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Some Fibonacci Identities

Cassini's Identity fn+1fn−1− f 2n = (−1)n for all n > 0

Divisors fn and fn+1 are relatively prime and fk divides fnk :

gcd(fn, fm) = fgcd(n,m)

Matrix Calculus If A is the 2×2 matrix

(
1 1
1 0

)
, then

An =

(
fn+1 fn
fn fn−1

)
, for n > 0.

Note that this yields Cassini's identity, because detA =−1.



Some Fibonacci Identities (2)

Fibonacci Numbers and Pascal's Triangle: fn+1 =
bn/2c

∑
j=0

(
n− j

j

)
n fn

(n
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) (n
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) (n
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) (n
3

) (n
4

) (n
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) (n
6

) (n
7

) (n
8

)
0 0 1

1 1 1 1

2 1 1 2 1

3 2 1 3 3 1

4 3 1 4 6 4 1

5 5 1 5 10 10 5 1

6 8 1 6 15 20 15 6 1

7 13 1 7 21 35 35 21 7 1

8 21 1 8 28 56 70 56 28 8 1



Some Fibonacci Identities (3)

Continued fractions

The continued fraction composed entirely of 1s equals the ratio of successive
Fibonacci numbers:

a1 +
1

a2 +
1

. . .

an−2 +
1

an−1 +
1

an

=
fn+1

fn
,

where a1 = a2 = · · ·= an = 1.

For example

1+
1

1+
1

1+
1

1

=
f5
f4

=
5

3
= 1.(6)
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Some applications of Fibonacci numbers (1)

Let Sn denote the number of subsets of {1,2, . . . ,n} that do not contain consecutive
elements.
For example, when n = 3 the �good� subsets are /0,{1},{2},{3},{1,3}: hence, S3 = 5.

Theorem

For every n > 1, Sn = fn+2.



Some applications of Fibonacci numbers (1)

Let Sn denote the number of subsets of {1,2, . . . ,n} that do not contain consecutive
elements.
For example, when n = 3 the �good� subsets are /0,{1},{2},{3},{1,3}: hence, S3 = 5.

Theorem

For every n > 1, Sn = fn+2.

Proof:

We can identify a subset A of {1,2, . . . ,n} with a binary word w of n bits, such
that i ∈ A if and only if the ith bit of w is 1.

Then A has no consecutive elements if and only if 11 does not appear in w .

For n = 1 both 0 and 1 are �good�, so S1 = 2 = f3.
For n = 2, 00, 01 and 10 are all �good�, but 11 is �bad�. Thus, S2 = 3 = f4

For n > 3, a �good� word w of length n must be either w = u0 where u is a
�good� word of length n−1, or w = v01 where v is a �good� word of length
n−2.
Hence, Sn = Sn−1 +Sn−2 for every n > 3.

Then Sn = fn+2 for every n > 1.



Some applications of Fibonacci numbers (2)

Draw n dots in a line. If each domino can cover exactly two such dots, in how many
ways can (non-overlapping) dominoes be placed?
For example:

Theorem

The number of possible placements of dominoes with n dots is Dn = fn+1.



Some applications of Fibonacci numbers (2)

Draw n dots in a line. If each domino can cover exactly two such dots, in how many
ways can (non-overlapping) dominoes be placed?
For example:

Theorem

The number of possible placements of dominoes with n dots is Dn = fn+1.

Proof:

Consider the rightmost dot in any such placement P.

If this dot is not covered by a domino, then P minus the last dot determines a
solution for n−1 dots.

If the last dot is covered by a domino, then the last two dots in P are covered
by this domino. Removing this rightmost domino then gives a solution for n−2
dots.

Hence, Dn = Dn−1 +Dn−2 for every n > 3.

As D2 = 2 = f3 (no dominos, one domino) and D3 = 3 = f4, the thesis follows.



