Asymptotics ITT9132 Concrete Mathematics Lecture 15 – 6 May 2019

Chapter Nine

A Hierarchy

O Notation

O Manipulation

3 O Manipulation

Suppose that an algorithm requires

$$S_n = \sum_{k=0}^n \binom{3n}{k}$$

operations to compute the output on an input of length n.

- There seems to be no closed formula for S_n .
- But we need some information of what is "more or less" S_n for large values of n. (So that we know that computation will finish by a certain time.)
- For example: between S_n and f_{4n} , which is "larger" when n is "large"?

Asymptotics provide a way to:

- determine what "more or less" means in this context;
- make comparisons between things that "grow unboundedly".

Next section

1 A Hierarchy

2 O notation

3 O Manipulation

A hierarchy between rates of growth

Definition

Let f and g be two real-valued functions defined on the natural numbers. We say that g grows asymptotically faster than f, and write $f(n) \prec g(n)$, if the ratio f(n)/g(n) converges to zero for $n \to \infty$.

Definition

Let f and g be two real-valued functions defined on the natural numbers. We say that g grows asymptotically faster than f, and write $f(n) \prec g(n)$, if the ratio f(n)/g(n) converges to zero for $n \to \infty$.

- The relation \prec is transitive: If $f(n) \prec g(n)$ and $g(n) \prec h(n)$ then $f(n) \prec h(n)$.
- The relation \prec is not reflexive! For every $f : \mathbb{N} \to \mathbb{R}$, $\lim_{n \to \infty} f(n)/f(n) = 1 \neq 0$.
- For $\alpha, \beta > 0$, $n^{\alpha} \prec n^{\beta}$ if and only if $\alpha < \beta$.
- If f(n) and g(n) are never zero and $\lim_{n\to\infty} f(n) = \lim_{n\to\infty} g(n) = 0$, then:

$$f(n) \prec g(n)$$
 if and only if $\frac{1}{g(n)} \prec \frac{1}{f(n)}$

That is: the same notation works for the infinitely small as well as for the infinitely large.

A hierarchy of functions

For $0 < \varepsilon < 1 < c$:

 $\begin{array}{rrrr} 1 & \prec & \log\log n \\ & \prec & \log n \\ & \prec & n^{\varepsilon} \\ & \prec & n \\ & \prec & n^{c} \\ & \prec & n^{\log n} \\ & \prec & c^{n} \\ & & & n! \\ & & & n^{n} \\ & & & & c^{c^{n}} \end{array}$

We "think big":

we do not care *if* a function goes to infinity, but how fast it does

Definition

Let $\vec{\alpha} = (\alpha_1, \dots, \alpha_d)$ and $\vec{\beta} = (\beta_1, \dots, \beta_d)$ be *d*-tuples of real numbers. We say that $\vec{\alpha}$ precedes $\vec{\beta}$ in lexicographic order, and write $\vec{\alpha} <_L \vec{\beta}$, if there exists $i \in [1:d]$ such that $\alpha_i < \beta_i$ and $\alpha_j = \beta_j$ for every j < i.

For example, $(1,2,3) <_L (2,0,0)$ and $(1,2,3,4,5) <_L (1,2,4,8,0)$.

Theorem

Let $\alpha_1, \alpha_2, \alpha_3, \beta_1, \beta_2, \beta_3 > 0$. The following are equivalent:

$$I \quad n^{\alpha_1} (\log n)^{\alpha_2} (\log \log n)^{\alpha_3} \prec n^{\beta_1} (\log n)^{\beta_2} (\log \log n)^{\beta_3}.$$

2
$$(\alpha_1, \alpha_2, \alpha_3) <_L (\beta_1, \beta_2, \beta_3)$$

Warmup: where does $e^{\sqrt{\ln n}}$ belong?

Theorem

For every $\varepsilon > 0$, $\log n \prec e^{\sqrt{\ln n}} \prec n^{\varepsilon}$.

Warmup: where does $e^{\sqrt{\ln n}}$ belong?

Theorem

For every
$$\varepsilon > 0$$
, $\log n \prec e^{\sqrt{\ln n}} \prec n^{\varepsilon}$.

