Generating Functions

ITT9132 Concrete Mathematics
 Lecture 14-29 April 2019

Chapter Seven

Domino Theory and Change
Basic Maneuvers
Solving Recurrences
Special Generating Functions
Convolutions
Exponential Generating Functions Dirichlet Generating Functions

Contents

1 Solving recurrences

■ Example: A more-or-less random recurrence.

- Example: Usage of derivatives

2 Convolutions

- Fibonacci convolution
- m-fold convolution
- Catalan numbers

3 Exponential generating functions

Next section

1 Solving recurrences

- Example: A more-or-less random recurrence.
- Example: Usage of derivatives

2 Convolutions

- Fibonacci convolution
- m-fold convolution
- Catalan numbers

3 Exponential generating functions

Solving recurrences

Given a sequence $\left\langle g_{n}\right\rangle$ that satisfies a given recurrence, we seek a closed form for g_{n} in terms of n.

"Algorithm"

1 Write down a single equation that expresses g_{n} in terms of other elements of the sequence. This equation should be valid for all integers n, assuming that $g_{-1}=g_{-2}=\cdots=0$.
2 Multiply both sides of the equation by z^{n} and sum over all n. This gives, on the left, the sum $\sum_{n} g_{n} z^{n}$, which is the generating function $G(z)$. The right-hand side should be manipulated so that it becomes some other expression involving $G(z)$.
3 Solve the resulting equation, getting a closed form for $G(z)$.
4 Expand $G(z)$ into a power series and read off the coefficient of z^{n}; this is a closed form for g_{n}.

Next subsection

1 Solving recurrences

- Example: A more-or-less random recurrence.
- Example: Usage of derivatives

2 Convolutions

- Fibonacci conyolution
n-fold convolution
- Catalan numbers

3 Exponential generating functions

Example: A more-or-less random recurrence.

Solve the following recurrence:

$$
g_{n}=\left\{\begin{array}{cc}
0, & \text { if } n<0 ; \\
1, & \text { if } 0 \leqslant n<2 ; \\
g_{n-1}+2 g_{n-2}+(-1)^{n} & \text { if } 2 \leqslant n ;
\end{array}\right.
$$

Example: A more-or-less random recurrence.

Solve the following recurrence:

$$
g_{n}=\left\{\begin{array}{cc}
0, & \text { if } n<0 ; \\
1, & \text { if } 0 \leqslant n<2 ; \\
g_{n-1}+2 g_{n-2}+(-1)^{n} & \text { if } 2 \leqslant n ;
\end{array}\right.
$$

Step 1 Write the recurrence for every $n \in \mathbb{Z}$, taking into account the initial conditions:

$$
g_{n}=g_{n-1}+2 g_{n-2}+(-1)^{n}[n \geqslant 2]+a_{0}[n=0]+a_{1}[n=1]
$$

For $n=0$ it is $1=0+0+a_{0}[n=0]$, so $a_{0}=1=(-1)^{0}$.
For $n=1$ it is $1=1+0+a_{1}[n=1]=1+(-1)^{1}+1$, so $a_{1}=1$ and we can add $(-1)^{n}$ for $n=1$ too.
The recurrence can then be represented by the single equation:

$$
g_{n}=g_{n-1}+2 g_{n-2}+(-1)^{n}[n \geqslant 0]+[n=1] .
$$

Some values: | n | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| g_{n} | 1 | 1 | 4 | 5 | 14 | 23 | 52 | 97 |

Example: A more-or-less random recurrence (2)

Step 2 Write down $G(z)=\sum_{n} g_{n} z^{n}$ and transform

$$
\begin{aligned}
G(z)=\sum_{n} g_{n} z^{n} & =\sum_{n} g_{n-1} z^{n}+2 \sum_{n} g_{n-2} z^{n}+\sum_{n \geqslant 0}(-1)^{n} z^{n}+\sum_{n}[n=1] z^{n} \\
& =\sum_{n} g_{n} z^{n+1}+2 \sum_{n} g_{n} z^{n+2}+\frac{1}{1+z}+z \\
& =z G(z)+2 z^{2} G(z)+\frac{1+z+z^{2}}{1+z}
\end{aligned}
$$

Example: A more-or-less random recurrence (2)

Step 2 Write down $G(z)=\sum_{n} g_{n} z^{n}$ and transform

$$
\begin{aligned}
G(z)=\sum_{n} g_{n} z^{n} & =\sum_{n} g_{n-1} z^{n}+2 \sum_{n} g_{n-2} z^{n}+\sum_{n \geqslant 0}(-1)^{n} z^{n}+\sum_{n}[n=1] z^{n} \\
& =\sum_{n} g_{n} z^{n+1}+2 \sum_{n} g_{n} z^{n+2}+\frac{1}{1+z}+z \\
& =z G(z)+2 z^{2} G(z)+\frac{1+z+z^{2}}{1+z}
\end{aligned}
$$

Step 3 Solving the equation

$$
G(z)=\frac{1+z+z^{2}}{\left(1-z-2 z^{2}\right)(1+z)}=\frac{1+z+z^{2}}{(1-2 z)(1+z)^{2}}
$$

Example: A more-or-less random recurrence (3)

Step 4 Expand the (rational) equation $G(z)=P(z) / Q(z)$ for $P(z)=1+z+z^{2}$ and $Q(z)=(1-2 z)(1+z)^{2}$:

- Theorem 2 gives us for some constant c :

$$
g_{n}=a_{1} 2^{n}+\left(a_{2} n+c\right)(-1)^{n},
$$

where

$$
a_{1}=\frac{P(1 / 2)}{0!(1+1 / 2)^{2}}=\frac{4(1+1 / 2+1 / 4)}{9}=\frac{7}{9}
$$

and

$$
a_{2}=\frac{P(-1)}{1!(1+2)}=\frac{1+1-1}{3}=\frac{1}{3}
$$

- Special case $n=0$ implies $1=g_{0}=\frac{7}{9}+c$ that gives $c=1-\frac{7}{9}=\frac{2}{9}$.
- The answer is

$$
g_{n}=\frac{7}{9} 2^{n}+\left(\frac{1}{3} n+\frac{2}{9}\right)(-1)^{n} .
$$

Decomposition into Partial Fractions

The same function: $G(z)=\frac{P(z)}{Q(z)}=\frac{1+z+z^{2}}{(1-2 z)(1+z)^{2}}$

- Decompose it as

$$
G(z)=\frac{A}{1-2 z}+\frac{B}{1+z}+\frac{C}{(1+z)^{2}}
$$

- Expand

$$
\begin{aligned}
G(z) & =\frac{A}{1-2 z}+\frac{B}{1+z}+\frac{C}{(1+z)^{2}}= \\
& =\frac{A(1+z)^{2}+B(1-2 z)(1+z)+C(1-2 z)}{(1-2 z)(1+z)^{2}}= \\
& =\frac{(A-2 B) z^{2}+(2 A-B-2 C) z+A+B+C}{(1-2 z)(1+z)^{2}}
\end{aligned}
$$

continues ..

Decomposition into Partial Fractions (2)

The function: $G(z)=\frac{P(z)}{Q(z)}=\frac{1+z+z^{2}}{(1-2 z)(1+z)^{2}}$

- System of equations:

$$
\left\{\begin{array}{cl}
A-2 B & =1 \\
2 A-B-2 C & =1 \\
A+B+C & =1
\end{array}\right.
$$

- The solution: $A=\frac{7}{9}, B=-\frac{1}{9}, C=\frac{1}{3}$
- The result of decomposition $G(z)=\frac{7}{9(1-2 z)}-\frac{1}{9(1+z)}+\frac{1}{3(1+z)^{2}}$
- using the basic identity

$$
\frac{a}{(1-\rho z)^{k}}=\sum_{n \geqslant 0}\binom{n+k-1}{k-1} a \rho^{n} z^{n},
$$

we get the power series

$$
G(z)=\sum_{n \geqslant 0}\left[\frac{7}{9} 2^{n}-\frac{1}{9}(-1)^{n}+\frac{n+1}{3}(-1)^{n}\right] z^{n}=\sum_{n \geqslant 0} g_{n} z^{n},
$$

where

$$
g_{n}=\frac{7}{9} 2^{n}+\left(\frac{1}{3} n+\frac{2}{9}\right)(-1)^{n} .
$$

Next subsection

1 Solving recurrences

- Example: A more-or-less random recurrence.
- Example: Usage of derivatives

2 Convolutions

- Fibonacci conyolution
- m-fold convolution
- Catalan numbers

3 Exponential generating functions

Example 3: Usage of derivatives

Step 1 Given recurrence

$$
g_{n}=\left\{\begin{array}{cl}
0, & \text { if } n<0 ; \\
1, & \text { if } n=0 ; \\
\frac{2}{n} g_{n-2}, & \text { if } n>0 ;
\end{array}\right.
$$

can be represented by the single equation

$$
g_{n}=\frac{2}{n} g_{n-2}+[n=0] .
$$

Some values:

n	0	1	2	3	4	5	6	7	8	9	10
g_{n}	1	0	1	0	$\frac{1}{2}$	0	$\frac{1}{6}$	0	$\frac{1}{24}$	0	$\frac{1}{120}$

Example 3: Usage of derivatives (cont.)

Step 2 Write down $G(z)=\sum_{n} g_{n} z^{n}$ and its first derivative:

$$
\begin{aligned}
G(z) & =\sum_{n} g_{n} z^{n} \\
& =\sum_{n}[n=0] z^{n}+2 \sum_{n} \frac{g_{n-2}}{n} z^{n} \\
& =1+2 \sum_{n} \frac{g_{n-2}}{n} z^{n}
\end{aligned}
$$

Differentiating, we get a differential equation:

$$
G^{\prime}(z)=2 \sum_{n} \frac{g_{n-2} \cdot n}{n} z^{n-1}=2 z \sum_{n} g_{n-2} z^{n-2}=2 z G(z)
$$

Example 3: Usage of derivatives (2)

Step 3 We need to solve the differential equation $G^{\prime}(z)=2 z G(z)$.

- We rewrite the equation as

$$
\frac{d G(z)}{d z}=2 z G(z)
$$

- This is a separable differential equation, which can be solved by treating $G(z)$ as a variable:

$$
\frac{d G(z)}{G(z)}=2 z d z
$$

- By equating the indefinite integrals, we get:

$$
\log G(z)=z^{2}+C
$$

whence $G(z)=K e^{z^{2}}$ where $K=e^{C}$.

- By applying $G(0)=g_{0}=1$ we get $K=1$. Thus, $G(z)=\mathrm{e}^{z^{2}}$.