Some applications of Fibonacci numbers (3)

An ordered composition of a positive integer n is a sum of the form a1 + . . .+ak = n,
where a1, . . . ,ak are positive integers and the order of the summands is taken into
account.
For example:

4 = 1+3 = 3+1 = 2+2 = 2+1+1 = 1+2+1 = 1+1+2 = 1+1+1+1

5 = 4+1 = 1+4 = 1+1+3 = 1+3+1 = 3+1+1 = . . . = 1+1+1+1+1.

Theorem

The number of ordered compositions of the positive integer n into odd
summands is Tn = fn.

The number of ordered compositions of the positive integer n where all
summands are 1 or 2 is Bn = fn+1.



Fibonacci number system

Zeckendorf's theorem

Every integer n > 2 has a unique writing

n = fk1 + fk2 + . . .+ fkr

such that:

1 k1 > k2 > .. . > kr > 1, and

2 no two ki s are consecutive.



Fibonacci number system

Zeckendorf's theorem

Every integer n > 2 has a unique writing

n = fk1 + fk2 + . . .+ fkr

such that:

1 k1 > k2 > .. . > kr > 1, and

2 no two ki s are consecutive.

Proof:

The thesis is true for 1 = f2, 2 = f3, 3 = f4 and 4 = 3+1 = f4 + f2.

Suppose the thesis is true for every positive m < n.

Let k1 be the largest such that fk1 6 n. If fk1 = n we are done.

Otherwise, let n′ = n− fk1 > 0. If n′ = 1 we let k2 = 2, and we are done.

Otherwise, n′ > 2, so by induction n′ = fk2 + . . .+ fkr in a unique way under
conditions 1 and 2.

But it cannot be k2 = k1−1, otherwise we would have chosen fk1+1 = fk1 + fk2
when taking the largest Fibonacci number not larger than n. Hence, the writing
n = fk1 + fk2 + . . .+ fkr is also unique.
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Approximations

Observation

lim
n→∞

Φ̂n = 0

fn � Φn
√
5
as n→ ∞

fn =
⌊

Φn
√
5

+ 1

2

⌋
For example:

f10 =

⌊
Φ10

√
5

+
1

2

⌋
=

⌊
55.00364 . . .+

1

2

⌋
= b55.50364 . . .c= 55

f11 =

⌊
Φ11

√
5

+
1

2

⌋
=

⌊
88.99775 . . .+

1

2

⌋
= b89.49775 . . .c= 89



Approximations

Observation

lim
n→∞

Φ̂n = 0

fn � Φn
√
5
as n→ ∞

fn =
⌊

Φn
√
5

+ 1

2

⌋
fn

fn−1
→Φ as n→ ∞

For example:

f11
f10

=
89

55
≈ 1.61818182≈Φ = 1.61803 . . .



Fibonacci numbers with negative index: Idea

Question

What can fn be when n is a negative integer?

We want the basic properties to be satis�ed for every n ∈ Z:
De�ning formula:

fn = fn−1 + fn−2 .

Expression by golden ratio:

fn =
1√
5

(
φ
n− φ̂

n
)
.

Matrix form:

An =

(
fn+1 fn
fn fn−1

)
where A =

(
1 1
1 0

)
.

(Consequently, Cassini's identity too.)

Note: For n = 0, the above suggest f−1 = 1 . . .



Fibonacci numbers with negative index: Formula

Theorem

For every n > 1,
f−n = (−1)n−1fn



Fibonacci numbers with negative index: Formula

Theorem

For every n > 1,
f−n = (−1)n−1fn

Proof: As (1−φz) · (1− φ̂z) = 1−z−z2, it is φ−1 =−φ̂ = 0.618 . . .
Then for every n > 1,

f−n =
1√
5

(
φ
−n− φ̂

−n
)

=
1√
5

(
(−φ̂)n− (−φ)n

)
=

(−1)n+1

√
5

(
φ
n− φ̂

n
)

= (−1)n−1fn ,

Q.E.D.



