{1 \le j \le n, 1 \le k \le n} \frac{1}{jk} + \sum_{k=1}^n \left(\frac{1}{k} \right)^2 \right)$$

$$= \frac{1}{2} \left(\left(\sum_{j=1}^n \frac{1}{j} \right) \cdot \left(\sum_{k=1}^n \frac{1}{k} \right) + \sum_{k=1}^n \frac{1}{k^2} \right)$$

$$= \frac{1}{2} \left(H_n^2 + H_n^{(2)} \right)$$

Next section

1 Fibonacci Numbers

2 Harmonic numbers

- Harmonic numbers
- Harmonic summation

3 Bernoulli numbers

Jakob Bernoulli (1654-1705) worked on the functions:

$$S_m(n) = 0^m + 1^m + \ldots + (n-1)^m = \sum_{k=0}^{n-1} k^m = \sum_{k=0}^n x^m \delta x^k$$

Plotting an expansion with respect to n yields:

$$\begin{array}{rclrcl} S_{0}(n) & = & n \\ S_{1}(n) & = & \frac{1}{2}n^{2} & -\frac{1}{2}n \\ S_{2}(n) & = & \frac{1}{3}n^{3} & -\frac{1}{2}n^{2} & +\frac{1}{6}n \\ S_{3}(n) & = & \frac{1}{4}n^{4} & -\frac{1}{2}n^{3} & +\frac{1}{4}n^{2} \\ S_{4}(n) & = & \frac{1}{5}n^{5} & -\frac{1}{2}n^{4} & +\frac{1}{3}n^{3} & -\frac{1}{30}n \\ S_{5}(n) & = & \frac{1}{6}n^{6} & -\frac{1}{2}n^{5} & +\frac{5}{12}n^{4} & -\frac{1}{12}n^{2} \\ S_{6}(n) & = & \frac{1}{7}n^{7} & -\frac{1}{2}n^{6} & +\frac{1}{2}n^{5} & -\frac{1}{6}n^{3} & +\frac{1}{42}n \\ S_{7}(n) & = & \frac{1}{8}n^{8} & -\frac{1}{2}n^{7} & +\frac{7}{72}n^{6} & -\frac{7}{24}n^{4} & +\frac{1}{12}n^{2} \\ S_{8}(n) & = & \frac{1}{9}n^{9} & -\frac{1}{2}n^{8} & +\frac{2}{3}n^{7} & -\frac{7}{15}n^{5} & +\frac{2}{6}n^{3} \\ S_{9}(n) & = & \frac{1}{10}n^{10} & -\frac{1}{2}n^{9} & +\frac{3}{4}n^{8} & -\frac{7}{10}n^{6} & +\frac{1}{2}n^{4} \end{array}$$

 $\frac{1}{30}n$

Jakob Bernoulli (1654-1705) worked on the functions:

$$S_m(n) = 0^m + 1^m + \ldots + (n-1)^m = \sum_{k=0}^{n-1} k^m = \sum_{0}^n x^m \delta x$$

Bernoulli observed the following regularities:

- The leading coefficient of S_m is always $\frac{1}{m+1} = \frac{1}{m+1} {m+1 \choose 0}$.
- The coefficient of n^m in S_m is always $-\frac{1}{2} = -\frac{1}{2} \cdot \frac{1}{m+1} \cdot \binom{m+1}{1}$.
- The coefficient of n^{m-1} in S_m is always $\frac{m}{12} = \frac{1}{6} \cdot \frac{1}{m+1} \cdot \binom{m+1}{2}$.
- The coefficient of n^{m-2} in S_m is always 0.
- The coefficient of n^{m-3} in S_m is always $-\frac{m(m-1)(m-2)}{720} = -\frac{1}{30} \cdot \frac{1}{m+1} \cdot \binom{m+1}{4}$.
- The coefficient of n^{m-4} in S_m is always 0.
- The coefficient of n^{m-5} in S_m is always $\frac{1}{42} \cdot \frac{1}{m+1} \cdot \binom{m+1}{6}$.
- And so on, and so on ...