Example 3: Usage of derivatives (3)

Step 4 Considering that $\mathrm{e}^{z}=\sum_{n \geqslant 0} \frac{1}{n!} z^{n}$,

- and denoting $u=z^{2}$, we get

$$
\begin{aligned}
G(z)=\mathrm{e}^{z^{2}} & =\mathrm{e}^{u}=\sum \frac{1}{n!} u^{n} \\
& =\sum \frac{1}{n!}\left(z^{2}\right)^{n}=\sum \frac{1}{n!} z^{2 n} \\
& =\sum_{n} \frac{1}{\lfloor n / 2\rfloor!}[n \text { is even }] z^{n}
\end{aligned}
$$

Example 3: Usage of derivatives (3)

Step 4 Considering that $\mathrm{e}^{z}=\sum_{n \geqslant 0} \frac{1}{n!} z^{n}$,

- and denoting $u=z^{2}$, we get

$$
\begin{aligned}
G(z)=\mathrm{e}^{z^{2}} & =\mathrm{e}^{u}=\sum \frac{1}{n!} u^{n} \\
& =\sum \frac{1}{n!}\left(z^{2}\right)^{n}=\sum \frac{1}{n!} z^{2 n} \\
& =\sum_{n} \frac{1}{\lfloor n / 2\rfloor!}[n \text { is even }] z^{n}
\end{aligned}
$$

- To conclude:

$$
g_{n}= \begin{cases}\frac{1}{k!}, & \text { if } n=2 k, k \in \mathbb{N} ; \\ 0, & \text { otherwise. }\end{cases}
$$

Next section

1 Solving recurrences

- Example: A more-or-less random recurrence.
- Example: Usage of derivatives

2 Convolutions

- Fibonacci convolution
- m-fold convolution
- Catalan numbers

3 Exponential generating functions

Convolutions

- Given two sequences:

$$
\left\langle f_{0}, f_{1}, f_{2}, \ldots\right\rangle=\left\langle f_{n}\right\rangle \text { and }\left\langle g_{0}, g_{1}, g_{2}, \ldots\right\rangle=\left\langle g_{n}\right\rangle
$$

The convolution of $\left\langle f_{n}\right\rangle$ and $\left\langle g_{n}\right\rangle$ is the sequence

$$
\left\langle f_{0} g_{0}, f_{0} g_{1}+f_{1} g_{0}, f_{0} g_{2}+f_{1} g_{1}+f_{2} g_{0}, \ldots\right\rangle=\left\langle\sum_{k} f_{k} g_{n-k}\right\rangle=\left\langle\sum_{k+\ell=n} f_{k} g_{\ell}\right\rangle .
$$

Convolutions

- Given two sequences:

$$
\left\langle f_{0}, f_{1}, f_{2}, \ldots\right\rangle=\left\langle f_{n}\right\rangle \text { and }\left\langle g_{0}, g_{1}, g_{2}, \ldots\right\rangle=\left\langle g_{n}\right\rangle
$$

The convolution of $\left\langle f_{n}\right\rangle$ and $\left\langle g_{n}\right\rangle$ is the sequence

$$
\left\langle f_{0} g_{0}, f_{0} g_{1}+f_{1} g_{0}, f_{0} g_{2}+f_{1} g_{1}+f_{2} g_{0}, \ldots\right\rangle=\left\langle\sum_{k} f_{k} g_{n-k}\right\rangle=\left\langle\sum_{k+\ell=n} f_{k} g_{\ell}\right\rangle .
$$

- If $F(z)$ and $G(z)$ are generating functions on the sequences $\left\langle f_{n}\right\rangle$ and $\left\langle g_{n}\right\rangle$, then their convolution has the generating function $F(z) \cdot G(z)$.

Convolutions

- Given two sequences:

$$
\left\langle f_{0}, f_{1}, f_{2}, \ldots\right\rangle=\left\langle f_{n}\right\rangle \text { and }\left\langle g_{0}, g_{1}, g_{2}, \ldots\right\rangle=\left\langle g_{n}\right\rangle
$$

The convolution of $\left\langle f_{n}\right\rangle$ and $\left\langle g_{n}\right\rangle$ is the sequence

$$
\left\langle f_{0} g_{0}, f_{0} g_{1}+f_{1} g_{0}, f_{0} g_{2}+f_{1} g_{1}+f_{2} g_{0}, \ldots\right\rangle=\left\langle\sum_{k} f_{k} g_{n-k}\right\rangle=\left\langle\sum_{k+\ell=n} f_{k} g_{\ell}\right\rangle .
$$

- If $F(z)$ and $G(z)$ are generating functions on the sequences $\left\langle f_{n}\right\rangle$ and $\left\langle g_{n}\right\rangle$, then their convolution has the generating function $F(z) \cdot G(z)$.
- Three or more sequences can be convolved analogously, for example:

$$
\left\langle f_{n}\right\rangle\left\langle g_{n}\right\rangle\left\langle h_{n}\right\rangle=\left\langle\sum_{j+k+\ell=n} f_{j} g_{k} h_{\ell}\right\rangle
$$

and the generating function of this three-fold convolution is the product $F(z) \cdot G(z) \cdot H(z)$.

Next subsection

1 Solving recurrences

- Example: A more-or-less random recurrence.
- Example: Usage of derivatives

2 Convolutions

- Fibonacci convolution
- m-fold convolution
- Catalan numbers

3 Exponential generating functions

Fibonacci convolution

To compute $\sum_{k} f_{k} f_{n-k}$ use Fibonacci generating function (in the form given by Theorem 1 and considering that $\left.\sum_{n}(n+1) z^{n}=\frac{1}{(1-z)^{2}}\right)$:

$$
\begin{aligned}
F^{2}(z) & =\left(\frac{1}{\sqrt{5}}\left(\frac{1}{1-\Phi z}-\frac{1}{1-\widehat{\Phi}_{z}}\right)\right)^{2} \\
& =\frac{1}{5}\left(\frac{1}{(1-\Phi z)^{2}}-\frac{2}{(1-\Phi z)(1-\widehat{\Phi} z)}+\frac{1}{(1-\widehat{\Phi} z)^{2}}\right) \\
& =\frac{1}{5} \sum_{n \geqslant 0}(n+1) \Phi^{n} z^{n}-\frac{2}{5} \sum_{n \geqslant 0} f_{n+1} z^{n}+\frac{1}{5} \sum_{n \geqslant 0}(n+1) \widehat{\Phi}^{n} z^{n} \\
& =\frac{1}{5} \sum_{n \geqslant 0}(n+1)\left(\Phi^{n}+\widehat{\Phi}^{n}\right) z^{n}-\frac{2}{5} \sum_{n \geqslant 0} f_{n+1} z^{n} \\
& =\frac{1}{5} \sum_{n \geqslant 0}(n+1)\left(2 f_{n+1}-f_{n}\right) z^{n}-\frac{2}{5} \sum_{n \geqslant 0} f_{n+1} z^{n} \\
& =\frac{1}{5} \sum_{n \geqslant 0}\left(2 n f_{n+1}-(n+1) f_{n}\right) z^{n}
\end{aligned}
$$