Fibonacci numbers with negative index: Formula

Theorem

For every n > 1,
f−n = (−1)n−1fn

Proof: As (1−φz) · (1− φ̂z) = 1−z−z2, it is φ−1 =−φ̂ = 0.618 . . .
Then for every n > 1,

f−n =
1√
5

(
φ
−n− φ̂

−n
)

=
1√
5

(
(−φ̂)n− (−φ)n

)
=

(−1)n+1

√
5

(
φ
n− φ̂

n
)

= (−1)n−1fn ,

Q.E.D.

Another proof is by induction with the de�ning relation in the form fn−2 = fn− fn−1,
with initial conditions f1 = 1, f0 = 0.



Warmup: The generalized Cassini's identity

Theorem

For every n,k ∈ Z,
fn+k = fn+1fk + fnfk−1



Warmup: The generalized Cassini's identity

Theorem

For every n,k ∈ Z,
fn+k = fn+1fk + fnfk−1

Why generalized?

Because for k = 1−n we get

f1 = (−1)n−2fn−1fn+1 + (−1)n−1f 2n ,

which is Cassini's identity multiplied by (−1)n.



Warmup: The generalized Cassini's identity

Theorem

For every n,k ∈ Z,
fn+k = fn+1fk + fnfk−1

Proof:

Let A =

(
1 1
1 0

)
.



Warmup: The generalized Cassini's identity

Theorem

For every n,k ∈ Z,
fn+k = fn+1fk + fnfk−1

Proof:

Let A =

(
1 1
1 0

)
. We know that An =

(
fn+1 fn
fn fn−1

)
for every n > 0.

But B = A−1 =

(
0 1
1 −1

)
=

(
f0 f−1
f−1 f−2

)
satis�es the same recurrence with

negative indices:

Bn ·B =

(
f−n+1 f−n
f−n f−n−1

)
·
(
0 1
1 −1

)
=

(
f−n f−n+1− f−n

f−n−1 f−n− f−n−1

)
=

(
f−(n+1)+1 f−(n+1)

f−(n+1) f−(n+1)−1

)



Warmup: The generalized Cassini's identity

Theorem

For every n,k ∈ Z,
fn+k = fn+1fk + fnfk−1

Proof:

Let A =

(
1 1
1 0

)
. Then An =

(
fn+1 fn
fn fn−1

)
for every n ∈ Z.

By associativity of matrix product, An+k = An ·Ak for every n,k ∈ Z: that is,(
fn+k+1 fn+k

fn+k fn+k−1

)
=

(
fn+1 fn
fn fn−1

)
·
(
fk+1 fk
fk fk−1

)
The thesis then follows by comparing the elements in the upper right corner.



Warmup: The generalized Cassini's identity

Theorem

For every n,k ∈ Z,
fn+k = fn+1fk + fnfk−1

Alternative proof by induction:

For every n ∈ Z let P(n) be the following proposition:

∀k ∈ Z . fn+k = fk fn+1 + fk−1fn .

For n = 0 we get fk = fk ·1+0.
For n = 1 we get fk+1 = fk ·1+ fk−1 ·1.
If n > 2 and P(n−1) and P(n−2) hold, then:

fn+k = fn−1+k + fn−2+k

= fk fn + fk−1fn−1 + fk fn−1 + fk−1fn−2

= fk fn+1 + fk−1fn .

If n < 0 and P(n+1) and P(n+2) hold, then

fn+k = fn+2−k − fn+1−k

= fk fn+3 + fk−1fn+2− fk fn+2− fk−1fn+1

= fk fn+1 + fk−1fn .



A note on generating functions for bi-in�nite sequences

Question

Can we de�ne fn for every n ∈ Z via a single power series which depends from both
positive and negative powers of the variable?
(We can renounce such G(z) to be de�ned in z = 0.)



A note on generating functions for bi-in�nite sequences

Question

Can we de�ne fn for every n ∈ Z via a single power series which depends from both
positive and negative powers of the variable?
(We can renounce such G(z) to be de�ned in z = 0.)

