Generating Functions

ITT9132 Concrete Mathematics
 Lecture 13-22 April 2019

Chapter Seven

Domino Theory and Change
Basic Maneuvers
Solving Recurrences
Special Generating Functions
Convolutions
Exponential Generating Functions Dirichlet Generating Functions

Contents

1 Solving recurrences

- Example: Fibonacci numbers revisited

■ Linear recurrences

2 Partial fraction expansion

- Decomposition into Partial Fractions

■ Partial Rational Expansion

Generating Functions

Three basic principles:
1 Every sequence $\left\langle g_{n}\right\rangle_{n \geqslant 0}$ of complex numbers such that limsup ${ }_{n \geqslant 0} \sqrt[n]{\left|g_{n}\right|}<\infty$ has a generating function

$$
\begin{equation*}
G(z)=\sum_{n \geqslant 0} g_{n} z^{n} \tag{1}
\end{equation*}
$$

which is analytic in a neighborhood of the origin of the complex plane.
2 Vice versa, every function $G(z)$ which is analytic in a neighborhood of the origin of the complex plane is the generating function of the sequence

$$
\begin{equation*}
g_{n}=\left[z^{n}\right] G(z)=\frac{G^{(n)}(0)}{n!} . \tag{2}
\end{equation*}
$$

3 The correspondence is one-to-one: two analytic functions which coincide in a neighborhood of the origin identify the same sequence, and vice versa, each sequence such that limsup $n \geqslant 0 \sqrt[n]{\left|g_{n}\right|}<\infty$ identifies a unique analytic function in a neighborhood of the origin.
Given a closed form for $G(z)$, we will see how to:

- Determine a closed form for g_{n}.
- Compute infinite sums.
- Solve recurrence equations.

When convenient, we will sum over all integers, under the tacit assumption that:

$$
g_{n}=0 \text { whenever } n<0 .
$$

A counterexample to point 3 for functions of a real variable

For every $x \in \mathbb{R}$ let:

$$
f(x)=e^{-1 / x^{2}} \cdot[x \neq 0]
$$

- f is infinitely differentiable at every $x \neq 0$.
- For $x=0$ we have:

$$
\lim _{x \rightarrow 0} f(x)=\lim _{t \rightarrow+\infty} e^{-t}=0
$$

so f is continuous in the origin (recall our convention that undefined $\cdot[$ False $]=0$).

- Now, every derivative of f has the form $f^{(n)}(x)=p(1 / x) \cdot e^{-1 / x^{2}}$ for some polynomial p, so its limit in $x=0$ is 0 .
- Then extending $f^{(n)}(x)$ at $x=0$ by setting $f^{(n)}(x)=0$ turns f into a smooth function, which has derivatives of any order.
- But this also means that the Taylor series of f at $x=0$ is identically zero.
- If point 3 of the previous slide held for functions of a real variable, then f should be identically zero in a neighborhood of 0 : which is not the case.

Generating function manipulations

Let $F(z)$ and $G(z)$ be the generating functions for the sequences $\left\langle f_{n}\right\rangle$ and $\left\langle g_{n}\right\rangle$.
We put $f_{n}=g_{n}=0$ for every $n<0$, and undefined $\cdot 0=0$.

- $\alpha F(z)+\beta G(z)=\sum_{n}\left(\alpha f_{n}+\beta g_{n}\right) z^{n}, \quad \alpha, \beta \in \mathbb{C}$
- $z^{m} G(z)=\sum_{n} g_{n-m} z^{n}, \quad$ integer $m \geqslant 0$
- $\frac{G(z)-\sum_{k=0}^{m-1} g_{k} z^{k}}{z^{m}}=\sum_{n} g_{n+m}[n \geqslant 0] z^{n}, \quad \quad$ integer $m \geqslant 0$
- $G(c z)=\sum_{n} c^{n} g_{n} z^{n}$,
$c \in \mathbb{C}$
- $G^{\prime}(z)=\sum_{n}(n+1) g_{n+1} z^{n}$
- $z G^{\prime}(z)=\sum_{n} n g_{n} z^{n}$
- $F(z) G(z)=\sum_{n}\left(\sum_{k} f_{k} g_{n-k}\right) z^{n}, \quad$ in particular, $\frac{G(z)}{1-z}=\sum_{n}\left(\sum_{0 \leqslant k \leqslant n} g_{k}\right) z^{n}$
- $\int_{0}^{z} G(w) \mathrm{d} w=\sum_{n \geqslant 1} \frac{1}{n} g_{n-1} z^{n}$,
where $\int_{0}^{z} G(w) \mathrm{d} w=z \int_{0}^{1} G(z t) \mathrm{d} t$

