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Generating Functions

Three basic principles:
Every sequence (g),~o of complex numbers such that limsup,=q {/|gn| < = has

a generating function
G(z)= Zgnzn (1)
n=0
which is analytic in a neighborhood of the origin of the complex plane.
Vice versa, every function G(z) which is analytic in a neighborhood of the origin
of the complex plane is the generating function of the sequence

— 26() = & (0)

The correspondence is one-to-one: two analytic functions which coincide in a
neighborhood of the origin identify the same sequence, and vice versa, each

sequence such that limsup,-q 4/|gn| < - identifies a unique analytic function in
a neighborhood of the origin.

Given a closed form for G(z), we will see how to:
m Determine a closed form for g,.
m Compute infinite sums.
m Solve recurrence equations.

(2)

When convenient, we will sum over all integers, under the tacit assumption that:

TAL
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A counterexample to point 3 for functions of a real variable

For every x € R let:

fx)=e Y [x£0].

f is infinitely differentiable at every x # 0.
For x =0 we have:

lim f(x)= lim e"*=0,
x—0 t—>fr00

so f is continuous in the origin (recall our convention that undefined- [False] = 0).

Now, every derivative of f has the form 7(")(x) = (l/x)-efl/)‘2 for some
polynomial p, so its limit in x =10 is 0.

Then extending £("(x) at x =0 by setting f(")(x) =0 turns f into a smooth
function, which has derivatives of any order.

But this also means that the Taylor series of f at x = 0 is identically zero.

If point 3 of the previous slide held for functions of a real variable, then f should
be identically zero in a neighborhood of 0: which is not the case.
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Generating function manipulations

Let F(z) and G(z) be the generating functions for the sequences (f,) and (g,).
We put f, = g, =0 for every n <0, and undefined-0 = 0.

» aF(z)+BG(z) =} (af,+PBgn)z", a,peC
n
m z"G(z) = Zgn,mz", integer m >0
n
Cym-1, _k
u % =Y gnimln>0]z", integer m>0
n
(] G(cz):Zc"g,,z", ceC
n

= G(2) =Y (n+1)gnz"

n
m zG'(z) =Y ngyz"
n

m F(z)G(z)_Z<kag,, k>z”, in particular, fgzz) —Z( Y gk)z"
n k n 0<k<n

SKS

=z 1
Z lgn,lz", where / G(w)dw:z/ G(zt)dt
n 0 0

n>1

/z G(w)dw =
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Basic sequences and their generating functions

For m > 0 integer

e (1,0,0,0,0,0,...) YRS Y [n=0]z"=
n=0
e (0,...,0,1,0,0,...) > Z[n:m]z":zm
n=0
1
o (1,1,1,1,1,1,...) YRS Y "=
S0 1-z
1
o (1,-1,1,—-1,1,-1,... o )71 =
{ ) PG
1
e (1,0,1,0,1,0,...) “ n;)[2|n]z"= T
1
1 .,0,1,0,...,0,1,0,. n—
* (1,0,...,0,1,0,...,0,1,0,...) & ";)[mln]z o
1
e (1,2,3,4,5,6,...) - n+1)z"= ——
L0 =
1
1,2,4,8,16,32,... 2"z =
© < b b b b b b > (_> "220 1_22
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Basic sequences and their generating functions (2)

For m > 0 integer and for c € C

o (1,4,6,4,1,0,0,..))

&

(Oe-tr
n=0
c
5 () e
n=0
(c—i—n—l) ,, 1
Za—
n>0 w (1-2)°
Z c"z" = !
= 1—cz
m-+n 1
Z 2= m+1
So\ m (1-2)
Z lz” =In !
sin 1-z
1 n+1
(=1) z"=In(1+2)
n=>1
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Warmup: A simple generating function

Determine the generating function G(z) of the sequence

g,=2"4+3",n>0
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Warmup: A simple generating function

Determine the generating function G(z) of the sequence

g =2"43",n>0

1

m For a € C, the generationg function of (") ., is Ga(2) = 1=5;-

m By linearity, we get

1 1
G(z) = Ga(2)+ G3(2) = i —

TAL
TECH



Extracting the even- or odd-numbered terms of a sequence

Let (go,&1,82,...) < G(2).
Then
G(z)+G(-z) = Zg,,(l—&-( 1)")z" —2Zg,,[n is even] z”

Therefore
G(z)+ G( z)

Zan

(£0,0,82,0,84,...) <
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Extracting the even- or odd-numbered terms of a sequence

Let (go,&1,82,...) < G(2).