Answer: Yes, but it would not be practical!

A generalization of Laurent's theorem goes as follows:
Let f be an analytic function de�ned in an annulus A = {z ∈ C | r < |z |< R}.
Then there exists a bi-in�nite sequence 〈an〉n∈Z such that:

1 the series ∑n>0 anz
n has convergence radius > R;

2 the series ∑n>1 a−nz
n has convergence radius > 1/r ;

3 for every z ∈ A it is ∑n∈Z anz
n = f (z).

We could set r = 0, but the power series ∑n>1 a−nz
n would then need to have in�nite

convergence radius! (i.e., limn→∞
n
√
|a−n|= 0.) However, limn→∞

n
√
fn = φ .

Also, the intersection of two annuli can be empty: making controls on feasibility of
operations much more di�cult to check. (Not so for �disks with a hole in zero�.)



Fibonacci numbers cheat sheet

Recurrence:
f0 = 0 ; f1 = 1 ;
fn = fn−1 + fn−2 ∀n > 2 ;
f−n = (−1)n−1fn ∀n > 0 .

Generating function:

∑
n>0

fnz
n =

z

1−z−z2
∀z ∈ C , |z |< 1

φ
.

Matrix form: (
1 1
1 0

)n

=

(
fn+1 fn
fn fn−1

)
∀n ∈ Z .

Generalized Cassini's identity:

fn+k = fk fn+1 + fk−1fn ∀n,k ∈ Z .

Greatest common divisor:

gcd(fm, fn) = fgcd(m,n) ∀m,n ∈ Z .
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Harmonic numbers

De�nition

The harmonic numbers are given by the formula

Hn =
n

∑
k=1

1

k
for n > 0, with H0 = 0

Hn is the discrete analogue of the natural logarithm.

The �rst twelve harmonic numbers are shown in the following table:

n 0 1 2 3 4 5 6 7 8 9 10 11

Hn 0 1 3

2

11

6

25

12

137

60

49

20

363

140

761

280

7129

2520

7381

2520

83711

27720



The graph of f (n) = Hn
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The graph of f (n) = Hn

n 0 1 2 3 4 5 6 7 8 9 10 11

Hn 0 1 3

2

11

6

25

12

137

60

49

20

363

140

761

280

7129

2520

7381

2520

83711

27720

Looks a bit like the graph of the logarithm . . .



Harmonic numbers and binary logarithms

Theorem

For every positive integer n:

1+
1

2
blgnc6Hn 6 1+ blgnc

Proof:

Let m = blgnc be the unique natural number such that 2m 6 n 6 2m+1−1.
Then H2m 6Hn 6H

2m+1−1, that is:

1+
m−1

∑
k=0

2
k+1

∑
j=2k+1

1

2k+1
61+

m−1

∑
k=0

2
k+1

∑
j=2k+1

1

j
6Hn 6

m

∑
k=0

2
k+1−1

∑
j=2k

1

j
6

m

∑
k=0

2
k+1−1

∑
j=2k

1

2k

Clearly, the left-hand side is 1+ ∑
m−1
k=0

1

2
= 1+

m

2
and the right-hand side is

∑
m
k=0

1 = 1+m. Q.E.D.



Harmonic numbers and natural logarithms

Theorem

For every positive integer n:
lnn <Hn < 1+ lnn

Proof:

First, let f (x) =
1

n
[n < x 6 n+1] for x > 1.

Then f (x) > 1/x for every x > 1, so:

Hn =
∫ n+1

1

f (x)dx >
∫ n

1

dx

x
= lnn .

Now, let g(x) =
1

n
[n−16 x < n] for x > 0.

Then g(x) < 1/x for every x > 0, so:

Hn = 1+
∫ n

1

g(x)dx < 1+
∫ n

1

dx

x
= 1+ lnn .