Basic sequences and their generating functions

For $m \geqslant 0$ integer

- $\langle 1,0,0,0,0,0, \ldots\rangle \quad \leftrightarrow \quad \sum_{n \geqslant 0}[n=0] z^{n}=1$
- $\langle 0, \ldots, 0,1,0,0, \ldots\rangle$
$\leftrightarrow \quad \sum_{n \geqslant 0}[n=m] z^{n}=z^{m}$
- $\langle 1,1,1,1,1,1, \ldots\rangle$
\leftrightarrow
- $\langle 1,-1,1,-1,1,-1, \ldots\rangle$
$\leftrightarrow \quad \sum_{n \geqslant 0}(-1)^{n} z^{n}=\frac{1}{1+z}$
- $\langle 1,0,1,0,1,0, \ldots\rangle$
$\leftrightarrow \quad \sum_{n \geqslant 0}[2 \mid n] z^{n}=\frac{1}{1-z^{2}}$
- $\langle 1,0, \ldots, 0,1,0, \ldots, 0,1,0, \ldots\rangle$
\leftrightarrow

$$
\sum_{n \geqslant 0}[m \mid n] z^{n}=\frac{1}{1-z^{m}}
$$

- $\langle 1,2,3,4,5,6, \ldots\rangle$
$\leftrightarrow \quad \sum_{n \geqslant 0}(n+1) z^{n}=\frac{1}{(1-z)^{2}}$
- $\langle 1,2,4,8,16,32, \ldots\rangle$
$\leftrightarrow \quad \sum_{n \geqslant 0} 2^{n} z^{n}=\frac{1}{1-2 z}$

Basic sequences and their generating functions (2)

For $m \geqslant 0$ integer and for $c \in \mathbb{C}$

- $\langle 1,4,6,4,1,0,0, \ldots\rangle$

$$
\cdot\left\langle 1, c,\binom{c}{2},\binom{c}{3}, \ldots\right\rangle
$$

$$
\begin{array}{ll}
\leftrightarrow & \sum_{n \geqslant 0}\binom{4}{n} z^{n}=(1+z)^{4} \\
\leftrightarrow & \sum_{n \geqslant 0}\binom{c}{n} z^{n}=(1+z)^{c}
\end{array}
$$

$$
\cdot\left\langle 1, c,\binom{c+1}{2},\binom{c+2}{3}, \ldots\right\rangle
$$

$$
\leftrightarrow \quad \sum_{n \geqslant 0}\binom{c+n-1}{n} z^{n}=\frac{1}{(1-z)^{c}}
$$

$$
\cdot\left\langle 1, c, c^{2}, c^{3}, \ldots\right\rangle
$$

$$
\leftrightarrow \quad \sum_{n \geqslant 0} c^{n} z^{n}=\frac{1}{1-c z}
$$

$$
\left\langle 1,\binom{m+1}{m},\binom{m+2}{m},\binom{m+3}{m}, \ldots\right\rangle \leftrightarrow
$$

$$
\sum_{n \geqslant 0}\binom{m+n}{m} z^{n}=\frac{1}{(1-z)^{m+1}}
$$

$$
\cdot\left\langle 0,1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \ldots\right\rangle
$$

$$
\leftrightarrow \quad \sum_{n \geqslant 1} \frac{1}{n} z^{n}=\ln \frac{1}{1-z}
$$

$$
\cdot\left\langle 0,1,-\frac{1}{2}, \frac{1}{3},-\frac{1}{4}, \ldots\right\rangle
$$

$$
\leftrightarrow \quad \sum_{n \geqslant 1} \frac{(-1)^{n+1}}{n} z^{n}=\ln (1+z)
$$

$$
\cdot\left\langle 1,1, \frac{1}{2}, \frac{1}{6}, \frac{1}{24}, \frac{1}{120}, \ldots\right\rangle
$$

$$
\leftrightarrow \quad \sum_{n \geqslant 0} \frac{1}{n!} z^{n}=\mathrm{e}^{z}
$$

Warmup: A simple generating function

Problem

Determine the generating function $G(z)$ of the sequence

$$
g_{n}=2^{n}+3^{n}, n \geqslant 0
$$

Warmup: A simple generating function

Problem

Determine the generating function $G(z)$ of the sequence

$$
g_{n}=2^{n}+3^{n}, n \geqslant 0
$$

Solution

- For $\alpha \in \mathbb{C}$, the generationg function of $\left\langle\alpha^{n}\right\rangle_{n \geqslant 0}$ is $G_{\alpha}(z)=\frac{1}{1-\alpha z}$.
- By linearity, we get

$$
G(z)=G_{2}(z)+G_{3}(z)=\frac{1}{1-2 z}+\frac{1}{1-3 z} .
$$

Extracting the even- or odd-numbered terms of a sequence

Let $\left\langle g_{0}, g_{1}, g_{2}, \ldots\right\rangle \leftrightarrow G(z)$.
Then

$$
G(z)+G(-z)=\sum_{n} g_{n}\left(1+(-1)^{n}\right) z^{n}=2 \sum_{n} g_{n}[n \text { is even }] z^{n}
$$

Therefore

$$
\left\langle g_{0}, 0, g_{2}, 0, g_{4}, \ldots\right\rangle \leftrightarrow \frac{G(z)+G(-z)}{2}=\sum_{n} g_{2 n} z^{2 n}
$$

Extracting the even- or odd-numbered terms of a sequence

Let $\left\langle g_{0}, g_{1}, g_{2}, \ldots\right\rangle \leftrightarrow G(z)$.
Then

$$
G(z)+G(-z)=\sum_{n} g_{n}\left(1+(-1)^{n}\right) z^{n}=2 \sum_{n} g_{n}[n \text { is even }] z^{n}
$$

Therefore

$$
\left\langle g_{0}, 0, g_{2}, 0, g_{4}, \ldots\right\rangle \leftrightarrow \frac{G(z)+G(-z)}{2}=\sum_{n} g_{2 n} z^{2 n}
$$

Similarly

$$
\left\langle 0, g_{1}, 0, g_{3}, 0, g_{5}, \ldots\right\rangle \leftrightarrow \frac{G(z)-G(-z)}{2}=\sum_{n} g_{2 n+1} z^{2 n+1}
$$