Lemma

Let f(n) and g(n) be such that $\lim_{n \to \infty} f(n) = \lim_{n \to \infty} g(n) = +\infty$. Then:

$$e^{f(n)} \prec e^{g(n)}$$
 if and only if $\lim_{n \to \infty} (f(n) - g(n)) = -\infty$.

Proof of the lemma:

$$e^{f(n)} \prec e^{g(n)}$$
 if and only if $\lim_{n \to \infty} \frac{e^{f(n)}}{e^{g(n)}} = 0$
if and only if $\lim_{n \to \infty} e^{f(n) - g(n)} = 0$
if and only if $\lim_{n \to \infty} f(n) - g(n) = -\infty$

Warmup: where does $e^{\sqrt{\ln n}}$ belong?

Theorem

For every $\varepsilon > 0$, $\log n \prec e^{\sqrt{\ln n}} \prec n^{\varepsilon}$.

Proof of the theorem:

By the lemma,

$$\lim_{n \to \infty} \frac{\log n}{e^{\sqrt{\log n}}} = 0 \text{ if and only if } \lim_{n \to \infty} \log \log n - \sqrt{\log n} = -\infty,$$

which is the case.

Similarly,

$$\lim_{n\to\infty}\frac{e^{\sqrt{\log n}}}{n^{\varepsilon}}=0 \text{ if and only if } \lim_{n\to\infty}\sqrt{\log n}-\varepsilon\log n=-\infty,$$

which is the case.

An equivalence of rates of growth

Definition

We say that f(n) and g(n) have the same rate of growth, and write $f(n) \asymp g(n)$, if there exist $n_0 \in \mathbb{N}$ and C > 0 such that

$$|f(n)| \leq C \cdot |g(n)|$$
 and $|g(n)| \leq C \cdot |f(n)| \quad \forall n \geq n_0$.

symp i is easily shown to be an equivalence relation. If, in particular, $\lim_{n \to \infty} f(n)/g(n) = 1$, then we write $f(n) \sim g(n)$.

An equivalence of rates of growth

Definition

We say that f(n) and g(n) have the same rate of growth, and write $f(n) \asymp g(n)$, if there exist $n_0 \in \mathbb{N}$ and C > 0 such that

$$|f(n)| \leq C \cdot |g(n)|$$
 and $|g(n)| \leq C \cdot |f(n)| \quad \forall n \ge n_0$.

symp i is easily shown to be an equivalence relation. If, in particular, $\lim_{n\to\infty} f(n)/g(n) = 1$, then we write $f(n) \sim g(n)$.

\prec and \asymp do not define a preorder!

It can be that none of the three relations:

- $\bullet f(n) \prec g(n),$
- $g(n) \prec f(n),$
- $f(n) \asymp g(n)$

holds. For example, it could be $\liminf_{n \ge 1} \frac{|f(n)|}{|g(n)|} = 0$ and $\limsup_{n \ge 1} \frac{|f(n)|}{|g(n)|} = +\infty$.

Godfrey Harold Hardy defined the class \mathfrak{L} of logarithmico-exponential functions as the smallest class of functions satisfying the following properties:

1 For every $\alpha \in \mathbb{R}$, the constant function $f(n) = \alpha$ is in \mathfrak{L} .

- **2** The identity function f(n) = n is in \mathfrak{L} .
- 3 If $f(n), g(n) \in \mathfrak{L}$, then $f(n) g(n) \in \mathfrak{L}$.
- 4 If $f(n) \in \mathfrak{L}$, then $e^{f(n)} \in \mathfrak{L}$.

5 If $f(n) \in \mathfrak{L}$ is ultimately positive, then $\ln f(n) \in \mathfrak{L}$.

A function f ultimately has property P if f(n) has property P for every n large enough (equivalently, if f(n) does not have property P only for finitely many values of n)

The class $\mathfrak L$ of logarithmico-exponential functions

Godfrey Harold Hardy defined the class \mathfrak{L} of logarithmico-exponential functions as the smallest class of functions satisfying the following properties:

- **1** For every $\alpha \in \mathbb{R}$, the constant function $f(n) = \alpha$ is in \mathfrak{L} .
- **2** The identity function f(n) = n is in \mathfrak{L} .
- 3 If $f(n), g(n) \in \mathfrak{L}$, then $f(n) g(n) \in \mathfrak{L}$.
- 4 If $f(n) \in \mathfrak{L}$, then $e^{f(n)} \in \mathfrak{L}$.
- 5 If $f(n) \in \mathfrak{L}$ is ultimately positive, then $\ln f(n) \in \mathfrak{L}$.