Hence:

$$
\sum_{k} f_{k} f_{n-k}=\frac{2 n f_{n+1}-(n+1) f_{n}}{5}
$$

Fibonacci convolution (2)

On the previous slide the following was used:

Property

For any $n \geqslant 0: \Phi^{n}+\widehat{\Phi}^{n}=2 f_{n+1}-f_{n}$

Proof

The equalities $\sum_{n} \Phi^{n} z^{n}=\frac{1}{1-\Phi z}, \sum_{n} \widehat{\Phi}^{n} z^{n}=\frac{1}{1-\widehat{\Phi} \mathbf{z}}$, and $\Phi+\widehat{\Phi}=1$ are used in the following derivation:

$$
\begin{aligned}
\sum_{n}\left(\Phi^{n}+\widehat{\Phi}^{n}\right) z^{n} & =\frac{1}{1-\Phi z}+\frac{1}{1-\widehat{\Phi} z}=\frac{1-\widehat{\Phi} z+1-\Phi z}{(1-\Phi z)(1-\widehat{\Phi} z)}= \\
& =\frac{2-z}{1-z-z^{2}}=\frac{2}{z} \cdot \frac{z}{1-z-z^{2}}-\frac{z}{1-z-z^{2}}= \\
& =\frac{2}{z} \sum_{n} f_{n} z^{n}-\sum_{n} f_{n} z^{n}=2 \sum_{n} f_{n} z^{n-1}-\sum_{n} f_{n} z^{n}= \\
& =2 \sum_{n} f_{n+1} z^{n}-\sum_{n} f_{n} z^{n}= \\
& =\sum_{n}\left(2 f_{n+1}-f_{n}\right) z^{n}
\end{aligned}
$$

Fibonacci convolution (2)

On the previous slide the following was used:

Property

For any $n \geqslant 0: \Phi^{n}+\widehat{\Phi}^{n}=2 f_{n+1}-f_{n}$

Proof (alternative)

We know from Exercise 6.28 that

$$
\Phi^{n}+\widehat{\Phi}^{n}=L_{n}=f_{n+1}+f_{n-\mathbf{1}}
$$

with the convention $f_{-1}=1$, is the nth Lucas number, which is the solution to the recurrence:

$$
\begin{array}{ll}
L_{0}=2 ; & L_{1}=1 ; \\
L_{n}=L_{n-1}+L_{n-2} & \forall n \geqslant 2 .
\end{array}
$$

By writing the recurrence relation for Fibonacci numbers in the form $f_{n-1}=f_{n+1}-f_{n}$ (which, incidentally, yields $f_{-1}=1$), we get precisely $L_{n}=2 f_{n+1}-f_{n}$.
Q.E.D.

Next subsection

1 Solving recurrences
Example: A more-or-less random recurrence.

- Example: Usage of derivatives

2 Convolutions

- Fibonacci convolution

■ m-fold convolution

- Catalan numbers

3 Exponential generating functions

Spanning trees for fan

Example: the fan of order 5:

Spanning trees for fan

Example: the fan of order 5:

Spanning trees:

$f_{1}=1$

$f_{2}=3$

$\mathrm{f}_{3}=8$

Spanning trees for fan (2)

How many spanning trees can we make?

- We need to connect 0 to each of the four blocks:

■ two ways to join 0 with $\{9,10\}$,

- one way to join 0 with $\{8\}$,

■ four ways to join 0 with $\{4,5,6,7$,$\} ,$

- three ways to join 0 with $\{1,2,3\}$,
- There is altogether $2 \cdot 1 \cdot 4 \cdot 3=24$ ways for that.

Spanning trees for fan (2)

How many spanning trees can we make?

- We need to connect 0 to each of the four blocks:
- two ways to join 0 with $\{9,10\}$,
- one way to join 0 with $\{8\}$,
- four ways to join 0 with $\{4,5,6,7$,$\} ,$
- three ways to join 0 with $\{1,2,3\}$,
- There is altogether $2 \cdot 1 \cdot 4 \cdot 3=24$ ways for that.

In general:

$$
s_{n}=\sum_{m>0} \sum_{\substack{k_{1}+k_{2}+\cdots+k_{m}=n \\ k_{1}, k_{2}, \ldots, k_{m}>0}} k_{1} k_{2} \cdots k_{m}
$$

For example

$$
f_{4}=4+\underbrace{3 \cdot 1+2 \cdot 2+1 \cdot 3}+\underbrace{2 \cdot 1 \cdot 1+1 \cdot 2 \cdot 1+1 \cdot 1 \cdot 2}+1 \cdot 1 \cdot 1 \cdot 1=21
$$

Spanning trees for fan (2)

How many spanning trees can we make?

- We need to connect 0 to each of the four blocks:

■ two ways to join 0 with $\{9,10\}$,

- one way to join 0 with $\{8\}$,
- four ways to join 0 with $\{4,5,6,7$,$\} ,$
- three ways to join 0 with $\{1,2,3\}$,
- There is altogether $2 \cdot 1 \cdot 4 \cdot 3=24$ ways for that.