A card trick: Formulation

The problem

We have a deck of cards, and want to stack them on a table so that:

1 the stack hangs as much as possible out of the table;

2 the edge of the cards is parallel to that of the table; and

3 the stack does not fall down, according to the law of gravity.

Question:

What is the maximum overhang that we can reach?
(provided we have enough many cards)



A card trick: Formulation

The problem

We have a deck of cards, and want to stack them on a table so that:

1 the stack hangs as much as possible out of the table;

2 the edge of the cards is parallel to that of the table; and

3 the stack does not fall down, according to the law of gravity.

Question:

What is the maximum overhang that we can reach?
(provided we have enough many cards)

Solution:

The stack can overhang by as much as we want!
(provided we have enough many cards)



A card trick: Experiment

With one card:

We can put the card so that its center of gravity is precisely on the edge of the
table.

Let's call this overhang an overhang unit, so that a card is 2 overhang units long.

With two cards:

We count cards from top to bottom, rather than from bottom to top.

We put the second card so that it hangs by half a unit over the table, and the
�rst card to that it hangs by one unit over the �rst card.

Then the center of gravity of the stack is precisely on the edge of the table.

With three cards:

We put the third card so that it hangs by one third of a unit over the table.

We put the second card so that it hangs by half a unit over the third card.

We put the �rst card to that it hangs by one unit over the second card.

Then the center of gravity of the stack is precisely on the edge of the table.



A card trick: General idea and solution

Given n cards in the stack, we count the topmost at �rst, and identify the table with
an n+1st card.

Call dk the overhang of the �rst card over the kth, so d1 = 0.
For example, with n = 3 we had d2 = 1, d3 = 3/2, and d4 = 11/6 was the
overhang over the table.

If we want that the center of gravity of the entire stack is on the edge of the
table, we must also have the center of gravity of the �rst k cards over the edge
of the k +1st card. Then:

dk+1 =
(d1 +1) + (d2 +1) + . . .+ (dk +1)

k
for every 16 k 6 n

By multiplying by k and writing for two consecutive values, we have:

kdk+1 = k +d1 +d2 + . . .+dk

(k−1)dk = k−1+d1 +d2 + . . .+dk−1

and by subtracting,
kdk+1− (k−1)dk = 1+dk



A card trick: General idea and solution

Given n cards in the stack, we count the topmost at �rst, and identify the table with
an n+1st card.

Call dk the overhang of the �rst card over the kth, so d1 = 0.
For example, with n = 3 we had d2 = 1, d3 = 3/2, and d4 = 11/6 was the
overhang over the table.

If we want that the center of gravity of the entire stack is on the edge of the
table, we must also have the center of gravity of the �rst k cards over the edge
of the k +1st card.

We have thus found that dk must satisfy:

d1 = 0 ,

kdk+1 = (k−1)dk +1+dk = kdk +1 for every k > 1 .

But the recurrence dk+1 = dk +
1

k
with the initial condition d1 = 0 has the

solution:
dk+1 = Hk for every k > 0 .

This is also the maximum possible overhang with k cards, because as soon as
we move a card far from the edge of the table, the stack topples.



Generating function of harmonic numbers

Theorem

∑
n>0

Hnz
n =

1

1−z
ln

1

1−z

Indeed,
1

1−z
= ∑n>0 z

n, ln
1

1−z
= ∑n>0

1

n
[n > 1]zn, and

Hn =
n

∑
k=1

1

k
=

n

∑
k=0

1

k
[k > 1]1n−k



Generating function of harmonic numbers

Theorem

∑
n>0

Hnz
n =

1

1−z
ln

1

1−z

Indeed,
1

1−z
= ∑n>0 z

n, ln
1

1−z
= ∑n>0

1

n
[n > 1]zn, and

Hn =
n

∑
k=1

1

k
=

n

∑
k=0

1

k
[k > 1]1n−k

A general remark

If G(z) is the generating function of the sequence 〈g0,g1,g2, . . .〉, then G(z)/(1−z) is
the generating function of the sequence of the pre�x sums of the original sequence:

if G(z) = ∑
n>0

gnz
n then

G(z)

1−z
= ∑

n>0

(
n

∑
k=0

gk

)
zn



Harmonic numbers of higher order

De�nition

For n > 1 and m > 2 integer, the nth harmonic number of order m is

H
(m)
n =

n

∑
k=1

1

km

As with the ��rst order� harmonic numbers, we put H
(m)
0

= 0 as an empty sum.