A function f ultimately has property P if f(n) has property P for every n large enough (equivalently, if f(n) does not have property P only for finitely many values of n)

Examples

I . . .

If $f(n), g(n) \in \mathfrak{L}$, then so are:

•
$$f(n) + g(n) = f(n) - (0 - g(n));$$

• $f(n) \cdot g(n) = e^{\ln f(n) + \ln g(n)}$ and $f(n)/g(n) = e^{\ln f(n) - \ln g(n)}$ if f(n), g(n) > 0 for every n large enough;

•
$$\sqrt{f(n)} = e^{\frac{1}{2} \ln n}$$

again if $f(n) > 0$ for every *n* large enough;

The class $\mathfrak L$ of logarithmico-exponential functions

Godfrey Harold Hardy defined the class \mathfrak{L} of logarithmico-exponential functions as the smallest class of functions satisfying the following properties:

- **1** For every $\alpha \in \mathbb{R}$, the constant function $f(n) = \alpha$ is in \mathfrak{L} .
- **2** The identity function f(n) = n is in \mathfrak{L} .
- 3 If $f(n), g(n) \in \mathfrak{L}$, then $f(n) g(n) \in \mathfrak{L}$.
- 4 If $f(n) \in \mathfrak{L}$, then $e^{f(n)} \in \mathfrak{L}$.
- 5 If $f(n) \in \mathfrak{L}$ is ultimately positive, then $\ln f(n) \in \mathfrak{L}$.

A function f ultimately has property P if f(n) has property P for every n large enough (equivalently, if f(n) does not have property P only for finitely many values of n)

Theorem 1 (Hardy)

Every function $f(n) \in \mathfrak{L}$ is

- either ultimately positive,
- or ultimately negative,
- or identically zero.

The class $\mathfrak L$ of logarithmico-exponential functions

Godfrey Harold Hardy defined the class \mathfrak{L} of logarithmico-exponential functions as the smallest class of functions satisfying the following properties:

- **1** For every $\alpha \in \mathbb{R}$, the constant function $f(n) = \alpha$ is in \mathfrak{L} .
- **2** The identity function f(n) = n is in \mathfrak{L} .
- 3 If $f(n), g(n) \in \mathfrak{L}$, then $f(n) g(n) \in \mathfrak{L}$.
- 4 If $f(n) \in \mathfrak{L}$, then $e^{f(n)} \in \mathfrak{L}$.
- 5 If $f(n) \in \mathfrak{L}$ is ultimately positive, then $\ln f(n) \in \mathfrak{L}$.

A function f ultimately has property P if f(n) has property P for every n large enough (equivalently, if f(n) does not have property P only for finitely many values of n)

Theorem 2 (Hardy)

For every two functions $f(n), g(n) \in \mathfrak{L}$,

- either $f(n) \prec g(n)$,
- or $g(n) \prec f(n)$,
- or $f(n) \asymp g(n)$: in which case $f(n) \sim \alpha g(n)$ for suitable α .

Next section

1 A Hierarchy

2 O notation

3 O Manipulation

Definition

We write f(n) = O(g(n)), and say that f(n) is big-O of g(n), if $|f(n)| \leq C \cdot |g(n)|$ for a suitable constant C and for every n.

Definition

We write f(n) = O(g(n)), and say that f(n) is big-O of g(n), if $|f(n)| \leq C \cdot |g(n)|$ for a suitable constant C and for every n.

Note: this is a small abuse of notation.