In general:

$$
s_{n}=\sum_{m>0} \sum_{\substack{ \\k_{1}+k_{2}+\cdots+k_{m}=n \\ k_{1}, k_{2}, \ldots, k_{m}>0}} k_{1} k_{2} \cdots k_{m}
$$

This is the sum of m-fold convolutions of the sequence $\langle 0,1,2,3, \ldots\rangle$.

Spanning trees for fan (3)

Generating function for the number of spanning trees:

- The sequence $\langle 0,1,2,3, \ldots\rangle$ has the generating function

$$
G(z)=\frac{z}{(1-z)^{2}}
$$

- Hence the generating function for $\left\langle f_{n}\right\rangle$ is

$$
\begin{aligned}
S(z) & =G(z)+G^{2}(z)+G^{3}(z)+\cdots=\frac{G(z)}{1-G(z)} \\
& =\frac{z}{(1-z)^{2}\left(1-\frac{z}{(1-z)^{2}}\right)} \\
& =\frac{z}{(1-z)^{2}-z} \\
& =\frac{z}{1-3 z+z^{2}} .
\end{aligned}
$$

Spanning trees for fan (3)

Generating function for the number of spanning trees:

- The sequence $\langle 0,1,2,3, \ldots\rangle$ has the generating function

$$
G(z)=\frac{z}{(1-z)^{2}}
$$

- Hence the generating function for $\left\langle f_{n}\right\rangle$ is

$$
\begin{aligned}
S(z) & =G(z)+G^{2}(z)+G^{3}(z)+\cdots=\frac{G(z)}{1-G(z)} \\
& =\frac{z}{(1-z)^{2}\left(1-\frac{z}{(1-z)^{2}}\right)} \\
& =\frac{z}{(1-z)^{2}-z} \\
& =\frac{z}{1-3 z+z^{2}} .
\end{aligned}
$$

Next subsection

1 Solving recurrences

- Example: A more-or-less random recurrence.
- Example: Usage of derivatives

2 Convolutions

- Fibonacci convolution
- m-fold convolution
- Catalan numbers

3 Exponential generating functions

Dyck language

Definition

The Dyck ${ }^{1}$ language is the language consisting of balanced strings of parentheses '[' and ']'.

Another definition

If $X=\{x, \bar{x}\}$ is the alphabet, then the Dyck language is the subset \mathscr{D} of words u of X^{*} which satisfy
$1|u|_{x}=|u|_{\bar{x}}$, where $|u|_{x}$ is the number of letters x in the word u, and
2 if u is factored as $v w$, where v and w are words of X^{*}, then $|v|_{x} \geqslant|v|_{\bar{x}}$.

Dyck language (2)

- Let C_{n} be the number of words in the Dyck language \mathscr{D} having exactly n pairs of parentheses.
- If $u=v w$ for $u \in \mathscr{D}$, then $v \in \mathscr{D}$ if and only if $w \in \mathscr{D}$.
- Then every word $u \in \mathscr{D}$ of length $\geqslant 2$ has a unique writing $u=[v] w$ such that $v, w \in \mathscr{D}$ (possibly empty) but [$p \notin \mathscr{D}$ for every prefix p of v (including v itself).
- Hence, for every $n>0$,

$$
C_{n}=C_{0} C_{n-1}+C_{1} C_{n-2}+\cdots+C_{n-1} C_{0} .
$$

- The numbers C_{n} are called Catalan numbers, from the Belgian mathematician Eugène Catalan.
Let us derive the closed formula for C_{n} in the following slides.

Catalan numbers

Step 1 The recurrence equation of Catalan numbers for all integers

$$
C_{n}=\sum_{k} C_{k} C_{n-1-k}+[n=0] .
$$

Catalan numbers

Step 1 The recurrence equation of Catalan numbers for all integers

$$
C_{n}=\sum_{k} C_{k} C_{n-1-k}+[n=0] .
$$

Step 2 Write down $C(z)=\sum_{n} C_{n} z^{n}$:

$$
\begin{aligned}
C(z)=\sum_{n} C_{n} z^{n} & =\sum_{k, n} C_{k} C_{n-1-k} z^{n}+\sum_{n}[n=0] z^{n} \\
& =\left(\sum_{k} C_{k} z^{k}\right) \cdot z \cdot\left(\sum_{n} C_{n-1-k} z^{n-1-k}\right)+1 \\
& =\left(\sum_{k} C_{k} z^{k}\right) \cdot z \cdot\left(\sum_{n} C_{n} z^{n}\right)+1 \\
& =z(C(z))^{2}+1
\end{aligned}
$$

Catalan numbers (2)

Step 3 Solving the quadratic equation $z(C(z))^{2}-C(z)+1=0$ for $C(z)$ yields:

$$
C(z)=\frac{1-\sqrt{1-4 z}}{2 z} .
$$

(The solution with " + " isn't proper as it must be $\lim _{z \rightarrow 0} C(z)=1$.)

Catalan numbers (2)

Step 3 Solving the quadratic equation $z(C(z))^{2}-C(z)+1=0$ for $C(z)$ yields:

$$
C(z)=\frac{1-\sqrt{1-4 z}}{2 z} .
$$

(The solution with " + " isn't proper as it must be $\lim _{z \rightarrow 0} C(z)=1$.)
Step 4 From the binomial theorem we get:

$$
\sqrt{1-4 z}=\sum_{k \geqslant 0}\binom{1 / 2}{k}(-4 z)^{k}=1+\sum_{k \geqslant 1} \frac{1}{2 k}\binom{-1 / 2}{k-1}(-4 z)^{k}
$$