For m > 2 the quantities

H(m)
∞ = lim

n→∞
H

(m)
n

exist �nite: they are the values of the Riemann zeta function

ζ (s) = ∑
n>1

1

ns
, s > 1

for s = m.



Euler's γ constant

Euler's approximation of harmonic numbers

For every n > 1,

Hn− lnn = 1− ∑
m>2

1

m

(
H

(m)
n −1

)



Euler's γ constant

Euler's approximation of harmonic numbers

For every n > 1,

Hn− lnn = 1− ∑
m>2

1

m

(
H

(m)
n −1

)

For k > 2 we can write:

ln
k

k−1
= ln

1

1− 1

k

= ∑
m>1

1

m ·km

As ln(a/b) = lna− lnb and ln1 = 0, by summing for k from 2 to n we get:

lnn =
n

∑
k=2

∑
m>1

1

m ·km
= ∑

m>1

n

∑
k=2

1

m ·km
= Hn−1+ ∑

m>2

(
H

(m)
n −1

)



Euler's γ constant

Euler's approximation of harmonic numbers

For every n > 1,

Hn− lnn = 1− ∑
m>2

1

m

(
H

(m)
n −1

)

For m > 2, H
(m)
n converges from below to ζ (m).

It turns out that ζ (s)−1∼ 2−s , therefore the series ∑m>2
1

m
(ζ (m)−1) converges.

The quantity

γ = 1− ∑
m>2

1

m
(ζ (m)−1)

is called Euler's constant. The following approximation holds:

Hn = lnn+ γ +
1

2n
− 1

12n2
+o

(
1

n3

)
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Harmonic numbers

Properties:

Harmonic and Stirling cyclic numbers: Hn = 1

n!

[n+1

2

]
for every n > 1;

n

∑
k=1

Hk = (n+1)(Hn+1−1) for every n > 1;

n

∑
k=1

kHk =

(
n+1

2

)(
Hn+1−

1

2

)
for every n > 1;

n

∑
k=1

(
k

m

)
Hk =

(
n+1

m+1

)(
Hn+1−

1

m+1

)
for every n > 1;

lim
n→∞

Hn = ∞;

Hn ∼ lnn+ γ +
1

2n
− 1

12n2
+

εn

120n4
where γ ≈ 0.57721 56649 01533 denotes

Euler's constant.

Approximation

H10 ≈ 2.92896 82578 96

H1000000 ≈ 14.39272 67228 65723 63138 11275



Harmonic numbers

Properties:

Harmonic and Stirling cyclic numbers: Hn = 1

n!

[n+1

2

]
for every n > 1;

n

∑
k=1

Hk = (n+1)(Hn+1−1) for every n > 1;

n

∑
k=1

kHk =

(
n+1

2

)(
Hn+1−

1

2

)
for every n > 1;

n

∑
k=1

(
k

m

)
Hk =

(
n+1

m+1

)(
Hn+1−

1

m+1

)
for every n > 1;

lim
n→∞

Hn = ∞;

Hn ∼ lnn+ γ +
1

2n
− 1

12n2
+

εn

120n4
where γ ≈ 0.57721 56649 01533 denotes

Euler's constant.