Extracting the even- or odd-numbered terms of a sequence

Let $\left\langle g_{0}, g_{1}, g_{2}, \ldots\right\rangle \leftrightarrow G(z)$.
Then

$$
G(z)+G(-z)=\sum_{n} g_{n}\left(1+(-1)^{n}\right) z^{n}=2 \sum_{n} g_{n}[n \text { is even }] z^{n}
$$

Therefore

$$
\left\langle g_{0}, 0, g_{2}, 0, g_{4}, \ldots\right\rangle \leftrightarrow \frac{G(z)+G(-z)}{2}=\sum_{n} g_{2 n} z^{2 n}
$$

Similarly

$$
\left\langle 0, g_{1}, 0, g_{3}, 0, g_{5}, \ldots\right\rangle \leftrightarrow \frac{G(z)-G(-z)}{2}=\sum_{n} g_{2 n+1} z^{2 n+1}
$$

$$
\begin{aligned}
&\left\langle g_{0}, g_{2}, g_{4}, \ldots\right\rangle \leftrightarrow \sum_{n} g_{2 n} z^{n} \\
&\left\langle g_{1}, g_{3}, g_{5}, \ldots\right\rangle \leftrightarrow \sum_{n} g_{2 n+1} z^{n}
\end{aligned}
$$

Extracting the even- or odd-numbered terms of a sequence (2)

Example: $\langle 1,0,1,0,1,0, \ldots\rangle \leftrightarrow F(z)=\frac{1}{1-z^{2}}$
We have

$$
\langle 1,1,1,1,1, \ldots\rangle \leftrightarrow G(z)=\frac{1}{1-z} .
$$

Then the generating function for $\langle 1,0,1,0,1,0, \ldots\rangle$ is

$$
\frac{1}{2}(G(z)+G(-z))=\frac{1}{2}\left(\frac{1}{1-z}+\frac{1}{1+z}\right)=\frac{1}{2} \cdot \frac{1+z+1-z}{(1-z)(1+z)}=\frac{1}{1-z^{2}}
$$

Extracting the even- or odd-numbered terms of a sequence (3)

Example: $\langle 0,1,3,8,21, \ldots\rangle=\left\langle f_{0}, f_{2}, f_{4}, f_{6}, f_{8}, \ldots\right\rangle$

We know that

$$
\langle 0,1,1,2,3,5,8,13,21 \ldots\rangle \leftrightarrow F(z)=\frac{z}{1-z-z^{2}}
$$

Then the generating function for $\left\langle f_{0}, 0, f_{2}, 0, f_{4}, 0, \ldots\right\rangle$ is

$$
\begin{aligned}
\sum_{n} f_{2 n} z^{2 n} & =\frac{1}{2}\left(\frac{z}{1-z-z^{2}}+\frac{-z}{1+z-z^{2}}\right) \\
& =\frac{1}{2} \cdot \frac{z+z^{2}-z^{3}-z+z^{2}+z^{3}}{\left(1-z^{2}\right)^{2}-z^{2}} \\
& =\frac{z^{2}}{1-3 z^{2}+z^{4}}
\end{aligned}
$$

This gives

$$
\langle 0,1,3,8,21, \ldots\rangle \leftrightarrow \sum_{n} f_{2 n} z^{n}=\frac{z}{1-3 z+z^{2}}
$$

Next section

1 Solving recurrences

- Example: Fibonacci numbers revisited
- Linear recurrences

2 Partial fraction expansion

- Decomposition into Partial Fractions
- Partial Rational Expansion

Solving recurrences

Given a sequence $\left\langle g_{n}\right\rangle$ that satisfies a given recurrence, we seek a closed form for g_{n} in terms of n.

"Algorithm"

1 Write down a single equation that expresses g_{n} in terms of other elements of the sequence. This equation should be valid for all integers n, assuming that $g_{-1}=g_{-2}=\cdots=0$.
2 Multiply both sides of the equation by z^{n} and sum over all n. This gives, on the left, the sum $\sum_{n} g_{n} z^{n}$, which is the generating function $G(z)$. The right-hand side should be manipulated so that it becomes some other expression involving $G(z)$.
3 Solve the resulting equation, getting a closed form for $G(z)$.
4 Expand $G(z)$ into a power series and read off the coefficient of z^{n}; this is a closed form for g_{n}.

Next subsection

1 Solving recurrences

- Example: Fibonacci numbers revisited
- Linear recurrences

2 Partial fraction expansion

- Decomposition into Partial Fractions - Partial Rational Expansion

Example: Fibonacci numbers revisited

Step 1 The recurrence

$$
g_{n}=\left\{\begin{array}{cc}
0, & \text { if } n \leqslant 0 \\
1, & \text { if } n=1 \\
g_{n-1}+g_{n-2} & \text { if } n>1
\end{array}\right.
$$

can be represented by the single equation

$$
g_{n}=g_{n-1}+g_{n-2}+[n=1],
$$

where $n \in(-\infty,+\infty)$.
This is because the "simple" Fibonacci recurrence $g_{n}=g_{n-1}+g_{n-2}$ holds for every $n \geqslant 2$ by construction, and for every $n \leqslant 0$ as by hypothesis $g_{n}=0$ if $n<0$; but for $n=1$ the left-hand side is 1 and the right-hand side is 0 , so we need the correction summand [$n=1$].