Then
G(z)+G(-z) = Zg,,(l—&-( 1)")z" —2Zg,,[n is even] z”
Therefore 6(2) G(
z)+ z
<g0707g2707g47“ > - A5 Zan
Similarly

G(z)-G(-=z
(0,£1,0,3,0,85,...) < % =Y gonp1 2271
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Extracting the even- or odd-numbered terms of a sequence

Let (go,&1,82,...) < G(2).

Then
G(z)+G(-z) = Zg,,(l—‘r —1)")z"=2Y gn[n is even] 2"
n
Therefore 6(2) G(
z)+ z
<g0707g2707g47“ > - A5 Zan
Similarly

G G
(0,£1,0,3,0,85,...) < M Zgz 22

(80,82,84,...) < Y 820 2"
n

(g1,83,85,--.) < ) g2n11 2"
n
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Extracting the even- or odd-numbered terms of a sequence

(2)

Example: (1,0,1,0,1,0,...) <> F(2) = =5

We have 1
(L1,1,1,1,..) & 6(z) = 7.
Then the generating function for (1,0,1,0,1,0,...) is
1 1 1 1 1 14+z+1-2z 1
E(G(ZHG(_Z))_E(l—z 1+z)_§'(1—z)(1+z)_1—z2
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Extracting the even- or odd-numbered terms of a sequence

(3)

Example: (0,1,3,8,21,...) = (fo,f2,fa,fe,fg,...)
We know that
1,1,2 13,21... =
(0,1,1,2,3,5,8,13, Y+ F(2) T

Then the generating function for (fp,0,f,0,1,0,...) is

1 z =%
f 2n:7
;2'72 2(lfzfz2+1+zfz2>

. 1 z422—-23 74272473

T2 (1—-22)2-22
T 1322474
This gives
z
0,1,3,8,21,... fonz'= ————
<7797 ) >H;2nz 1—32-‘1—22

TAL
TECH



Next section

Solving recurrences
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Solving recurrences

Given a sequence (gn) that satisfies a given recurrence, we seek a closed form
for g, in terms of n.

"Algorithm"

Write down a single equation that expresses g, in terms of other elements of the
sequence. This equation should be valid for all integers n, assuming that
g-1=g2=--=0.

Multiply both sides of the equation by z" and sum over all n. This gives, on the
left, the sum Y, g,z", which is the generating function G(z). The right-hand
side should be manipulated so that it becomes some other expression involving
G(2).

Solve the resulting equation, getting a closed form for G(z).

[~ Q!

Expand G(z) into a power series and read off the coefficient of z”; this is a
closed form for gj,.
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Next subsection

Solving recurrences
m Example: Fibonacci numbers revisited
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Example: Fibonacci numbers revisited

Step 1 The recurrence
0, if n<0;
&n = 1, if n=1,
gn-1+gn—2 ifn>1;

can be represented by the single equation

8n = &n-1+8&n-2+ [n = 1]7

where n € (—eo,+-o0).

This is because the “simple” Fibonacci recurrence g, = gn—1 + gn—2
holds for every n > 2 by construction, and for every n < 0 as by
hypothesis g, =0 if n <0; but for n=1 the left-hand side is 1 and
the right-hand side is 0, so we need the correction summand [n=1].
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Example: Fibonacci numbers revisited (2)

Step 2 For any n, multiply both sides of the equation by z” ...

g2z 2=g3z%+g 4z 24+[-2=1]z2
g1z =gz l4gaz4[-1=1]z"
g =g-1+tg2+[0=1]
g1z=goz+g-1z+[1=1]z
g =gz’ +gz +2=1]7

82 =@ +a2* +3=1]7°

. and sum over all n.