Approximation

H10 ≈ 2.92896 82578 96

H1000000 ≈ 14.39272 67228 65723 63138 11275



Harmonic numbers and binomial coe�cients

Theorem

n

∑
k=0

(
k

m

)
Hk =

(
n+1

m+1

)(
Hn+1−

1

m+1

)



Harmonic numbers and binomial coe�cients

Theorem

n

∑
k=0

(
k

m

)
Hk =

(
n+1

m+1

)(
Hn+1−

1

m+1

)

Proof:

For v(x) =
( x
m+1

)
it is ∆v(x) =

(x+1

m+1

)
−
( x
m+1

)
=
(x
m

)
Summing by parts with u(x) = Hx :

n+1

∑
0

(
x

m

)
Hx δx =

(
x

m+1

)
Hx

∣∣∣∣n+1

0

−
n+1

∑
0

(
x +1

m+1

)
x−1 δx

=

(
n+1

m+1

)
Hn+1−

1

m+1

n+1

∑
0

(
x

m

)
δx

=

(
n+1

m+1

)
Hn+1−

1

m+1

(
x

m+1

)∣∣∣∣n+1

0

=

(
n+1

m+1

)
Hn+1−

1

m+1

(
n+1

m+1

)
Q.E.D.



Harmonic numbers and binomial coe�cients

Theorem

n

∑
k=0

(
k

m

)
Hk =

(
n+1

m+1

)(
Hn+1−

1

m+1

)

Corollary

For m = 0 we get:

n

∑
k=0

Hk = (n+1)(Hn+1−1) = (n+1)Hn−n

For m = 1 we get:

n

∑
k=0

kHk =
n(n+1)

2

(
Hn+1−

1

2

)
=

n(n+1)

2
Hn+1−

n(n+1)

4



Sum of averaged harmonic numbers

Theorem

n

∑
k=1

Hk

k
=

H2
n +H

(2)
n

2
.

Proof:

Let Sn = ∑
n
k=1

Hk

k
. Then, as Hk = ∑

k
j=1

1

j
, we have:

Sn =
n

∑
k=1

1

k

k

∑
j=1

1

j
= ∑

16j6k6n

1

jk

=
1

2

(
∑

16j6n,16k6n

1

jk
+

n

∑
k=1

(
1

k

)2)

=
1

2

((
n

∑
j=1

1

j

)
·

(
n

∑
k=1

1

k

)
+

n

∑
k=1

1

k2

)

=
1

2

(
H2

n +H
(2)
n

)
Q.E.D.
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Bernoulli numbers: History

Jakob Bernoulli (1654-1705) worked on the functions:

Sm(n) = 0m +1m + . . .+ (n−1)m =
n−1

∑
k=0

km =
n

∑
0

xmδx

Plotting an expansion with respect to n yields:

S0(n) = n
S1(n) = 1

2
n2 − 1

2
n

S2(n) = 1

3
n3 − 1

2
n2 + 1

6
n

S3(n) = 1

4
n4 − 1

2
n3 + 1

4
n2

S4(n) = 1

5
n5 − 1

2
n4 + 1

3
n3 − 1

30
n

S5(n) = 1

6
n6 − 1

2
n5 + 5

12
n4 − 1

12
n2

S6(n) = 1

7
n7 − 1

2
n6 + 1

2
n5 − 1

6
n3 + 1

42
n

S7(n) = 1

8
n8 − 1

2
n7 + 7

12
n6 − 7

24
n4 + 1

12
n2

S8(n) = 1

9
n9 − 1

2
n8 + 2

3
n7 − 7

15
n5 + 2

9
n3 − 1

30
n

S9(n) = 1

10
n10 − 1

2
n9 + 3

4
n8 − 7

10
n6 + 1

2
n4 − 3

20
n2



Bernoulli numbers: History

Jakob Bernoulli (1654-1705) worked on the functions:

Sm(n) = 0m +1m + . . .+ (n−1)m =
n−1

∑
k=0

km =
n

∑
0

xmδx

Bernoulli observed the following regularities:

The leading coe�cient of Sm is always 1

m+1
= 1

m+1

(m+1

0

)
.