- Using the equality for binomials $\binom{-1 / 2}{n}=(-1 / 4)^{n}\binom{2 n}{n}$ we finally get

$$
\begin{aligned}
C(z)=\frac{1-\sqrt{1-4 z}}{2 z} & =\sum_{k \geqslant 1} \frac{1}{k}\binom{-1 / 2}{k-1}(-4 z)^{k-1} \\
& =\sum_{n \geqslant 0}\binom{-1 / 2}{n} \frac{(-4 z)^{n}}{n+1} \\
& =\sum_{n \geqslant 0}\binom{2 n}{n} \frac{z^{n}}{n+1}
\end{aligned}
$$

Proof that $\binom{-1 / 2}{n}=(-1 / 4)^{n}\binom{2 n}{n}$

We prove a bit more: for every $r \in \mathbb{R}$ and $k \geqslant 0$,

$$
r^{\underline{k}} \cdot\left(r-\frac{1}{2}\right)^{\underline{k}}=\frac{(2 r)^{2 k}}{2^{2 k}}
$$

Proof that $\binom{-1 / 2}{n}=(-1 / 4)^{n}\binom{2 n}{n}$

We prove a bit more: for every $r \in \mathbb{R}$ and $k \geqslant 0$,

$$
r^{\underline{k}} \cdot\left(r-\frac{1}{2}\right)^{\underline{k}}=\frac{(2 r)^{2 k}}{2^{2 k}}
$$

Indeed,

$$
\begin{aligned}
r^{\underline{k}} \cdot\left(r-\frac{1}{2}\right)^{\underline{k}} & =r \cdot\left(r-\frac{1}{2}\right) \cdot(r-1) \cdot\left(r-\frac{3}{2}\right) \cdots(r-k+1) \cdot\left(r-\frac{1}{2}-k+1\right) \\
& =\frac{2 r}{2} \cdot \frac{2 r-1}{2} \cdot \frac{2 r-2}{2} \cdot \frac{2 r-3}{2} \cdots \frac{2 r-2 k+2}{2} \cdot \frac{2 r-2 k+1}{2} \\
& =\frac{(2 r)^{2 k}}{2^{2 k}}
\end{aligned}
$$

Proof that $\binom{-1 / 2}{n}=(-1 / 4)^{n}\binom{2 n}{n}$

We prove a bit more: for every $r \in \mathbb{R}$ and $k \geqslant 0$,

$$
r^{\underline{k}} \cdot\left(r-\frac{1}{2}\right)^{\underline{k}}=\frac{(2 r)^{\underline{2 k}}}{2^{2 k}}
$$

Indeed,

$$
\begin{aligned}
r^{\underline{k}} \cdot\left(r-\frac{1}{2}\right)^{\underline{k}} & =r \cdot\left(r-\frac{1}{2}\right) \cdot(r-1) \cdot\left(r-\frac{3}{2}\right) \cdots(r-k+1) \cdot\left(r-\frac{1}{2}-k+1\right) \\
& =\frac{2 r}{2} \cdot \frac{2 r-1}{2} \cdot \frac{2 r-2}{2} \cdot \frac{2 r-3}{2} \cdots \frac{2 r-2 k+2}{2} \cdot \frac{2 r-2 k+1}{2} \\
& =\frac{(2 r)^{\underline{k}}}{2^{2 k}}
\end{aligned}
$$

Then for $r=k=n$, dividing by $(n!)^{2}$ and using $n^{n}=n!$,

$$
\binom{n-1 / 2}{n}=\left(\frac{1}{4}\right)^{n}\binom{2 n}{n}:
$$

and as $r^{\underline{k}}=(-1)^{k}(-r)^{\bar{k}}=(-1)^{k}(-r+k-1)^{\underline{k}}$, for $k=n$ and $r=n-1 / 2$ we get:

$$
\binom{-1 / 2}{n}=\binom{-(n-1 / 2)+n-1}{n}=\frac{(-1)^{n}}{4^{n}}\binom{2 n}{n}
$$

Resume Catalan numbers

Formulas for computation

- $C_{n+1}=\frac{2(2 n+1)}{n+2} C_{n}$, with $C_{0}=1$
- $C_{n}=\frac{1}{n+1}\binom{2 n}{n}$
- $C_{n}=\binom{2 n}{n}-\binom{2 n}{n-1}=\binom{2 n-1}{n}-\binom{2 n-1}{n+1}$
- Generating function: $C(z)=\frac{1-\sqrt{1-4 z}}{2 z}$

Eugéne Charles Catalan (1814-1894)

$$
\lim _{n \rightarrow \infty} \frac{C_{n}}{C_{n-1}}=4
$$

n	0	1	2	3	4	5	6	7	8	9	10
C_{n}	1	1	2	5	14	42	132	429	1430	4862	16796

Applications of Catalan numbers

Number of complete binary trees with $n+1$ leaves is C_{n}

Applications of Catalan numbers

Number of complete binary trees with $n+1$ leaves is C_{n}

The Dyck language consists of exactly n characters A and n characters B, and every prefix does not contain more B-s than A-s. For example, there are five words with 6 letters in the Dyck language:

$A A A B B B$ AABABB AABBAB ABAABB ABABAB

Corollary
C_{n} is the number of words of length $2 n$ in the Dyck language.

Applications of Catalan numbers (2)

Monotonic paths

C_{n} is the number of monotonic paths along the edges of a grid with $n \times n$ square cells, which do not pass above the diagonal. A monotonic path is one which starts in the lower left corner, finishes in the upper right corner, and consists entirely of edges pointing rightwards or upwards.

Applications of Catalan numbers (3)

Polygon triangulation

C_{n} is the number of different ways a convex polygon with $n+2$ sides can be cut into triangles by connecting vertices with straight lines.