;gnzn = ;gn—lzn +;gn—22" +;[n = 1]z" ;eéH




Example: Fibonacci numbers revisited (3)

Step 3 Write down G(z) =Y,8,2" and transform

G(z) = Zg,,z" = Zgn—lzn +Zgn722n +Z[n =1]z"=
n n n n
=Y gz +Y gnz"t 2 4z =
n n

=2G(2)+2°G(2)+z

Solving the equation yields

G(z)= ——

1-z—22
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Example: Fibonacci numbers revisited (3)

Step 3 Write down G(z) =Y,8,2" and transform

G(z) = Zg,,z" = Zgn—lzn +Zgn722n +Z[n =1]z"=
n n n n
= Zgnz"+1 -I-Zg,,z"+2 +z=
n n

=2G(2)+2°G(2)+z

Solving the equation yields

G(z)= ——

1-z—22

Step 4 Expansion the equation into power series G(z) =Y gnz" gives us the
solution (see next slides):

TAL
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Next subsection

Solving recurrences

m Linear recurrences
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Linear recurrences

A linear recurrence of order k is a recurrence of the form:
gn:ﬁlgn—1+---+ﬁkgn—k+f(n)- (3)
The associate homogeneous recurrence of (3) is the recurrence

gn=P1rgn-1+...+Br&n—«,

that is, the recurrence with f(n) =0 for every n> 0.
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The Fundamental Theorem of Linear Recurrences

The solution of a linear recurrence with given initial conditions is the sum of:

m the solution of the associate homogeneous recurrence with the given initial
conditions, and

m the solution of the given linear recurrence with initial conditions equal to zero.
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TECH



The Fundamental Theorem of Linear Recurrences

The solution of a linear recurrence with given initial conditions is the sum of:

m the solution of the associate homogeneous recurrence with the given initial
conditions, and

m the solution of the given linear recurrence with initial conditions equal to zero.
Indeed, if:

ho=ag,...,hk—1 =ak_1; hp=P1hp-1+...+Pxh,_ foralln >k, and
s0=0,...,51=0; s, =P1sp—1+...+ Pksn—k + f(n) forall n > k,

and g, = h, + s, for every n > 0, then:
mfor0<n<kitis g,=a,+0=a;
m and for n> k it is:

& = Prhoa+...+Bchak+Pisn-1+...+ Brsn—k +(n)
= ﬁl(hn—l +sn—1)+---+ﬁk(hnfk+5n7k)+f(n)
= Pign-1+...+Brgnk+1f(n).

TAL
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Next section

Partial fraction expansion
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Motivation

m A generating function is often in the form of a rational function

ma=gg§

where P and Q are polynomials.
m Our goal is to find "partial fraction expansion" of R(z), i.e. represent R(z) in
the form
R(z) = 5(2)+ T(2),

where S(z) has known expansion into the power series, and T(z) is a
polynomial.
m A good candidate for S(z) is a finite sum of functions of the form:

- g1 22 I S
= Gpat P @ F T G gt
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Motivation

m A generating function is often in the form of a rational function

R(z) = ZE;

where P and Q are polynomials.
m Our goal is to find "partial fraction expansion" of R(z), i.e. represent R(z) in
the form
R(z) = 5(2)+ T(2),
where S(z) has known expansion into the power series, and T(z) is a
polynomial.
m A good candidate for S(z) is a finite sum of functions of the form:

- g1 22 I S
= Gpat P @ F T G gt

m We have proven the relation

1 m+n\ ., ,
(1,pz)m+l—2( m )” ‘

n=0
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Motivation

m A generating function is often in the form of a rational function

R(z) = ZE;

where P and Q are polynomials.
m Our goal is to find "partial fraction expansion" of R(z), i.e. represent R(z) in
the form
R(z) = 5(2)+ T(2),
where S(z) has known expansion into the power series, and T(z) is a
polynomial.
m A good candidate for S(z) is a finite sum of functions of the form:

- g1 22 I S
= Gpat P @ F T G gt

m We have proven the relation

1 m+n\ ., ,
(1fpz)m+1‘n§o( ")
m Hence, the coefficient of z" in expansion of S(z) is:
my+n\ , ma+n\ , my+n\ ,
sn:al( : >p1+a2( : >P2+"'+az< ' )Pz~ TAL
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Step 1: Finding p1,p2,---,Pm

m Suppose Q(z) has the form

Q) =1+qmz+a@z+ - +qmz", where g, 7 0.
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Step 1: Finding p1,p2,---,Pm

m Suppose Q(z) has the form

Q(2)=14+qiz+qz?+ -+ qmz™, where g, # 0.
m The “reflected” polynomial QR has a relation to Q:

RR2)=2"+ g1z + gz 2+t 12+ G

. 11 1 1
=z 1+Q1;+Q227+"'+Qm—1szl+CImzfm

:zma(é)
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Step 1: Finding p1,p2,---,Pm

m Suppose Q(z) has the form

Q(2)=14+qiz+qz?+ -+ qmz™, where g, # 0.
m The “reflected” polynomial QR has a relation to Q:

RR2)=2"+ g1z + gz 2+t 12+ G

. 11 1 1
=z 1+Q1;+Q227+"'+Qm—1szl+CImzfm

:zma(é)

m If p1,p2,...,pm are roots of @R, then (z—p;)|QR(2):

Qf(2)=(z—p1)(z—p2)- (2 Pm)
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TECH



Step 1: Finding p1,p2,---,Pm

Suppose Q(z) has the form

Q(2)=14+qiz+qz?+ -+ qmz™, where g, # 0.
m The “reflected” polynomial QR has a relation to Q:
RR2)=2"+ g1z + gz 2+t 12+ G

. 11 1 1
=z 1+Q1;+Q227+"'+Qm—1szl+CImzfm

:zmo(é)

If p1,P2,...,Pm are roots of @R, then (z—p;)|QR(2):

Qf(2)=(z—p1)(z—p2)- (2 Pm)

Then (1-p;z)|Q(2):

Q) =2"(C ~p1)(z —p2) (5 ~pm) = (1= p12)(1 ~ p22) -~ (1~ pm2)
TAL
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Step 1: Finding p1,p2,..-,pm (2)

In all, we have proven

QR(2)=(z=p1)(z—p2) -+ (z—pm) iff Q(2) = (1= p12)(1—p22)-+ (1~ pm2) J
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Step 1: Finding p1,p2,..-,pm (2)

In all, we have proven

QR(2)=(z=p1)(z—p2) -+ (z—pm) iff Q(2) = (1= p12)(1—p22)-+ (1~ pm2) J

Example: Q(z)=1—z—z?

QR(2)=22-z-1

This QR(z) has roots

:1+\/§: 1-+/5

5 O] and Z = > —®

z;
Therefore QR(z) = (z—®)(z— ) and Q(z) = (1 — dz)(1 — dz).

TAL
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Next subsection

Partial fraction expansion
m Decomposition into Partial Fractions
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Step 2: Decomposition into Partial Fractions

If the following conditions are valid for the fraction gg;

m all roots of QR(z) are distinct (we denote these roots as p1,p2,...),
m degP(z) <deg Q(z) =,

then the denominator is factorizable as Q(z) = ap(1 —p1z)---(1 —pyz) and the
fraction can be expanded as:

P(2) A Az A
= 4
Q(2) 1—plz+1—plz+ +1—p[z7 (4)

where Aj,As,..., A, are constants.

The constants Aj,A,..., Ay can be found as a solution of the system of linear
equations defined by the equality (4).

TAL
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7237428
6z3—5z2—27+1

Example: Decomposition of

m We have here P(z) =22 —3z+28 and Q(z) =623 -522 —2z+1;
m The reflected polynomial is Qf(z) =23 — 223 —5z4+6 = (z—1)(z+2)(z—3), so
Q(z)=(1—-2z)(1+2z)(1-32).

Hence,

P(z) A B c

QG Iz 112 13z

_ A(L+22)(1-32)+ B(1-2)(1-32) + C(1 - 2)(1+22) _
B Q(2)
(—6A+3B—-2C)z2 +(—A—4B+C)z+(A+B+C)
Q(2)

Comparing the numerator of this fraction with the polynomial P;(z) leads to the
system of equations:

—A—4B+C =-3

—6A+3B-2C =1
A+B+C =28

TAL
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7237428
62z3—52z2—27+1

(continuation)

EIE

The solution of the system is

13 119 122
A=_——" B=_""" =<
3’ 15’ 5
So, we have
S(2) —-13 " 119 i 122
Z)= o
3(1-—z) 15(1+2z) 5(1-3z)

and the power series S(z) =Y >0 Sn2", where:

13 119 122
=224 2 (—2)"+ —3".
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Next subsection

Partial fraction expansion

m Partial Rational Expansion
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Step 2 (alternative): Partial Rational Expansion

Theorem 1 (for Distinct Roots)

If R(z) = P(z)/Q(z) is the generating function for the sequence (r,),
where Q(z) =(1—p1z)(1 —p2z)---(1—prz),
and the numbers (p1,...,p¢) are distinct,
and if P(z) is a polynomial of degree less than ¢, then

— a1pl -+ appl -+ agpl — ~PcP(/pi)
rh=aipy +azpy +---+apy, where  ay = Qo)

Sketch of proof.