Example: Fibonacci numbers revisited (2)

Step 2 For any n, multiply both sides of the equation by $z^{n} \ldots$

$$
\begin{aligned}
g_{-2} z^{-2} & =g_{-3} z^{-2}+g_{-4} z^{-2}+[-2=1] z^{-2} \\
g_{-1} z^{-1} & =g_{-2} z^{-1}+g_{-3} z^{-1}+[-1=1] z^{-1} \\
g_{0} & =g_{-1}+g_{-2}+[0=1] \\
g_{1} z & =g_{0} z+g_{-1} z+[1=1] z \\
g_{2} z^{2} & =g_{1} z^{2}+g_{0} z^{2}+[2=1] z^{2} \\
g_{3} z^{3} & =g_{2} z^{3}+g_{1} z^{3}+[3=1] z^{3}
\end{aligned}
$$

. and sum over all n.

$$
\sum_{n} g_{n} z^{n}=\sum_{n} g_{n-1} z^{n}+\sum_{n} g_{n-2} z^{n}+\sum_{n}[n=1] z^{n}
$$

Example: Fibonacci numbers revisited (3)

Step 3 Write down $G(z)=\sum_{n} g_{n} z^{n}$ and transform

$$
\begin{aligned}
G(z)=\sum_{n} g_{n} z^{n} & =\sum_{n} g_{n-1} z^{n}+\sum_{n} g_{n-2} z^{n}+\sum_{n}[n=1] z^{n}= \\
& =\sum_{n} g_{n} z^{n+1}+\sum_{n} g_{n} z^{n+2}+z= \\
& =z G(z)+z^{2} G(z)+z
\end{aligned}
$$

Solving the equation yields

$$
G(z)=\frac{z}{1-z-z^{2}}
$$

Example: Fibonacci numbers revisited (3)

Step 3 Write down $G(z)=\sum_{n} g_{n} z^{n}$ and transform

$$
\begin{aligned}
G(z)=\sum_{n} g_{n} z^{n} & =\sum_{n} g_{n-1} z^{n}+\sum_{n} g_{n-2} z^{n}+\sum_{n}[n=1] z^{n}= \\
& =\sum_{n} g_{n} z^{n+1}+\sum_{n} g_{n} z^{n+2}+z= \\
& =z G(z)+z^{2} G(z)+z
\end{aligned}
$$

Solving the equation yields

$$
G(z)=\frac{z}{1-z-z^{2}}
$$

Step 4 Expansion the equation into power series $G(z)=\sum g_{n} z^{n}$ gives us the solution (see next slides):

$$
\Phi^{n}-\widehat{\Phi}^{n}
$$

Next subsection

1 Solving recurrences

- Example: Fibonacci numbers revisited

■ Linear recurrences

2 Partial fraction expansion

- Decomposition into Partial Fractions
- Partial Rational Expansion

Linear recurrences

Definition

A linear recurrence of order k is a recurrence of the form:

$$
\begin{equation*}
g_{n}=\beta_{1} g_{n-1}+\ldots+\beta_{k} g_{n-k}+f(n) \tag{3}
\end{equation*}
$$

The associate homogeneous recurrence of (3) is the recurrence

$$
g_{n}=\beta_{1} g_{n-1}+\ldots+\beta_{k} g_{n-k},
$$

that is, the recurrence with $f(n)=0$ for every $n \geqslant 0$.

The Fundamental Theorem of Linear Recurrences

Theorem

The solution of a linear recurrence with given initial conditions is the sum of:

- the solution of the associate homogeneous recurrence with the given initial conditions, and
- the solution of the given linear recurrence with initial conditions equal to zero.

The Fundamental Theorem of Linear Recurrences

Theorem

The solution of a linear recurrence with given initial conditions is the sum of:

- the solution of the associate homogeneous recurrence with the given initial conditions, and
- the solution of the given linear recurrence with initial conditions equal to zero.

Indeed, if:

$$
\begin{aligned}
h_{0}= & a_{0}, \ldots, h_{k-1}=a_{k-1} ;
\end{aligned} h_{n}=\beta_{1} h_{n-1}+\ldots+\beta_{k} h_{n-k} \text { for all } n \geqslant k, \text { and }, ~=\beta_{k} s_{n-k}+f(n) \text { for all } n \geqslant k, ~ m, \ldots, s_{k-1}=0 ; s_{n}=\beta_{1} s_{n-1}+\ldots+s_{0}=0, \ldots
$$

and $g_{n}=h_{n}+s_{n}$ for every $n \geqslant 0$, then:

- for $0 \leqslant n<k$ it is $g_{n}=a_{n}+0=a_{n}$;
- and for $n \geqslant k$ it is:

$$
\begin{aligned}
g_{n} & =\beta_{1} h_{n-1}+\ldots+\beta_{k} h_{n-k}+\beta_{1} s_{n-1}+\ldots+\beta_{k} s_{n-k}+f(n) \\
& =\beta_{1}\left(h_{n-1}+s_{n-1}\right)+\ldots+\beta_{k}\left(h_{n-k}+s_{n-k}\right)+f(n) \\
& =\beta_{1} g_{n-1}+\ldots+\beta_{k} g_{n-k}+f(n) .
\end{aligned}
$$

Next section

1 Solving recurrences

- Example: Fibonacci numbers revisited - Linear recurrences

2 Partial fraction expansion

- Decomposition into Partial Fractions - Partial Rational Expansion

Motivation

- A generating function is often in the form of a rational function

$$
R(z)=\frac{P(z)}{Q(z)},
$$

where P and Q are polynomials.

