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Generating Functions

Three basic principles:

1 Every sequence 〈gn〉n>0 of complex numbers such that limsupn>0
n
√
|gn|< ∞ has

a generating function
G(z) = ∑

n>0
gnz

n (1)

which is analytic in a neighborhood of the origin of the complex plane.

2 Vice versa, every function G(z) which is analytic in a neighborhood of the origin
of the complex plane is the generating function of the sequence

gn = [zn]G(z) =
G (n)(0)

n!
. (2)

3 The correspondence is one-to-one: two analytic functions which coincide in a
neighborhood of the origin identify the same sequence, and vice versa, each
sequence such that limsupn>0

n
√
|gn|< ∞ identi�es a unique analytic function in

a neighborhood of the origin.

Given a closed form for G(z), we will see how to:

Determine a closed form for gn.
Compute in�nite sums.

Solve recurrence equations.

When convenient, we will sum over all integers, under the tacit assumption that:

gn = 0 whenever n < 0.



A counterexample to point 3 for functions of a real variable

For every x ∈ R let:

f (x) = e−1/x
2

· [x 6= 0] .

f is in�nitely di�erentiable at every x 6= 0.

For x = 0 we have:
lim
x→0

f (x) = lim
t→+∞

e−t = 0 ,

so f is continuous in the origin (recall our convention that undefined · [False] = 0).

Now, every derivative of f has the form f (n)(x) = p(1/x) ·e−1/x2 for some
polynomial p, so its limit in x = 0 is 0.

Then extending f (n)(x) at x = 0 by setting f (n)(x) = 0 turns f into a smooth

function, which has derivatives of any order.

But this also means that the Taylor series of f at x = 0 is identically zero.

If point 3 of the previous slide held for functions of a real variable, then f should
be identically zero in a neighborhood of 0: which is not the case.



Generating function manipulations

Let F (z) and G(z) be the generating functions for the sequences 〈fn〉 and 〈gn〉.

We put fn = gn = 0 for every n < 0, and undefined ·0 = 0.

αF (z) + βG(z) = ∑
n

(αfn + βgn)zn , α,β ∈ C

zmG(z) = ∑
n

gn−mz
n, integer m > 0

G(z)−∑
m−1
k=0 gk z

k

zm = ∑
n

gn+m [n > 0]zn, integer m > 0

G(cz) = ∑
n

cngnz
n , c ∈ C

G ′(z) = ∑
n

(n+1)gn+1z
n

zG ′(z) = ∑
n

ngnz
n

F (z)G(z) = ∑
n

(
∑
k

fkgn−k

)
zn, in particular,

G(z)

1−z
= ∑

n

(
∑

06k6n

gk

)
zn

∫ z

0

G(w)dw = ∑
n>1

1

n
gn−1z

n, where
∫ z

0

G(w)dw = z
∫

1

0

G(zt)dt



Basic sequences and their generating functions

For m > 0 integer

• 〈1,0,0,0,0,0, . . .〉 ↔ ∑
n>0

[n = 0]zn = 1

• 〈0, . . . ,0,1,0,0, . . .〉 ↔ ∑
n>0

[n = m]zn = zm

• 〈1,1,1,1,1,1, . . .〉 ↔ ∑
n>0

zn =
1

1−z

• 〈1,−1,1,−1,1,−1, . . .〉 ↔ ∑
n>0

(−1)nzn =
1

1+ z

• 〈1,0,1,0,1,0, . . .〉 ↔ ∑
n>0

[2|n]zn =
1

1−z2

• 〈1,0, . . . ,0,1,0, . . . ,0,1,0, . . .〉 ↔ ∑
n>0

[m|n]zn =
1

1−zm

• 〈1,2,3,4,5,6, . . .〉 ↔ ∑
n>0

(n+1)zn =
1

(1−z)2

• 〈1,2,4,8,16,32, . . .〉 ↔ ∑
n>0

2nzn =
1

1−2z



Basic sequences and their generating functions (2)

For m > 0 integer and for c ∈ C

• 〈1,4,6,4,1,0,0, . . .〉 ↔ ∑
n>0

(
4

n

)
zn = (1+ z)4

•
〈
1,c,

(
c

2

)
,

(
c

3

)
, . . .

〉
↔ ∑

n>0

(
c

n

)
zn = (1+ z)c

•
〈
1,c,

(
c +1

2

)
,

(
c +2

3

)
, . . .

〉
↔ ∑

n>0

(
c +n−1

n

)
zn =

1

(1−z)c

•
〈
1,c,c2,c3, . . .