= We show that R(z) = S(z) for S(z) = %5+ + =5 and any

z# o =1/py (only the points where R(z) might be equal to infinity).

m L’'Hépital’s Rule is used

continues ... TAL
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|'Hopital's Rule for functions of one complex variable

With a small abuse of language, we say that lim,_,,f(z) = oo if lim,_,,|f(2)| = +-eo.

Let f and g be differentiable in an open neighborhood of a € C, except at most a
itself. If either:

m lim,_,f(z)=Ilim,-,g(z) =0, or
B lim,_, |f(2)] = lim,sa|g(2)| = oo,

then:
lim ( ) lim F(z)
z—a g(z) z—a g'(z)

both exist, finite or infinite, and are equal.

TAL
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Step 2: Partial Rational Expansion (2)

Continuation of the proof.

m T(z)=R(z)—S(z) is a rational function of z and it suffices to show that
limz g, (z— i) T(z) =0.
m Thus we need to prove the following equality

zlirgk(zf o )R(z) = Zlirgk(zf 0y )S(2).

m Due to

1
—_ ak\Z — + — —_
ak(z ak) _ k( Pk) — ak(l ka) 0, if k?é_j and z oy
1—p;z 1-pjz px(1—pjz)

the right-hand side is

: oo oak(z—a)  —a _ P(1/pk)
zllmzk(z_ak)s(z)_zll»ngzk(z ak) 1—prz - Pk _Ql(l/pk)

continues ... PE‘(L:H



Step 2: Partial Rational Expansion (3)

Continuation of the proof.

m The left-hand side limit is

P(z)

N — P(ay,) lim —o  P(a)  P(1/pk)

—0t Q(Z) Q) Q(1/pk)

I|m (z Ock)R(z)f I|m (z ak)

by I'Hépital’s rule
m Alternatively, as o = 1/py is a root of Q(z):

P(z) — O
im (2 ) g5} = Plaw) ity o vy = PP gy

z— 0y Q(2)

Q.E.D.
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General Expansion Theorem for Rational Generating
Functions.

Theorem 2 (for possibly Multiple Roots)

If R(z) = P(z)/Q(z) is the generating function for the sequence (r,), where
Q(2) =(1—p12)%---(1 —prz)% and the numbers py,...,p, are distinct,
and if P(z) is a polynomial of degree less than d = di +...+ dy, then

rn=fi(n)py +---+f(n)p;/,  for all n>0,

where each fi(n) is a polynomial of degree dx —1 with leading coefficient

_ (=P)%P(1/p)di _ P(1/px)
QU (1/py) (dk — 1) Liza (1 — /i)

ak

Proof: (omitted) by induction on d =di +...+dp.

TAL
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Warmup: What if deg P > deg Q7

The problem

m The hypotheses of the Rational Expansion Theorem include that the degree of
the numerator be smaller than that of the denominator.

m What if it is not so?
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Warmup: What if deg P > deg Q7

The problem

m The hypotheses of the Rational Expansion Theorem include that the degree of
the numerator be smaller than that of the denominator.

m What if it is not so?

Answer: It is a false problem!

If deg P > deg Q, then we can do polynomial division and uniquely determine two
polynomials S(z), R(z) such that:

m degR <deg@Q; and
B P(z)=Q(z2):-S(z)+ R(2).
Then

PG) ¢y, R
@ BT RE

the first summand only influences finitely many coefficients, and on the second one
the Rational Expansion Theorem can be applied.
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Example: Fibonacci numbers revisited once more(2)

Step 3 Solving the equation
G(z)=-—2

1-z—22
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Example: Fibonacci numbers revisited once more(2)

Step 3 Solving the equation
z
G(z) = 1—-z—22
Step 4 Expand the (rational) equation G(z) = P(z)/Q(z) for P(z) =z and
Qz)=1-z—22
m From the example above we know that
Q(z)=(1—-dz)(1—%=z2)
m As Q'(z) =—1—2z, we have

—oP(1/®) -1 & 1
Q(1/d) ~ —1-2/d &+2 5

and . % .
—¢P(1/®) _ & 1
Q(1/®) d+2 VB
m Theorem 1 gives us
_ N — "
&n = 5
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