- Our goal is to find "partial fraction expansion" of $R(z)$, i.e. represent $R(z)$ in the form

$$
R(z)=S(z)+T(z),
$$

where $S(z)$ has known expansion into the power series, and $T(z)$ is a polynomial.

- A good candidate for $S(z)$ is a finite sum of functions of the form:

$$
S(z)=\frac{a_{1}}{\left(1-\rho_{1} z\right)^{m_{1}+1}}+\frac{a_{2}}{\left(1-\rho_{2} z\right)^{m_{2}+1}}+\cdots+\frac{a_{\ell}}{\left(1-\rho_{\ell} z\right)^{m_{\ell}+1}}, .
$$

Motivation

- A generating function is often in the form of a rational function

$$
R(z)=\frac{P(z)}{Q(z)},
$$

where P and Q are polynomials.

- Our goal is to find "partial fraction expansion" of $R(z)$, i.e. represent $R(z)$ in the form

$$
R(z)=S(z)+T(z),
$$

where $S(z)$ has known expansion into the power series, and $T(z)$ is a polynomial.

- A good candidate for $S(z)$ is a finite sum of functions of the form:

$$
S(z)=\frac{a_{1}}{\left(1-\rho_{1} z\right)^{m_{1}+1}}+\frac{a_{2}}{\left(1-\rho_{2} z\right)^{m_{2}+1}}+\cdots+\frac{a_{\ell}}{\left(1-\rho_{\ell} z\right)^{m_{\ell}+1}}, .
$$

- We have proven the relation

$$
\frac{1}{(1-\rho z)^{m+1}}=\sum_{n \geqslant 0}\binom{m+n}{m} \rho^{n} z^{n}
$$

Motivation

- A generating function is often in the form of a rational function

$$
R(z)=\frac{P(z)}{Q(z)},
$$

where P and Q are polynomials.

- Our goal is to find "partial fraction expansion" of $R(z)$, i.e. represent $R(z)$ in the form

$$
R(z)=S(z)+T(z),
$$

where $S(z)$ has known expansion into the power series, and $T(z)$ is a polynomial.

- A good candidate for $S(z)$ is a finite sum of functions of the form:

$$
S(z)=\frac{a_{1}}{\left(1-\rho_{1} z\right)^{m_{1}+1}}+\frac{a_{2}}{\left(1-\rho_{2} z\right)^{m_{2}+1}}+\cdots+\frac{a_{\ell}}{\left(1-\rho_{\ell} z\right)^{m_{\ell}+1}}, .
$$

- We have proven the relation

$$
\frac{1}{(1-\rho z)^{m+1}}=\sum_{n \geqslant 0}\binom{m+n}{m} \rho^{n} z^{n}
$$

- Hence, the coefficient of z^{n} in expansion of $S(z)$ is:

$$
s_{n}=a_{1}\binom{m_{1}+n}{m_{1}} \rho_{1}^{n}+a_{2}\binom{m_{2}+n}{m_{2}} \rho_{2}^{n}+\cdots+a_{\ell}\binom{m_{\ell}+n}{m_{\ell}} \rho_{\ell}^{n} .
$$

Step 1: Finding $\rho_{1}, \rho_{2}, \ldots, \rho_{m}$

- Suppose $Q(z)$ has the form

$$
Q(z)=1+q_{1} z+q_{2} z^{2}+\cdots+q_{m} z^{m}, \quad \text { where } q_{m} \neq 0
$$

Step 1: Finding $\rho_{1}, \rho_{2}, \ldots, \rho_{m}$

- Suppose $Q(z)$ has the form

$$
Q(z)=1+q_{1} z+q_{2} z^{2}+\cdots+q_{m} z^{m}, \quad \text { where } q_{m} \neq 0
$$

- The "reflected" polynomial Q^{R} has a relation to Q :

$$
\begin{aligned}
Q^{R}(z) & =z^{m}+q_{1} z^{m-1}+q_{2} z^{m-2}+\cdots+q_{m-1} z+q_{m} \\
& =z^{m}\left(1+q_{1} \frac{1}{z}+q_{2} \frac{1}{z^{2}}+\cdots+q_{m-1} \frac{1}{z^{m-1}}+q_{m} \frac{1}{z^{m}}\right) \\
& =z^{m} Q\left(\frac{1}{z}\right)
\end{aligned}
$$

Step 1: Finding $\rho_{1}, \rho_{2}, \ldots, \rho_{m}$

- Suppose $Q(z)$ has the form

$$
Q(z)=1+q_{1} z+q_{2} z^{2}+\cdots+q_{m} z^{m}, \quad \text { where } q_{m} \neq 0
$$

- The "reflected" polynomial Q^{R} has a relation to Q :

$$
\begin{aligned}
Q^{R}(z) & =z^{m}+q_{1} z^{m-1}+q_{2} z^{m-2}+\cdots+q_{m-1} z+q_{m} \\
& =z^{m}\left(1+q_{1} \frac{1}{z}+q_{2} \frac{1}{z^{2}}+\cdots+q_{m-1} \frac{1}{z^{m-1}}+q_{m} \frac{1}{z^{m}}\right) \\
& =z^{m} Q\left(\frac{1}{z}\right)
\end{aligned}
$$