See more applications, for example, on http://www.absoluteastronomy.com/topics/Catalan_number

Next section

1 Solving recurrences

- Example: A more-or-less random recurrence. - Example: Usage of derivatives

2 Convolutions

- Fibonacci convolution
- m-fold convolution
- Catalan numbers

3 Exponential generating functions

Exponential generating function

Definition

The exponential generating function (briefly, egf) of the sequence $\left\langle g_{n}\right\rangle$ is the function

$$
\widehat{G}(z)=\sum_{n \geqslant 0} \frac{g_{n}}{n!} z^{n},
$$

that is, the generating function of the sequence $\left\langle\frac{g_{n}}{n!}\right\rangle$.
For example, $e^{z}=\sum_{n \geqslant 0} \frac{z^{n}}{n!}$ is the egf of the constant sequence 1.

Exponential generating function

Definition

The exponential generating function (briefly, egf) of the sequence $\left\langle g_{n}\right\rangle$ is the function

$$
\widehat{G}(z)=\sum_{n \geqslant 0} \frac{g_{n}}{n!} z^{n},
$$

that is, the generating function of the sequence $\left\langle\frac{g_{n}}{n!}\right\rangle$.
For example, $e^{z}=\sum_{n \geqslant 0} \frac{z^{n}}{n!}$ is the egf of the constant sequence 1 .

Why exponential generating functions?

- Because $\left\langle g_{n} / n!\right\rangle$ might have a "simpler" generating function than $\left\langle g_{n}\right\rangle$.
- Because if limsup $n \geqslant 0 \sqrt[n]{\left|g_{n}\right|}=+\infty$ then $\left\langle g_{n}\right\rangle$ does not have a generating function analytic in a neighborhood of the origin. Example: the Bernoulli numbers.
- Because $\left\langle g_{n}\right\rangle$ might count labeled objects so that there are n ! labels for every object of size n, and $\left\langle g_{n}\right\rangle$ gives the same information as $\left\langle g_{n} / n!\right\rangle$.

Exponential generating functions: Basic maneuvers

Let $\widehat{F}(z)$ and $\widehat{G}(z)$ be the exponential generating functions of $\left\langle f_{n}\right\rangle$ and $\left\langle g_{n}\right\rangle$.
As usual, we put $f_{n}=g_{n}=0$ for every $n<0$, and undefined $\cdot 0=0$.

- $\alpha \widehat{F}(z)+\beta \widehat{G}(z)=\sum_{n}\left(\frac{\alpha f_{n}+\beta g_{n}}{n!}\right) z^{n}$
- $\widehat{G}(c z)=\sum_{n} \frac{c^{n} g_{n}}{n!} z^{n}$

- $\widehat{G}^{\prime}(z)=\sum_{n} \frac{g_{n+1}}{n!} z^{n}$
$-\int_{0}^{z} \widehat{\sigma}(w) d w=\sum_{n} \frac{g_{n-1}}{n!} z^{n}$
- $\widehat{F}(z) \cdot \widehat{G}(z)=\sum_{n} \frac{1}{n!}\left(\sum_{k}\binom{n}{k} f_{k} g_{n-k}\right) z^{n}$

Exponential generating functions: Basic maneuvers

Let $\widehat{F}(z)$ and $\widehat{G}(z)$ be the exponential generating functions of $\left\langle f_{n}\right\rangle$ and $\left\langle g_{n}\right\rangle$.
As usual, we put $f_{n}=g_{n}=0$ for every $n<0$, and undefined $\cdot 0=0$.

- $\alpha \widehat{F}(z)+\beta \widehat{G}(z)=\sum_{n}\left(\frac{\alpha f_{n}+\beta g_{n}}{n!}\right) z^{n}$
- $\widehat{G}(c z)=\sum_{n} \frac{c^{n} g_{n}}{n!} z^{n}$

Exponential generating functions: Basic maneuvers

Let $\widehat{F}(z)$ and $\widehat{G}(z)$ be the exponential generating functions of $\left\langle f_{n}\right\rangle$ and $\left\langle g_{n}\right\rangle$.
As usual, we put $f_{n}=g_{n}=0$ for every $n<0$, and undefined $\cdot 0=0$.

- $\alpha \widehat{F}(z)+\beta \widehat{G}(z)=\sum_{n}\left(\frac{\alpha f_{n}+\beta g_{n}}{n!}\right) z^{n}$
- $\widehat{G}(c z)=\sum_{n} \frac{c^{n} g_{n}}{n!} z^{n}$
- $z \widehat{G}(z)=\sum_{n} \frac{n g_{n-1}}{n!} z^{n}$
- $\widehat{G}^{\prime}(z)=\sum_{n} \frac{g_{n+1}}{n!} z^{n}$
- $\int_{0}^{z} \widehat{G}(w) \mathrm{d} w=\sum_{n} \frac{g_{n-1}}{n!} z^{n}$
$=\widehat{F}(z) \cdot \hat{G}(z)=\sum_{n} \frac{1}{n!}\left(\sum_{k}\binom{n}{k} f_{k} g_{n-k}\right) z^{n}$

Exponential generating functions: Basic maneuvers

Let $\widehat{F}(z)$ and $\widehat{G}(z)$ be the exponential generating functions of $\left\langle f_{n}\right\rangle$ and $\left\langle g_{n}\right\rangle$.
As usual, we put $f_{n}=g_{n}=0$ for every $n<0$, and undefined $\cdot 0=0$.

- $\alpha \widehat{F}(z)+\beta \widehat{G}(z)=\sum_{n}\left(\frac{\alpha f_{n}+\beta g_{n}}{n!}\right) z^{n}$
- $\widehat{G}(c z)=\sum_{n} \frac{c^{n} g_{n}}{n!} z^{n}$
- $z \widehat{G}(z)=\sum_{n} \frac{n g_{n-1}}{n!} z^{n}$
- $\widehat{G}^{\prime}(z)=\sum_{n} \frac{g_{n+1}}{n!} z^{n}$

Exponential generating functions: Basic maneuvers

Let $\widehat{F}(z)$ and $\widehat{G}(z)$ be the exponential generating functions of $\left\langle f_{n}\right\rangle$ and $\left\langle g_{n}\right\rangle$.
As usual, we put $f_{n}=g_{n}=0$ for every $n<0$, and undefined $\cdot 0=0$.

