Asymptotics
ITT9132 Concrete Mathematics
Lecture 15 — 6 May 2019

Chapter Nine
A Hierarchy
O Notation
O Manipulation

Contents

A Hierarchy
O notation

O Manipulation

TAL
TECH

Why asymptotics?

Suppose that an algorithm requires

L /3n
=5, (¥)
k=0
operations to compute the output on an input of length n.

m There seems to be no closed formula for S,,.

m But we need some information of what is “more or less” S, for large values of n.
(So that we know that computation will finish by a certain time.)

m For example: between S, and fa,, which is “larger” when n is “large”?
Asymptotics provide a way to:
m determine what “more or less’ means in this context;

m make comparisons between things that “grow unboundedly".

TAL
TECH

Next section

A Hierarchy

TAL
TECH

A hierarchy between rates of growth

Let f and g be two real-valued functions defined on the natural numbers.
We say that g grows asymptotically faster than f, and write f(n) < g(n), if the ratio
f(n)/g(n) converges to zero for n — oo,

TAL
TECH

A hierarchy between rates of growth

Let f and g be two real-valued functions defined on the natural numbers.

We say that g grows asymptotically faster than f, and write f(n) < g(n), if the ratio
f(n)/g(n) converges to zero for n — oo.

m The relation < is transitive:

If f(n) < g(n) and g(n) < h(n) then f(n) < h(n).
m The relation < is not reflexive!

For every f : N — R, limy_,. f(n)/f(n)=1+#0.
m For o, >0, n® < nP if and only if o < B.

m If f(n) and g(n) are never zero and lim,_,. f(n) = limp_c g(n) =0, then:

1

. Lo 1
f(n) < g(n) if and only if 2 =<)

That is: the same notation works for the infinitely small as well as for the
infinitely large.

TAL
TECH

A hierarchy of functions

For0<e<l<ec:

loglogn

logn

A A A A A A A A A A
3
R
S

We “think big":

we do not care if a function goes to infinity,
but how fast it does

TAL
TECH

Example: lterated logarithm

Definition
Let & = (@1,...,04) and E: (B1,.-.,Bq) be d-tuples of real numbers. We say that &

precedes B in lexicographic order, and write & <, B, if there exists i € [1:d] such that
o; < B and a; = B; for every j < i.

For example, (1,2,3) <, (2,0,0) and (1,2,3,4,5) <; (1,2,4,8,0).
Theorem
Let oy, 00,03, B1,B2,B83 > 0. The following are equivalent:

n% (log n)?2 (loglog n)® < nP1 (log n)P2 (loglog n)Ps.

(o, 002,03) < (B1,B2,B3).

TAL
TECH

Warmup: where does eV'"" belong?

For every £ >0, logn < eV!"" < nt.

TAL
TECH

Warmup: where does eV'"" belong?

For every £ >0, logn < eVI"" < nf.

Lemma

Let f(n) and g(n) be such that lim, .. f(n) = lim,_. g(n) = +co. Then:

(M < e8(n) if and only if lim (f(n) — g(n)) = —oo.
A

Proof of the lemma:

G ef(n)
ef(M < 8 ifand onlyif lim =
n—soo eg(")

lim ef(M—&(n) — g
n—oo

if and only if
if and only if ,!mo f(n)—g(n) = —o

Q.E.D. TAL
TECH

Warmup: where does eV'"" belong?

For every £ >0, logn < eVI"" < nf.

Proof of the theorem:
m By the lemma,

. logn . -
’!mo ioer =0 if and only if ’lgr:ologlognfx/logn_foo,

which is the case.

m Similarly,

e\/logn
lim

n—ee n€

0 if and only if Ii_t;n V0ogn—¢elogn= —oo,
n—soo

which is the case.

TAL
TECH

An equivalence of rates of growth

We say that f(n) and g(n) have the same rate of growth, and write f(n) < g(n), if
there exist np € N and C > 0 such that
[f(n)| < C-|g(n)| and |g(n)| < C-[f(n)| Yn=no.

= is easily shown to be an equivalence relation.
If, in particular, lim,_.f(n)/g(n) =1, then we write f(n) ~ g(n).

TAL
TECH

An equivalence of rates of growth

Definition
We say that f(n) and g(n) have the same rate of growth, and write f(n) =< g(n), if
there exist ng € N and C > 0 such that

[f(n) < C-lg(n)|and [g(n)| < C-[f(n)| Vn=no.

= is easily shown to be an equivalence relation.
If, in particular, lim,—.f(n)/g(n) =1, then we write f(n) ~ g(n).

< and =< do not define a preorder!

It can be that none of the three relations:

= f(n) <g(n),

= g(n) =< f(n).

= f(n)=<g(n)
holds. For example, it could be liminf,>1 [f(n)]
- lg(n)|

[f(n)]
lg(n)]

=0 and limsup,>; = oo,

TAL
TECH

The class £ of logarithmico-exponential functions

Godfrey Harold Hardy defined the class £ of logarithmico-exponential functions as the
smallest class of functions satisfying the following properties:

For every a € R, the constant function f(n) = a is in £.
The identity function f(n) =nis in £.

If f(n),g(n) € &, then f(n)—g(n) € L.

If f(n) € £, then (M e g

If f(n) € £ is ultimately positive, then Inf(n) € £.

A function f ultimately has property P if £(n) has property P for every n large enough
(equivalently, if f(n) does not have property P only for finitely many values of n)

TAL
TECH

The class £ of logarithmico-exponential functions

Godfrey Harold Hardy defined the class £ of logarithmico-exponential functions as the
smallest class of functions satisfying the following properties:

For every o € R, the constant function f(n) = a is in £.
The identity function f(n) =nis in £.

If £(n),g(n) € &, then f(n)—g(n) € L.