〉
↔ ∑

n>0
cnzn =

1

1−cz

•
〈
1,

(
m+1

m

)
,

(
m+2

m

)
,

(
m+3

m

)
, . . .

〉
↔ ∑

n>0

(
m+n

m

)
zn =

1

(1−z)m+1

•
〈
0,1,

1

2
,
1

3
,
1

4
, . . .

〉
↔ ∑

n>1

1

n
zn = ln

1

1−z

•
〈
0,1,−1

2
,
1

3
,−1

4
, . . .

〉
↔ ∑

n>1

(−1)n+1

n
zn = ln(1+ z)

•
〈
1,1,

1

2
,
1

6
,
1

24
,
1

120
, . . .

〉
↔ ∑

n>0

1

n!
zn = ez



Warmup: A simple generating function

Problem

Determine the generating function G(z) of the sequence

gn = 2n +3n ,n > 0



Warmup: A simple generating function

Problem

Determine the generating function G(z) of the sequence

gn = 2n +3n ,n > 0

Solution

For α ∈ C, the generationg function of 〈αn〉n>0 is Gα (z) = 1

1−αz .

By linearity, we get

G(z) = G2(z) +G3(z) =
1

1−2z
+

1

1−3z
.



Extracting the even- or odd-numbered terms of a sequence

Let 〈g0,g1,g2, . . .〉 ↔ G(z).

Then
G(z) +G(−z) = ∑

n

gn (1+ (−1)n)zn = 2∑
n

gn [n is even]zn

Therefore

〈g0,0,g2,0,g4, . . .〉 ↔
G(z) +G(−z)

2
= ∑

n

g2n z
2n

Similarly

〈0,g1,0,g3,0,g5, . . .〉 ↔
G(z)−G(−z)

2
= ∑

n

g2n+1 z
2n+1

〈g0,g2,g4, . . .〉 ↔ ∑
n

g2n z
n

〈g1,g3,g5, . . .〉 ↔ ∑
n

g2n+1 z
n
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Extracting the even- or odd-numbered terms of a sequence
(2)

Example: 〈1,0,1,0,1,0, . . .〉 ↔ F (z) = 1

1−z2

We have

〈1,1,1,1,1, . . .〉 ↔ G(z) =
1

1−z
.

Then the generating function for 〈1,0,1,0,1,0, . . .〉 is

1

2
(G(z) +G(−z)) =

1

2

(
1

1−z
+

1

1+ z

)
=

1

2
· 1+ z +1−z

(1−z)(1+ z)
=

1

1−z2



Extracting the even- or odd-numbered terms of a sequence
(3)

Example: 〈0,1,3,8,21, . . .〉= 〈f0, f2, f4, f6, f8, . . .〉

We know that
〈0,1,1,2,3,5,8,13,21 . . .〉 ↔ F (z) =

z

1−z−z2
.

Then the generating function for 〈f0,0, f2,0, f4,0, . . .〉 is

∑
n

f2nz
2n =

1

2

(
z

1−z−z2
+

−z
1+ z−z2

)
=

1

2
· z + z2−z3−z + z2 + z3

(1−z2)2−z2

=
z2

1−3z2 + z4

This gives

〈0,1,3,8,21, . . .〉 ↔ ∑
n

f2n z
n =

z

1−3z + z2
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Solving recurrences

Given a sequence 〈gn〉 that satis�es a given recurrence, we seek a closed form
for gn in terms of n.

"Algorithm"

1 Write down a single equation that expresses gn in terms of other elements of the
sequence. This equation should be valid for all integers n, assuming that
g−1 = g−2 = · · ·= 0.

2 Multiply both sides of the equation by zn and sum over all n. This gives, on the
left, the sum ∑n gnz

n, which is the generating function G(z). The right-hand
side should be manipulated so that it becomes some other expression involving
G(z).

3 Solve the resulting equation, getting a closed form for G(z).

4 Expand G(z) into a power series and read o� the coe�cient of zn; this is a
closed form for gn.
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Example: Fibonacci numbers revisited

Step 1 The recurrence

gn =

 0, if n 6 0;
1, if n = 1;

gn−1 +gn−2 if n > 1;

can be represented by the single equation

gn = gn−1 +gn−2 + [n = 1],

where n ∈ (−∞,+∞).
This is because the �simple� Fibonacci recurrence gn = gn−1 +gn−2
holds for every n > 2 by construction, and for every n 6 0 as by
hypothesis gn = 0 if n < 0; but for n = 1 the left-hand side is 1 and
the right-hand side is 0, so we need the correction summand [n = 1].