Bernoulli numbers

Definition

The kth Bernoulli number is the unique value B_k such that, for every $m \ge 0$,

$$S_m(n) = \frac{1}{m+1} \sum_{k=0}^m \binom{m+1}{k} B_k n^{m+1-k}$$

As $S_m(1) = 0^m = [m = 0]$, we can also use the following recurrence:

$$\sum_{k=0}^{m} \binom{m+1}{k} B_k = [m=0]$$

Bernoulli numbers

Definition

The kth Bernoulli number is the unique value B_k such that, for every $m \ge 0$,

$$S_m(n) = \frac{1}{m+1} \sum_{k=0}^m \binom{m+1}{k} B_k n^{m+1-k}$$

As $S_m(1) = 0^m = [m = 0]$, we can also use the following recurrence:

$$\sum_{k=0}^{m} \binom{m+1}{k} B_k = [m=0]$$

Examples:

$$\begin{array}{ll} m=0 & B_0=1 \\ m=1 & B_0+2B_1=0 & B_1=-\frac{1}{2} \\ m=2 & B_0+3B_1+3B_2=0 & B_2=\frac{1}{6} \\ m=3 & B_0+4B_1+6B_2+4B_3=0 & B_3=0 \\ m=4 & B_0+5B_1+10B_2+10B_3+5B_4=0 & B_4=-\frac{1}{30} \\ \end{array}$$

Definition

The kth Bernoulli number is the unique value B_k such that, for every $m \ge 0$,

$$S_m(n) = \frac{1}{m+1} \sum_{k=0}^m \binom{m+1}{k} B_k n^{m+1-k}$$

As $S_m(1) = 0^m = [m = 0]$, we can also use the following recurrence:

$$\sum_{k=0}^{m} \binom{m+1}{k} B_k = [m=0]$$

$$\frac{n \mid 0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \quad 7 \quad 8 \quad 9 \quad 10 \quad 11 \quad 12}{B_n \mid 1 \quad -\frac{1}{2} \quad \frac{1}{6} \quad 0 \quad -\frac{1}{30} \quad 0 \quad \frac{1}{42} \quad 0 \quad -\frac{1}{30} \quad 0 \quad \frac{5}{66} \quad 0 \quad -\frac{691}{2730}}$$

Bernoulli numbers and the Riemann zeta function

Theorem

For every $n \ge 1$,

$$B_n = -n\zeta(1-n)$$

Theorem

For every $n \ge 1$,

$$\zeta(2n) = (-1)^{n-1} \frac{2^{2n-1} \pi^{2n} B_{2n}}{(2n)!}$$

In particular,

$$\zeta(2) = \sum_{n \ge 1} \frac{1}{n^2} = \frac{\pi^2}{6}$$

From this and Stirling's approximation we get:

$$|B_{2n}| \sim 4\sqrt{\pi n} \left(\frac{n}{\pi e}\right)^{2n}$$
 for $n \to \infty$

Because of the approximation in the previous slide,

$$\limsup_{n \ge 0} \sqrt[n]{|B_n|} = \limsup_{n \ge 0} \frac{n}{2\pi e} = +\infty,$$

and the Bernoulli numbers do not have a generating function.

Because of the approximation in the previous slide,

$$\limsup_{n \ge 0} \sqrt[n]{|B_n|} = \limsup_{n \ge 0} \frac{n}{2\pi e} = +\infty,$$

and the Bernoulli numbers do not have a generating function. However:

$$\sum_{n\geq 0}\frac{B_n}{n!}z^n=\frac{z}{e^z-1}.$$

Because of the approximation in the previous slide,

$$\limsup_{n \ge 0} \sqrt[n]{|B_n|} = \limsup_{n \ge 0} \frac{n}{2\pi e} = +\infty,$$

and the Bernoulli numbers do not have a generating function. However:

$$\sum_{n\geq 0}\frac{B_n}{n!}z^n=\frac{z}{e^z-1}\,.$$

This function is analytic in a neighborhood of the origin because of:

Singularity removal theorem

Let f(z) be analytic in the open disk $D_r(c)$ of center c and radius r, except at most the center c itself.

If f(z) is bounded in $D_r(c) \setminus \{c\}$, then it can be extended to an analytic function in the entire $D_r(c)$.

In particular, if $\lim_{z\to c} f(z)$ exists, then f(z) has an analytic continuation. This is the case of $\frac{z}{e^z - 1}$, which converges to 1 for $z \to 0$.