- Rather than a single function, O(g(n)) is a class of functions f(n) such that $|f(n)| \leq C \cdot |g(n)|$ for a suitable constant C and for every n.
- Therefore, it would be more precise to write $f(n) \in O(g(n))$ rather than $f(n) \in O(g(n))$.
- However, the symbol of equality is much easier to use, and it is clear from the context that we mean membership to a class.
- The same convention holds when comparing big-O classes: By writing O(f(n)) = O(g(n)) we usually mean $O(f(n)) \subseteq O(g(n))$ instead.

In other words: with big-O notation, we usually mean equalities to be "left to right", but not necessarily "right to left".

Definition

We write f(n) = O(g(n)), and say that f(n) is big-O of g(n), if $|f(n)| \le C \cdot |g(n)|$ for a suitable constant C and for every n.

Example:

• Let
$$\Box_n = \sum_{k=0}^n k^2$$
. Then $\Box_n = O(n^3)$ with $C = 1$, because for every n

$$|\Box_n| = \left|\frac{1}{3}n^3 + \frac{1}{2}n^2 + \frac{1}{6}n\right| \le \frac{1}{3}|n^3| + \frac{1}{2}|n^2| + \frac{1}{6}|n| \le \left(\frac{1}{3} + \frac{1}{2} + \frac{1}{6}\right)|n^3| = |n^3|.$$

Also,
$$\Box_n = \frac{1}{3}n^3 + O(n^2)$$
, where the O notation has $C = \frac{1}{2}$.

Also, $\Box_n = O(n^{17})$. We can be as "sloppy" as we want!

A cautionary tale

Student:

I have found a more efficient algorithm! The old algorithm requires $O(n \ln n \ln \ln n)$ bits of memory: my algorithm only requires $O(n \ln n)$ bits!

A cautionary tale

Student:

I have found a more efficient algorithm! The old algorithm requires $O(n \ln n \ln \ln n)$ bits of memory: my algorithm only requires $O(n \ln n)$ bits!

Robert Sedgewick:

.... but in the real world, "In In n" means "six"!

(There are less than 10^{100} atoms in the universe; ln ln $10^{100} = 5.4392026...$)

Definition

We write $f(n) = \Omega(g(n))$, and say that f(n) is big-Omega of g(n), if $|f(n)| \ge C \cdot |g(n)|$ for a suitable constant C and for every n.

In other words:

Definition

We write $f(n) = \Theta(g(n))$, and say that f(n) is big-Theta of g(n), if both f(n) = O(g(n)) and $f(n) = \Omega(g(n))$

Note that:

- $f(n) = \Omega(g(n))$ if and only if g(n) = O(f(n));
- $f(n) = \Theta(g(n))$ if and only if $f(n) \asymp g(n)$.

Again, equalities are meant to be "left to right".

Next section

1 A Hierarchy

2 O notation

3 O Manipulation

TAL TECH

Basic operations

$$f(n) = O(f(n))$$

$$c \cdot O(f(n)) = O(f(n)), c \text{ constant}$$

$$O(O(f(n))) = O(f(n))$$

$$O(f(n)) \cdot O(g(n)) = O(f(n) \cdot g(n))$$

$$f(n) \cdot O(g(n)) = O(f(n) \cdot g(n))$$

$$n^{\alpha} = O(n^{\beta}), \text{ if } \alpha \leq \beta$$

$$O(f(n)) + O(g(n)) = O(|f(n)| + |g(n)|)$$

The following rule is also useful:

$$f(n) = g(n) + O(h(n))$$
 if and only if $g(n) = f(n) + O(h(n))$

Indeed, each side can be obtained from the other by multiplying by -1 and adding f(n) + g(n).

Warmup: *O* notation and sums

Problem

Prove or disprove: if f(n) and g(n) are positive for all n, then

O(f(n) + g(n)) = f(n) + O(g(n))

Warmup: *O* notation and sums

Problem

Prove or disprove: if f(n) and g(n) are positive for all n, then

$$O(f(n)+g(n)) = f(n)+O(g(n))$$

Solution

Let us check what the two classes actually are:

• O(f(n) + g(n)) is the class of the functions h(n) such that:

 $\exists C > 0. \forall n \in \mathbb{N}. |h(n)| \leq C \cdot |f(n) + g(n)|$

• f(n) + O(g(n)) is the class of the functions h(n) such that:

 $\exists k : \mathbb{N} \to \mathbb{C}, C > 0. \forall n \in \mathbb{N}. h(n) = f(n) + k(n) \text{ and } |k(n)| \leq C \cdot |g(n)|$

If f(n) = n and g(n) = 1, then h(n) = 2n belongs to the first class, but not to the second one.