Example: Fibonacci numbers revisited (2)

Step 2 For any n, multiply both sides of the equation by zn ...

· · · · · · · · ·

g−2z
−2 = g−3z

−2 +g−4z
−2 + [−2 = 1]z−2

g−1z
−1 = g−2z

−1 +g−3z
−1 + [−1 = 1]z−1

g0 = g−1 +g−2 + [0 = 1]

g1z = g0z +g−1z + [1 = 1]z

g2z
2 = g1z

2 +g0z
2 + [2 = 1]z2

g3z
3 = g2z

3 +g1z
3 + [3 = 1]z3

· · · · · · · · ·

... and sum over all n.

∑
n

gnz
n = ∑

n

gn−1z
n +∑

n

gn−2z
n +∑

n

[n = 1]zn



Example: Fibonacci numbers revisited (3)

Step 3 Write down G(z) = ∑n gnz
n and transform

G(z) = ∑
n

gnz
n = ∑

n

gn−1z
n +∑

n

gn−2z
n +∑

n

[n = 1]zn =

= ∑
n

gnz
n+1 +∑

n

gnz
n+2 + z =

= zG(z) + z2G(z) + z

Solving the equation yields

G(z) =
z

1−z−z2

Step 4 Expansion the equation into power series G(z) = ∑gnz
n gives us the

solution (see next slides):

gn =
Φn− Φ̂n

√
5
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Linear recurrences

De�nition

A linear recurrence of order k is a recurrence of the form:

gn = β1gn−1 + . . .+ βkgn−k + f (n) . (3)

The associate homogeneous recurrence of (3) is the recurrence

gn = β1gn−1 + . . .+ βkgn−k ,

that is, the recurrence with f (n) = 0 for every n > 0.



The Fundamental Theorem of Linear Recurrences

Theorem

The solution of a linear recurrence with given initial conditions is the sum of:

the solution of the associate homogeneous recurrence with the given initial
conditions, and

the solution of the given linear recurrence with initial conditions equal to zero.



The Fundamental Theorem of Linear Recurrences

Theorem

The solution of a linear recurrence with given initial conditions is the sum of:

the solution of the associate homogeneous recurrence with the given initial
conditions, and

the solution of the given linear recurrence with initial conditions equal to zero.

Indeed, if:

h0 = a0 , . . . , hk−1 = ak−1 ; hn = β1hn−1 + . . .+ βkhn−k for all n > k , and

s0 = 0 , . . . , sk−1 = 0 ; sn = β1sn−1 + . . .+ βk sn−k + f (n) for all n > k ,

and gn = hn + sn for every n > 0, then:

for 06 n < k it is gn = an +0 = an;

and for n > k it is:

gn = β1hn−1 + . . .+ βkhn−k + β1sn−1 + . . .+ βk sn−k + f (n)

= β1(hn−1 + sn−1) + . . .+ βk (hn−k + sn−k ) + f (n)

= β1gn−1 + . . .+ βkgn−k + f (n) .

Q.E.D.
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Motivation

A generating function is often in the form of a rational function

R(z) =
P(z)

Q(z)
,

where P and Q are polynomials.
Our goal is to �nd "partial fraction expansion" of R(z), i.e. represent R(z) in
the form

R(z) = S(z) +T (z) ,

where S(z) has known expansion into the power series, and T (z) is a
polynomial.
A good candidate for S(z) is a �nite sum of functions of the form:

S(z) =
a1

(1−ρ1z)m1+1
+

a2
(1−ρ2z)m2+1

+ · · ·+ a`
(1−ρ`z)m`+1

, .

We have proven the relation

1

(1−ρz)m+1
= ∑

n>0

(
m+n

m

)
ρ
nzn

Hence, the coe�cient of zn in expansion of S(z) is:

sn = a1

(
m1 +n

m1

)
ρ
n
1 +a2

(
m2 +n

m2

)
ρ
n
2 + · · ·+a`

(
m` +n

m`

)
ρ
n
` .
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Step 1: Finding ρ1,ρ2, . . . ,ρm

Suppose Q(z) has the form

Q(z) = 1+q1z +q2z
2 + · · ·+qmz

m, where qm 6= 0.