- If $\rho_{1}, \rho_{2}, \ldots, \rho_{m}$ are roots of Q^{R}, then $\left(z-\rho_{i}\right) \mid Q^{R}(z)$:

$$
Q^{R}(z)=\left(z-\rho_{1}\right)\left(z-\rho_{2}\right) \cdots\left(z-\rho_{m}\right)
$$

Step 1: Finding $\rho_{1}, \rho_{2}, \ldots, \rho_{m}$

- Suppose $Q(z)$ has the form

$$
Q(z)=1+q_{1} z+q_{2} z^{2}+\cdots+q_{m} z^{m}, \quad \text { where } q_{m} \neq 0
$$

- The "reflected" polynomial Q^{R} has a relation to Q :

$$
\begin{aligned}
Q^{R}(z) & =z^{m}+q_{1} z^{m-1}+q_{2} z^{m-2}+\cdots+q_{m-1} z+q_{m} \\
& =z^{m}\left(1+q_{1} \frac{1}{z}+q_{2} \frac{1}{z^{2}}+\cdots+q_{m-1} \frac{1}{z^{m-1}}+q_{m} \frac{1}{z^{m}}\right) \\
& =z^{m} Q\left(\frac{1}{z}\right)
\end{aligned}
$$

- If $\rho_{\mathbf{1}}, \rho_{2}, \ldots, \rho_{m}$ are roots of Q^{R}, then $\left(z-\rho_{i}\right) \mid Q^{R}(z)$:

$$
Q^{R}(z)=\left(z-\rho_{1}\right)\left(z-\rho_{2}\right) \cdots\left(z-\rho_{m}\right)
$$

- Then $\left(1-\rho_{i} z\right) \mid Q(z)$:

$$
Q(z)=z^{m}\left(\frac{1}{z}-\rho_{1}\right)\left(\frac{1}{z}-\rho_{2}\right) \cdots\left(\frac{1}{z}-\rho_{m}\right)=\left(1-\rho_{1} z\right)\left(1-\rho_{2} z\right) \cdots\left(1-\rho_{m} z\right)
$$

Step 1: Finding $\rho_{1}, \rho_{2}, \ldots, \rho_{m}(2)$

In all, we have proven

Lemma

$$
Q^{R}(z)=\left(z-\rho_{1}\right)\left(z-\rho_{2}\right) \cdots\left(z-\rho_{m}\right) \text { iff } Q(z)=\left(1-\rho_{1} z\right)\left(1-\rho_{2} z\right) \cdots\left(1-\rho_{m} z\right)
$$

Example: $Q(z)=1-z-z^{2}$

This $Q^{R}(z)$ has roots

Φ
and

Therefore $Q^{R}(z)=(z-\Phi)(z-\widehat{\Phi})$ and $Q(z)=(1-\Phi z)(1-\widehat{\phi} z)$

Step 1: Finding $\rho_{1}, \rho_{2}, \ldots, \rho_{m}(2)$

In all, we have proven

Lemma

$$
Q^{R}(z)=\left(z-\rho_{1}\right)\left(z-\rho_{2}\right) \cdots\left(z-\rho_{m}\right) \text { iff } Q(z)=\left(1-\rho_{1} z\right)\left(1-\rho_{2} z\right) \cdots\left(1-\rho_{m} z\right)
$$

Example: $Q(z)=1-z-z^{2}$

$$
Q^{R}(z)=z^{2}-z-1
$$

This $Q^{R}(z)$ has roots

$$
z_{1}=\frac{1+\sqrt{5}}{2}=\Phi \quad \text { and } \quad z_{2}=\frac{1-\sqrt{5}}{2}=\widehat{\phi}
$$

Therefore $Q^{R}(z)=(z-\Phi)(z-\widehat{\Phi})$ and $Q(z)=(1-\Phi z)(1-\widehat{\phi} z)$.

Next subsection

1 Solving recurrences

- Example: Fibonacci numbers revisited
- Linear recurrences

2 Partial fraction expansion

- Decomposition into Partial Fractions
- Partial Rational Expansion

Step 2: Decomposition into Partial Fractions

If the following conditions are valid for the fraction $\frac{P(z)}{Q(z)}$:

- all roots of $Q^{R}(z)$ are distinct (we denote these roots as $\rho_{1}, \rho_{2}, \ldots$),
- $\operatorname{deg} P(z)<\operatorname{deg} Q(z)=\ell$,
then the denominator is factorizable as $Q(z)=a_{0}\left(1-\rho_{1} z\right) \cdots\left(1-\rho_{\ell} z\right)$ and the fraction can be expanded as:

$$
\begin{equation*}
\frac{P(z)}{Q(z)}=\frac{A_{1}}{1-\rho_{1} z}+\frac{A_{2}}{1-\rho_{1} z}+\cdots+\frac{A_{\ell}}{1-\rho_{\ell} z} \tag{4}
\end{equation*}
$$

where $A_{1}, A_{2}, \ldots, A_{\ell}$ are constants.

The constants $A_{1}, A_{2}, \ldots, A_{\ell}$ can be found as a solution of the system of linear equations defined by the equality (4).