Let $S(z) = \sum_{n \ge 0} a_n z^n$ be a power series.

• Suppose S(z) converges absolutely for some $z_0 \in \mathbb{C}$, that is,

$$\sum_{n \ge 0} |a_n| \cdot |z_0|^n < \infty$$

Then the following holds:

$$S(z) = O(1) \ \forall |z| \leq |z_0|$$

Indeed, in this case,

$$|S(z)| \leq \sum_{n \geq 0} |a_n| \cdot |z|^n \leq \sum_{n \geq 0} |a_n| \cdot |z_0|^n < \infty.$$

Power series and O notation

Let $S(z) = \sum_{n \ge 0} a_n z^n$ be a power series.

Suppose S(z) converges absolutely for some $z_0 \in \mathbb{C}$, that is,

$$\sum_{n\geq 0}|a_n|\cdot|z_0|^n<\infty$$

Then the following holds:

$$S(z) = O(1) \ \forall |z| \leq |z_0|$$

Indeed, in this case,

$$|S(z)| \leqslant \sum_{n \geqslant 0} |a_n| \cdot |z|^n \leqslant \sum_{n \geqslant 0} |a_n| \cdot |z_0|^n < \infty.$$

Of course, the following relations are also valid:

•
$$S(z) = a_0 + O(z);$$

• $S(z) = a_0 + a_1 z + O(z^2);$
• $S(z) = a_0 + a_1 z + \dots + a_{16} z^{16} + O(z^{17})$

A table of asymptotic approximations

h

$$H_n = \ln n + \gamma + \frac{1}{2n} - \frac{1}{12n^2} + \frac{1}{120n^4} + O\left(\frac{1}{n^6}\right)$$

$$n! = \sqrt{2\pi n} \left(\frac{n}{e}\right)^n \cdot \left(1 + \frac{1}{12n} + \frac{1}{288n^2} - \frac{139}{51840n^3} + O\left(\frac{1}{n^4}\right)\right)$$

$$B_n = 2 \left[n \operatorname{even}\right] (-1)^{n/2 - 1} \frac{n!}{(2\pi)^n} \cdot \left(1 + \frac{1}{2^n} + \frac{1}{3^n} + O\left(\frac{1}{4^n}\right)\right)$$

$$\pi(n) = \frac{n}{\ln n} + \frac{n}{(\ln n)^2} + \frac{2!n}{(\ln n)^3} + \frac{3!n}{(\ln n)^4} + O\left(\frac{n}{(\log n)^5}\right)$$

$$e^z = 1 + z + \frac{z^2}{2} + \frac{z^3}{6} + \frac{z^4}{24} + O(z^5)$$

$$n(1+z) = z - \frac{z^2}{2} + \frac{z^3}{3} - \frac{z^4}{4} + O(z^5)$$

$$\frac{1}{1-z} = 1 + z + z^2 + z^3 + z^4 + O(z^5)$$

$$(1+z)^\alpha = 1 + \alpha z + \binom{\alpha}{2} z^2 + \binom{\alpha}{3} z^3 + \binom{\alpha}{4} z^4 + O(z^5)$$

We use log instead of In in the big-O notation, because changing base corresponds to multiply by a nonzero constant.

Absolute error

An asymptotic approximation for a function f(n) has absolute error O(g(n)) if it has the form

$$f(n) = h(n) + O(g(n))$$

for some h(n) which does not involve O-notation.

That is: the absolute error |f(n) - h(n)| is bounded by a multiple of |g(n)|.

Relative error

An asymptotic approximation for a function f(n) has relative error O(g(n)) if it has the form

$$f(n) = h(n) \cdot (1 + O(g(n)))$$

for some h(n) which does not involve O-notation.