The �re�ected� polynomial QR has a relation to Q:

QR(z) = zm +q1z
m−1 +q2z

m−2 + · · ·+qm−1z +qm

= zm
(
1+q1

1

z
+q2

1

z2
+ · · ·+qm−1

1

zm−1
+qm

1

zm

)
= zmQ

(
1

z

)
If ρ1,ρ2, . . . ,ρm are roots of QR , then (z−ρi )|QR(z):

QR(z) = (z−ρ1)(z−ρ2) · · ·(z−ρm)

Then (1−ρiz)|Q(z):

Q(z) = zm(
1

z
−ρ1)(

1

z
−ρ2) · · ·(1

z
−ρm) = (1−ρ1z)(1−ρ2z) · · ·(1−ρmz)
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Step 1: Finding ρ1,ρ2, . . . ,ρm (2)

In all, we have proven

Lemma

QR(z) = (z−ρ1)(z−ρ2) · · ·(z−ρm) i� Q(z) = (1−ρ1z)(1−ρ2z) · · ·(1−ρmz)

Example: Q(z) = 1−z−z2

QR(z) = z2−z−1

This QR(z) has roots

z1 =
1+
√
5

2
= Φ and z2 =

1−
√
5

2
= Φ̂

Therefore QR(z) = (z−Φ)(z− Φ̂) and Q(z) = (1−Φz)(1− Φ̂z).
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Example: Q(z) = 1−z−z2

QR(z) = z2−z−1

This QR(z) has roots

z1 =
1+
√
5

2
= Φ and z2 =

1−
√
5

2
= Φ̂

Therefore QR(z) = (z−Φ)(z− Φ̂) and Q(z) = (1−Φz)(1− Φ̂z).
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Step 2: Decomposition into Partial Fractions

If the following conditions are valid for the fraction P(z)
Q(z) :

all roots of QR(z) are distinct (we denote these roots as ρ1,ρ2, . . .),

degP(z) < degQ(z) = `,

then the denominator is factorizable as Q(z) = a0(1−ρ1z) · · ·(1−ρ`z) and the
fraction can be expanded as:

P(z)

Q(z)
=

A1

1−ρ1z
+

A2

1−ρ1z
+ · · ·+ A`

1−ρ`z
, (4)

where A1,A2, . . . ,A` are constants.

The constants A1,A2, . . . ,A` can be found as a solution of the system of linear
equations de�ned by the equality (4).



Example: Decomposition of z2−3z+28
6z3−5z2−2z+1

We have here P(z) = z2−3z +28 and Q(z) = 6z3−5z2−2z +1;

The re�ected polynomial is QR(z) = z3−2z3−5z +6 = (z−1)(z +2)(z−3), so
Q(z) = (1−z)(1+2z)(1−3z).

Hence,

P(z)

Q(z)
=

A

1−z
+

B

1+2z
+

C

1−3z
=

=
A(1+2z)(1−3z) +B(1−z)(1−3z) +C(1−z)(1+2z)

Q(z)
=

=
(−6A+3B−2C)z2 + (−A−4B +C)z + (A+B +C)

Q(z)

Comparing the numerator of this fraction with the polynomial P1(z) leads to the
system of equations: −6A+3B−2C = 1

−A−4B +C =−3
A+B +C = 28



Example z2−3z+28
6z3−5z2−2z+1

(continuation)

The solution of the system is

A =−13
3

, B =
119

15
, C =

122

5
.

So, we have

S(z) =
−13

3(1−z)
+

119

15(1+2z)
+

122

5(1−3z)
.

and the power series S(z) = ∑n>0 snz
n, where:

sn =−13
3

+
119

15
(−2)n +

122

5
3n.
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Step 2 (alternative): Partial Rational Expansion

Theorem 1 (for Distinct Roots)

If R(z) = P(z)/Q(z) is the generating function for the sequence 〈rn〉,
where Q(z) = (1−ρ1z)(1−ρ2z) · · ·(1−ρ`z),
and the numbers (ρ1, . . . ,ρ`) are distinct,

and if P(z) is a polynomial of degree less than `, then

rn = a1ρ
n
1 +a2ρ

n
2 + · · ·+a`ρ

n
` , where ak =

−ρkP(1/ρk )

Q ′(1/ρk )

Sketch of proof.

We show that R(z) = S(z) for S(z) = a1
1−ρ1z

+ · · ·+ a`
1−ρ`z

and any

z 6= αk = 1/ρk (only the points where R(z) might be equal to in�nity).

L'Hôpital's Rule is used

continues ...



l'Hôpital's Rule for functions of one complex variable

With a small abuse of language, we say that limz→a f (z) = ∞ if limz→a |f (z)|= +∞.

Theorem

Let f and g be di�erentiable in an open neighborhood of a ∈ C, except at most a
itself. If either:

limz→a f (z) = limz→a g(z) = 0, or

limz→a |f (z)|= limz→a |g(z)|= ∞,

then:

lim
z→a

f (z)

g(z)
and lim

z→a

f ′(z)

g ′(z)

both exist, �nite or in�nite, and are equal.