Example: Decomposition of $\frac{z^{2}-3 z+28}{6 z^{3}-5 z^{2}-2 z+1}$

- We have here $P(z)=z^{2}-3 z+28$ and $Q(z)=6 z^{3}-5 z^{2}-2 z+1$;
- The reflected polynomial is $Q^{R}(z)=z^{3}-2 z^{3}-5 z+6=(z-1)(z+2)(z-3)$, so $Q(z)=(1-z)(1+2 z)(1-3 z)$.

Hence,

$$
\begin{aligned}
\frac{P(z)}{Q(z)} & =\frac{A}{1-z}+\frac{B}{1+2 z}+\frac{C}{1-3 z}= \\
& =\frac{A(1+2 z)(1-3 z)+B(1-z)(1-3 z)+C(1-z)(1+2 z)}{Q(z)}= \\
& =\frac{(-6 A+3 B-2 C) z^{2}+(-A-4 B+C) z+(A+B+C)}{Q(z)}
\end{aligned}
$$

Comparing the numerator of this fraction with the polynomial $P_{1}(z)$ leads to the system of equations:

$$
\left\{\begin{array}{cc}
-6 A+3 B-2 C & =1 \\
-A-4 B+C & =-3 \\
A+B+C & =28
\end{array}\right.
$$

Example $\frac{z^{2}-3 z+28}{6 z^{3}-5 z^{2}-2 z+1}$ (continuation)

The solution of the system is

$$
A=-\frac{13}{3}, \quad B=\frac{119}{15}, \quad C=\frac{122}{5} .
$$

So, we have

$$
S(z)=\frac{-13}{3(1-z)}+\frac{119}{15(1+2 z)}+\frac{122}{5(1-3 z)} .
$$

and the power series $S(z)=\sum_{n \geqslant 0} S_{n} z^{n}$, where:

$$
s_{n}=-\frac{13}{3}+\frac{119}{15}(-2)^{n}+\frac{122}{5} 3^{n}
$$

Next subsection

1 Solving recurrences

- Example: Fibonacci numbers revisited
- Linear recurrences

2 Partial fraction expansion

- Decomposition into Partial Fractions
- Partial Rational Expansion

Step 2 (alternative): Partial Rational Expansion

Theorem 1 (for Distinct Roots)

If $R(z)=P(z) / Q(z)$ is the generating function for the sequence $\left\langle r_{n}\right\rangle$, where $Q(z)=\left(1-\rho_{1} z\right)\left(1-\rho_{2} z\right) \cdots\left(1-\rho_{\ell} z\right)$,
and the numbers $\left(\rho_{1}, \ldots, \rho_{\ell}\right)$ are distinct, and if $P(z)$ is a polynomial of degree less than ℓ, then

$$
r_{n}=a_{1} \rho_{1}^{n}+a_{2} \rho_{2}^{n}+\cdots+a_{\ell} \rho_{\ell}^{n}, \quad \text { where } \quad a_{k}=\frac{-\rho_{k} P\left(1 / \rho_{k}\right)}{Q^{\prime}\left(1 / \rho_{k}\right)}
$$

Sketch of proof.

- We show that $R(z)=S(z)$ for $S(z)=\frac{a_{1}}{1-\rho_{1} z}+\cdots+\frac{a_{\ell}}{1-\rho_{\ell} z}$ and any $z \neq \alpha_{k}=1 / \rho_{k}$ (only the points where $R(z)$ might be equal to infinity).
- L'Hôpital's Rule is used

I'Hôpital's Rule for functions of one complex variable

With a small abuse of language, we say that $\lim _{z \rightarrow a} f(z)=\infty$ if $\lim _{z \rightarrow a}|f(z)|=+\infty$.

Theorem

Let f and g be differentiable in an open neighborhood of $a \in \mathbb{C}$, except at most a itself. If either:

- $\lim _{z \rightarrow a} f(z)=\lim _{z \rightarrow a} g(z)=0$, or
- $\lim _{z \rightarrow a}|f(z)|=\lim _{z \rightarrow a}|g(z)|=\infty$,
then:

$$
\lim _{z \rightarrow a} \frac{f(z)}{g(z)} \text { and } \lim _{z \rightarrow a} \frac{f^{\prime}(z)}{g^{\prime}(z)}
$$

both exist, finite or infinite, and are equal.

Step 2: Partial Rational Expansion (2)

Continuation of the proof.

- $T(z)=R(z)-S(z)$ is a rational function of z and it suffices to show that $\lim _{z \rightarrow \alpha_{k}}\left(z-\alpha_{k}\right) T(z)=0$.
- Thus we need to prove the following equality

$$
\lim _{z \rightarrow \alpha_{k}}\left(z-\alpha_{k}\right) R(z)=\lim _{z \rightarrow \alpha_{k}}\left(z-\alpha_{k}\right) S(z) .
$$

- Due to

$$
\frac{a_{k}\left(z-\alpha_{k}\right)}{1-\rho_{j} z}=\frac{a_{k}\left(z-\frac{1}{\rho_{k}}\right)}{1-\rho_{j} z}=\frac{-a_{k}\left(1-\rho_{k} z\right)}{\rho_{k}\left(1-\rho_{j} z\right)} \rightarrow 0, \text { if } k \neq j \text { and } z \rightarrow \alpha_{k}
$$

the right-hand side is

$$
\lim _{z \rightarrow \alpha_{k}}\left(z-\alpha_{k}\right) S(z)=\lim _{z \rightarrow \alpha_{k}}\left(z-\alpha_{k}\right) \frac{a_{k}\left(z-\alpha_{k}\right)}{1-\rho_{k} z}=\frac{-a_{k}}{\rho_{k}}=\frac{P\left(1 / \rho_{k}\right)}{Q^{\prime}\left(1 / \rho_{k}\right)}
$$

Step 2: Partial Rational Expansion (3)

Continuation of the proof.