That is: the relative error
$$\left| \frac{f(n)}{h(n)} - 1 \right|$$
 is bounded by a multiple of $|g(n)|$.

Problem

Provide an asymptotic estimate for the nth prime number P_n as a function of n.

Problem

Provide an asymptotic estimate for the *n*th prime number P_n as a function of *n*.

To simplify notation, we write p instead of P_n . We use:

$$\pi(n) = \frac{n}{\ln n} + O\left(\frac{n}{(\log n)^2}\right), \text{ so that for } p = P_n, \ n = \pi(p) = \frac{p}{\ln p} + O\left(\frac{p}{(\log p)^2}\right).$$

Problem

Provide an asymptotic estimate for the *n*th prime number P_n as a function of *n*.

To simplify notation, we write p instead of P_n . We use:

$$\pi(n) = \frac{n}{\ln n} + O\left(\frac{n}{(\log n)^2}\right), \text{ so that for } p = P_n, \ n = \pi(p) = \frac{p}{\ln p} + O\left(\frac{p}{(\log p)^2}\right).$$

By the Prime Number Theorem, $\lim_{n\to\infty} \frac{n \ln p}{p} = 1$, so $\frac{p}{\ln p} = O(n)$, and as $p \ge n$:

$$O\left(\frac{p}{(\log p)^2}\right) = O\left(\frac{n}{\log p}\right) = O\left(\frac{n}{\log n}\right)$$

By applying the swapping rule to the original estimate:

$$\frac{p}{\ln p} = n + O\left(\frac{p}{(\log p)^2}\right) = n + O\left(\frac{n}{\log n}\right)$$

Problem

Provide an asymptotic estimate for the *n*th prime number P_n as a function of *n*.

To simplify notation, we write p instead of P_n . We use:

$$\pi(n) = \frac{n}{\ln n} + O\left(\frac{n}{(\log n)^2}\right), \text{ so that for } p = P_n, \ n = \pi(p) = \frac{p}{\ln p} + O\left(\frac{p}{(\log p)^2}\right)$$

The estimate $\frac{p}{\ln p} = n + O\left(\frac{n}{\log n}\right)$ yields an "approximate recurrence":

$$p = n \ln p \cdot \left(1 + O\left(\frac{1}{\log n}\right)\right)$$

By applying logarithms and observing that $\ln(1+O(f(n))) = O(f(n))$ we get:

$$\ln p = \ln n + \ln \ln p + O\left(\frac{1}{\log n}\right)$$

Now we have to remove that "In In p" from the right-hand side

Problem

Provide an asymptotic estimate for the nth prime number P_n as a function of n.

To simplify notation, we write p instead of P_n . We have found:

$$\ln p = \ln n + \ln \ln p + O\left(\frac{1}{\log n}\right)$$

Lemma

 $p = O(n^2).$

This lemma is weak, but it implies that $\ln \ln p = O(\log \log n)$ —which is sufficient for us. Proof: As $p = (n \ln p) \cdot (1 + O(1/\log n))$, squaring and dividing by pn^2 we get:

$$\frac{p}{n^2} = \frac{(\ln p)^2}{p} \cdot \left(1 + O\left(\frac{1}{\log n}\right)\right)$$

because $(1+O(1+1/\log n))^2 = 1+O(1/\log n)$, and the right-hand side vanishes for $n o \infty$.

Problem

Provide an asymptotic estimate for the *n*th prime number P_n as a function of *n*.

To simplify notation, we write p instead of P_n . We have found:

$$\ln p = \ln n + \ln \ln p + O\left(\frac{1}{\log n}\right)$$

But if $p = O(n^2)$, then $\ln p = O(\log n)$ and $\ln \ln p = O(\log \log n)$, and substituting:

$$\ln p = \ln n + O\left(\log \log n\right) + O\left(\frac{1}{\log p}\right) = \ln n + O\left(\log \log n\right)$$

Plugging in again we get:

$$\ln p = \ln n + \ln \ln n + O\left(\frac{\log \log n}{\log n}\right)$$

and substituting into $p = (n \ln p) \cdot (1 + O(1/\log n))$ yields:

 $p = n \ln n + n \ln \ln n + O(n)$