Step 2: Partial Rational Expansion (2)

Continuation of the proof.

T (z) = R(z)−S(z) is a rational function of z and it su�ces to show that
limz→αk

(z−αk )T (z) = 0.

Thus we need to prove the following equality

lim
z→αk

(z−αk )R(z) = lim
z→αk

(z−αk )S(z).

Due to

ak (z−αk )

1−ρjz
=

ak (z− 1

ρk
)

1−ρjz
=
−ak (1−ρkz)

ρk (1−ρjz)
→ 0, if k 6= j and z → αk

the right-hand side is

lim
z→αk

(z−αk )S(z) = lim
z→αk

(z−αk )
ak (z−αk )

1−ρkz
=
−ak
ρk

=
P(1/ρk )

Q ′(1/ρk )

continues ...



Step 2: Partial Rational Expansion (3)

Continuation of the proof.

The left-hand side limit is

lim
z→αk

(z−αk )R(z) = lim
z→αk

(z−αk )
P(z)

Q(z)
=P(αk ) lim

z→αk

z−αk

Q(z)
=

P(αk )

Q ′(αk )
=

P(1/ρk )

Q ′(1/ρk )

by l'Hôpital's rule

Alternatively, as αk = 1/ρk is a root of Q(z):

lim
z→αk

(z−αk )
P(z)

Q(z)
= P(αk ) lim

z→αk

z−αk

Q(z)−Q(αk )
= P(1/ρk ) · 1

Q ′(1/ρk )
,

Q.E.D.



General Expansion Theorem for Rational Generating
Functions.

Theorem 2 (for possibly Multiple Roots)

If R(z) = P(z)/Q(z) is the generating function for the sequence 〈rn〉, where
Q(z) = (1−ρ1z)d1 · · ·(1−ρ`z)d` and the numbers ρ1, . . . ,ρ` are distinct,
and if P(z) is a polynomial of degree less than d = d1 + . . .+d`, then

rn = f1(n)ρ
n
1 + · · ·+ f`(n)ρ

n
` , for all n > 0,

where each fk (n) is a polynomial of degree dk −1 with leading coe�cient

ak =
(−ρk )dkP(1/ρk )dk

Q(dk )(1/ρk )
=

P(1/ρk )

(dk −1)!∏j 6=k (1−ρj/ρk )dj

Proof: (omitted) by induction on d = d1 + . . .+d`.



Warmup: What if degP > degQ?

The problem

The hypotheses of the Rational Expansion Theorem include that the degree of
the numerator be smaller than that of the denominator.

What if it is not so?



Warmup: What if degP > degQ?

The problem

The hypotheses of the Rational Expansion Theorem include that the degree of
the numerator be smaller than that of the denominator.

What if it is not so?

Answer: It is a false problem!

If degP > degQ, then we can do polynomial division and uniquely determine two
polynomials S(z), R(z) such that:

degR < degQ; and

P(z) = Q(z) ·S(z) +R(z).

Then
P(z)

Q(z)
= S(z) +

R(z)

Q(z)
:

the �rst summand only in�uences �nitely many coe�cients, and on the second one
the Rational Expansion Theorem can be applied.



Example: Fibonacci numbers revisited once more(2)

Step 3 Solving the equation

G(z) =
z

1−z−z2

Step 4 Expand the (rational) equation G(z) = P(z)/Q(z) for P(z) = z and
Q(z) = 1−z−z2:

From the example above we know that
Q(z) = (1−Φz)(1− Φ̂z)
As Q ′(z) =−1−2z, we have

−ΦP(1/Φ)

Q ′(1/Φ)
=

−1
−1−2/Φ

=
Φ

Φ +2
=

1√
5

and
−Φ̂P(1/Φ̂)

Q ′(1/Φ̂)
=

Φ̂

Φ̂ +2
=− 1√

5

Theorem 1 gives us

gn =
Φn− Φ̂n

√
5



Example: Fibonacci numbers revisited once more(2)

Step 3 Solving the equation

G(z) =
z

1−z−z2

Step 4 Expand the (rational) equation G(z) = P(z)/Q(z) for P(z) = z and
Q(z) = 1−z−z2:
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Q(z) = (1−Φz)(1− Φ̂z)
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=
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=
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5

Theorem 1 gives us

gn =
Φn− Φ̂n

√
5


	Solving recurrences
	Example: Fibonacci numbers revisited
	Linear recurrences

	Partial fraction expansion
	Decomposition into Partial Fractions
	Partial Rational Expansion