- The left-hand side limit is

$$
\lim _{z \rightarrow \alpha_{k}}\left(z-\alpha_{k}\right) R(z)=\lim _{z \rightarrow \alpha_{k}}\left(z-\alpha_{k}\right) \frac{P(z)}{Q(z)}=P\left(\alpha_{k}\right) \lim _{z \rightarrow \alpha_{k}} \frac{z-\alpha_{k}}{Q(z)}=\frac{P\left(\alpha_{k}\right)}{Q^{\prime}\left(\alpha_{k}\right)}=\frac{P\left(1 / \rho_{k}\right)}{Q^{\prime}\left(1 / \rho_{k}\right)}
$$

by l'Hôpital's rule

- Alternatively, as $\alpha_{k}=1 / \rho_{k}$ is a root of $Q(z)$:

$$
\lim _{z \rightarrow \alpha_{k}}\left(z-\alpha_{k}\right) \frac{P(z)}{Q(z)}=P\left(\alpha_{k}\right) \lim _{z \rightarrow \alpha_{k}} \frac{z-\alpha_{k}}{Q(z)-Q\left(\alpha_{k}\right)}=P\left(1 / \rho_{k}\right) \cdot \frac{1}{Q^{\prime}\left(1 / \rho_{k}\right)},
$$

Q.E.D.

General Expansion Theorem for Rational Generating Functions.

Theorem 2 (for possibly Multiple Roots)

If $R(z)=P(z) / Q(z)$ is the generating function for the sequence $\left\langle r_{n}\right\rangle$, where $Q(z)=\left(1-\rho_{1} z\right)^{d_{1}} \cdots\left(1-\rho_{\ell} z\right)^{d_{\ell}}$ and the numbers $\rho_{1}, \ldots, \rho_{\ell}$ are distinct, and if $P(z)$ is a polynomial of degree less than $d=d_{1}+\ldots+d_{\ell}$, then

$$
r_{n}=f_{1}(n) \rho_{1}^{n}+\cdots+f_{\ell}(n) \rho_{\ell}^{n}, \quad \text { for all } \quad n \geqslant 0,
$$

where each $f_{k}(n)$ is a polynomial of degree $d_{k}-1$ with leading coefficient

$$
a_{k}=\frac{\left(-\rho_{k}\right)^{d_{k}} P\left(1 / \rho_{k}\right) d_{k}}{Q^{\left(d_{k}\right)}\left(1 / \rho_{k}\right)}=\frac{P\left(1 / \rho_{k}\right)}{\left(d_{k}-1\right)!\prod_{j \neq k}\left(1-\rho_{j} / \rho_{k}\right)^{d_{j}}}
$$

Proof: (omitted) by induction on $d=d_{1}+\ldots+d_{\ell}$.

Warmup: What if $\operatorname{deg} P \geqslant \operatorname{deg} Q ?$

The problem

- The hypotheses of the Rational Expansion Theorem include that the degree of the numerator be smaller than that of the denominator.
- What if it is not so?

Warmup: What if $\operatorname{deg} P \geqslant \operatorname{deg} Q ?$

The problem

- The hypotheses of the Rational Expansion Theorem include that the degree of the numerator be smaller than that of the denominator.
- What if it is not so?

Answer: It is a false problem!

If $\operatorname{deg} P \geqslant \operatorname{deg} Q$, then we can do polynomial division and uniquely determine two polynomials $S(z), R(z)$ such that:

- $\operatorname{deg} R<\operatorname{deg} Q$; and
- $P(z)=Q(z) \cdot S(z)+R(z)$.

Then

$$
\frac{P(z)}{Q(z)}=S(z)+\frac{R(z)}{Q(z)}
$$

the first summand only influences finitely many coefficients, and on the second one the Rational Expansion Theorem can be applied.

Example: Fibonacci numbers revisited once more(2)

Step 3 Solving the equation

$$
G(z)=\frac{z}{1-z-z^{2}}
$$

Example: Fibonacci numbers revisited once more(2)

Step 3 Solving the equation

$$
G(z)=\frac{z}{1-z-z^{2}}
$$

Step 4 Expand the (rational) equation $G(z)=P(z) / Q(z)$ for $P(z)=z$ and $Q(z)=1-z-z^{2}$:

- From the example above we know that $Q(z)=(1-\Phi z)\left(1-\widehat{\phi}_{z}\right)$
- As $Q^{\prime}(z)=-1-2 z$, we have

$$
\frac{-\Phi P(1 / \Phi)}{Q^{\prime}(1 / \Phi)}=\frac{-1}{-1-2 / \Phi}=\frac{\Phi}{\Phi+2}=\frac{1}{\sqrt{5}}
$$

and

$$
\frac{-\widehat{\Phi} P(1 / \widehat{\Phi})}{Q^{\prime}(1 / \widehat{\Phi})}=\frac{\widehat{\Phi}}{\widehat{\Phi}+2}=-\frac{1}{\sqrt{5}}
$$

- Theorem 1 gives us

$$
g_{n}=\frac{\Phi^{n}-\widehat{\Phi}^{n}}{\sqrt{5}}
$$