The coe�cient of nm in Sm is always − 1

2
=− 1

2
· 1

m+1
·
(m+1

1

)
.

The coe�cient of nm−1 in Sm is always m
12

= 1

6
· 1

m+1
·
(m+1

2

)
.

The coe�cient of nm−2 in Sm is always 0.

The coe�cient of nm−3 in Sm is always −m(m−1)(m−2)
720

=− 1

30
· 1

m+1
·
(m+1

4

)
.

The coe�cient of nm−4 in Sm is always 0.

The coe�cient of nm−5 in Sm is always 1

42
· 1

m+1
·
(m+1

6

)
.

And so on, and so on . . .



Bernoulli numbers

De�nition

The kth Bernoulli number is the unique value Bk such that, for every m > 0,

Sm(n) =
1

m+1

m

∑
k=0

(
m+1

k

)
Bkn

m+1−k

As Sm(1) = 0m = [m = 0], we can also use the following recurrence:

m

∑
k=0

(
m+1

k

)
Bk = [m = 0]



Bernoulli numbers

De�nition

The kth Bernoulli number is the unique value Bk such that, for every m > 0,

Sm(n) =
1

m+1

m

∑
k=0

(
m+1

k

)
Bkn

m+1−k

As Sm(1) = 0m = [m = 0], we can also use the following recurrence:

m

∑
k=0

(
m+1

k

)
Bk = [m = 0]

Examples:

m = 0 B0 = 1
m = 1 B0 +2B1 = 0 B1 =− 1

2

m = 2 B0 +3B1 +3B2 = 0 B2 = 1

6

m = 3 B0 +4B1 +6B2 +4B3 = 0 B3 = 0
m = 4 B0 +5B1 +10B2 +10B3 +5B4 = 0 B4 =− 1

30



Bernoulli numbers

De�nition

The kth Bernoulli number is the unique value Bk such that, for every m > 0,

Sm(n) =
1

m+1

m

∑
k=0

(
m+1

k

)
Bkn

m+1−k

As Sm(1) = 0m = [m = 0], we can also use the following recurrence:

m

∑
k=0

(
m+1

k

)
Bk = [m = 0]

n 0 1 2 3 4 5 6 7 8 9 10 11 12

Bn 1 − 1

2

1

6
0 − 1

30
0 1

42
0 − 1

30
0 5

66
0 − 691

2730



Bernoulli numbers and the Riemann zeta function

Theorem

For every n > 1,
Bn =−nζ (1−n)

Theorem

For every n > 1,

ζ (2n) = (−1)n−1
22n−1π2nB2n

(2n)!

In particular,

ζ (2) = ∑
n>1

1

n2
=

π2

6

From this and Stirling's approximation we get:

|B2n| ∼ 4
√

πn
( n

πe

)2n
for n→ ∞



Generating function of the Bernoulli numbers . . . almost

Because of the approximation in the previous slide,

limsup
n>0

n
√
|Bn|= limsup

n>0

n

2πe
= +∞ ,

and the Bernoulli numbers do not have a generating function.
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= +∞ ,

and the Bernoulli numbers do not have a generating function.
However:

∑
n>0
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n!
zn =

z

ez −1
.



Generating function of the Bernoulli numbers . . . almost

Because of the approximation in the previous slide,

limsup
n>0

n
√
|Bn|= limsup

n>0

n

2πe
= +∞ ,

and the Bernoulli numbers do not have a generating function.
However:

∑
n>0

Bn

n!
zn =

z

ez −1
.

This function is analytic in a neighborhood of the origin because of:

Singularity removal theorem

Let f (z) be analytic in the open disk Dr (c) of center c and radius r , except at most
the center c itself.
If f (z) is bounded in Dr (c)\{c}, then it can be extended to an analytic function in
the entire Dr (c).

In particular, if limz→c f (z) exists, then f (z) has an analytic continuation.

This is the case of
z

ez −1
, which converges to 1 for z → 0.
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