- $\alpha \widehat{F}(z)+\beta \widehat{G}(z)=\sum_{n}\left(\frac{\alpha f_{n}+\beta g_{n}}{n!}\right) z^{n}$
- $\widehat{G}(c z)=\sum_{n} \frac{c^{n} g_{n}}{n!} z^{n}$
- $z \widehat{G}(z)=\sum_{n} \frac{n g_{n-1}}{n!} z^{n}$
- $\widehat{G}^{\prime}(z)=\sum_{n} \frac{g_{n+1}}{n!} z^{n}$
- $\int_{0}^{z} \widehat{G}(w) \mathrm{d} w=\sum_{n} \frac{g_{n-1}}{n!} z^{n}$
$=\widehat{F}(z) \cdot \widehat{G}(z)=\sum_{n} \frac{1}{n!}\left(\sum_{k}\binom{n}{k} f_{k} g_{n-k}\right) z^{n}$

Exponential generating functions: Basic maneuvers

Let $\widehat{F}(z)$ and $\widehat{G}(z)$ be the exponential generating functions of $\left\langle f_{n}\right\rangle$ and $\left\langle g_{n}\right\rangle$.
As usual, we put $f_{n}=g_{n}=0$ for every $n<0$, and undefined $\cdot 0=0$.

- $\alpha \widehat{F}(z)+\beta \widehat{G}(z)=\sum_{n}\left(\frac{\alpha f_{n}+\beta g_{n}}{n!}\right) z^{n}$
- $\widehat{G}(c z)=\sum_{n} \frac{c^{n} g_{n}}{n!} z^{n}$
- $z \widehat{G}(z)=\sum_{n} \frac{n g_{n-1}}{n!} z^{n}$
- $\widehat{G}^{\prime}(z)=\sum_{n} \frac{g_{n+1}}{n!} z^{n}$
- $\int_{0}^{z} \widehat{G}(w) \mathrm{d} w=\sum_{n} \frac{g_{n-1}}{n!} z^{n}$
- $\widehat{F}(z) \cdot \widehat{G}(z)=\sum_{n} \frac{1}{n!}\left(\sum_{k}\binom{n}{k} f_{k} g_{n-k}\right) z^{n}$

Binomial convolution

Definition

The binomial convolution of the sequences $\left\langle f_{n}\right\rangle$ and $\left\langle g_{n}\right\rangle$ is the sequence $\left\langle h_{n}\right\rangle$ defined by:

$$
h_{n}=\sum_{k}\binom{n}{k} f_{k} g_{n-k}
$$

Binomial convolution

Definition

The binomial convolution of the sequences $\left\langle f_{n}\right\rangle$ and $\left\langle g_{n}\right\rangle$ is the sequence $\left\langle h_{n}\right\rangle$ defined by:

$$
h_{n}=\sum_{k}\binom{n}{k} f_{k} g_{n-k}
$$

Examples

- $\left\langle(a+b)^{n}\right\rangle$ is the binomial convolution of $\left\langle a^{n}\right\rangle$ and $\left\langle b^{n}\right\rangle$.
- If $\widehat{F}(z)$ is the egf of $\left\langle f_{n}\right\rangle$ and $\widehat{G}(z)$ is the egf of $\left\langle g_{n}\right\rangle$, then $\widehat{H}(z)=\widehat{F}(z) \cdot \widehat{G}(z)$ is the egf of $\left\langle h_{n}\right\rangle$, because then:

$$
\frac{h_{n}}{n!}=\sum_{k} \frac{f_{k}}{k!} \frac{g_{n-k}}{(n-k)!}, \text { which is equivalent to } h_{n}=\sum_{k} \frac{n!}{k!(n-k)!} f_{k} g_{n-k}
$$

Bernoulli numbers and exponential generating functions

Recall that the Bernoulli numbers are defined by the recurrence:

$$
\sum_{k=0}^{m}\binom{m+1}{k} B_{k}=[m=0] \quad \forall m \geqslant 0
$$

which is equivalent to:

$$
\sum_{n}\binom{n}{k} B_{k}=B_{n}+[n=1] \quad \forall n \geqslant 0 .
$$

The left-hand side is a binomial convolution with the constant sequence 1 . Then the egf $\widehat{B}(z)$ of the Bernoulli numbers satisfies

$$
\widehat{B}(z) \cdot e^{z}=\widehat{B}(z)+z:
$$

which yields

$$
\widehat{B}(z)=\frac{z}{e^{z}-1} .
$$

Bernoulli numbers and exponential generating functions

Recall that the Bernoulli numbers are defined by the recurrence:

$$
\sum_{k=0}^{m}\binom{m+1}{k} B_{k}=[m=0] \forall m \geqslant 0
$$

which is equivalent to:

$$
\sum_{n}\binom{n}{k} B_{k}=B_{n}+[n=1] \quad \forall n \geqslant 0
$$

To make a comparison:

$$
\sum_{n \geqslant 0} \frac{B_{n}}{n!} z^{n}=\frac{z}{e^{z}-1} \text { but } \sum_{n \geqslant 0} B_{n}^{+} z^{n}=\frac{1}{z} \frac{d^{2}}{d z^{2}} \ln \int_{0}^{\infty} t^{z-1} e^{-t} d t
$$

where $B_{n}^{+}=B_{n} \cdot\left[B_{n} \geqslant 0\right]$.