A If f(n) € £, then (M ¢ g,

If f(n) € £ is ultimately positive, then Inf(n) € £.

A function f ultimately has property P if f(n) has property P for every n large enough
(equivalently, if f(n) does not have property P only for finitely many values of n)

If f(n),g(n) € £, then so are:
= f(n)+g(n)=f(n)—(0-g(n));
- f(n) g(n) — elnf(n)+|ng(n) and f(n)/g(n) — elnf(n)—lng(n)
if £(n),g(n) > 0 for every n large enough;
. VA =edi
again if f(n) > 0 for every n large enough;

[AL
TECH

The class £ of logarithmico-exponential functions

Godfrey Harold Hardy defined the class £ of logarithmico-exponential functions as the
smallest class of functions satisfying the following properties:

For every a € R, the constant function f(n) =« is in £.
The identity function f(n) =nis in £.
If £(n),g(n) € &, then f(n)—g(n) € L.
If £(n) € £, then (M € ¢,
If f(n) € £ is ultimately positive, then Inf(n) € £.
A function f ultimately has property P if £(n) has property P for every n large enough
(equivalently, if f(n) does not have property P only for finitely many values of n)
Theorem 1 (Hardy)
Every function f(n) € £ is
m either ultimately positive,
m or ultimately negative,

m or identically zero.

TAL
TECH

The class £ of logarithmico-exponential functions

Godfrey Harold Hardy defined the class £ of logarithmico-exponential functions as the
smallest class of functions satisfying the following properties:

For every o € R, the constant function f(n) = a is in £.
The identity function f(n) =nis in £.
If f(n),g(n) € £, then f(n)—g(n) € £.
If £(n) € &, then (M ¢ ¢
If f(n) € £ is ultimately positive, then Inf(n) € £.
A function f ultimately has property P if f(n) has property P for every n large enough
(equivalently, if f(n) does not have property P only for finitely many values of n)
Theorem 2 (Hardy)
For every two functions f(n),g(n) € £,
m either f(n) < g(n),
m or g(n) < f(n),
m or f(n)=g(n): in which case f(n) ~ ag(n) for suitable o.

TAL
TECH

Next section

O notation

TAL
TECH

O notation

We write f(n) = O(g(n)), and say that f(n) is big-O of g(n), if |f(n)| < C-|g(n)| for
a suitable constant C and for every n.

TAL
TECH

O notation

We write f(n) = O(g(n)), and say that f(n) is big-O of g(n), if |f(n)| < C-|g(n)| for
a suitable constant C and for every n.

Note: this is a small abuse of notation.
m Rather than a single function, O(g(n)) is a class of functions f(n) such that
|f(n)| < C-|g(n)| for a suitable constant C and for every n.
m Therefore, it would be more precise to write f(n) € O(g(n)) rather than
f(n) € O(g(n)).
m However, the symbol of equality is much easier to use, and it is clear from the
context that we mean membership to a class.

m The same convention holds when comparing big-O classes:
By writing O(f(n)) = O(g(n)) we usually mean O(f(n)) C O(g(n)) instead.
In other words: with big-O notation, we usually mean equalities to be “left to right”,
but not necessarily “right to left”.

TAL
TECH

O notation

We write f(n) = O(g(n)), and say that f(n) is big-O of g(n), if |f(n)| < C-|g(n)| for
a suitable constant C and for every n.

Example:
m Let 0, =Y7 o k2 Then O, = O(n®) with C =1, because for every n:

1 1 1 1 1 1 1 1 1
IDn|: §n3+§n2+6n gg‘n3|+§|n2‘+g|n|< <§+§+€)|n3|:‘n3|

1
m Also, 0, = §n3+ O(n?), where the O notation has C = 1.

m Also, O, = O(n?). We can be as “sloppy” as we want!

TAL
TECH

A cautionary tale

Student:
| have found a more efficient algorithm!

The old algorithm requires O (nInnininn) bits of memory:
my algorithm only requires O (nInn) bits!

TAL
TECH

A cautionary tale

Student:
I have found a more efficient algorithm!
The old algorithm requires O (nInnlninn) bits of memory:
my algorithm only requires O (nInn) bits!
Robert Sedgewick:

... but in the real world, “InInn" means “six"!

(There are less than 1010 atoms in the universe; In In 101°° =5.4392026....)

TAL
TECH

Big-Omega and big-Theta notation

We write f(n) = Q(g(n)), and say that f(n) is big-Omega of g(n), if |f(n)| > C-|g(n)|
for a suitable constant C and for every n.

In other words:

We write f(n) = ©(g(n)), and say that f(n) is big-Theta of g(n), if both
f(n) = O(g(n)) and f(n) =Q(g(n))
Note that:

m f(n) =Q(g(n)) if and only if g(n) = O(f(n));

m f(n) =©(g(n)) if and only if f(n) < g(n).

Again, equalities are meant to be “left to right”.

TAL
TECH

Next section

O Manipulation

TAL
TECH

Basic operations

f(n)

c-O(f(m)
O(0(f(m))
O(f(n))- O(g(m)
f(n)- O(g(n))

n(l

O(f(n))+ O(g(n))

The following rule is also useful:

O(f(n))

O(f(n)) , cconstant
O(f(n))
O(f(n)-g(n))
O(f(n)-g(n))
o(nP) , ifa<B
O(If(n)| +|g(n)])

f(n) = g(n)+ O(h(n)) if and only if g(n) = f(n)+ O(h(n))

Indeed, each side can be obtained from the other by multiplying by —1 and adding

f(n)+g(n).

TAL
TECH

Warmup: O notation and sums

Prove or disprove: if f(n) and g(n) are positive for all n, then

O(f(n) +g(n)) = f(n) + O(g(n))

TAL
TECH

Warmup: O notation and sums

Prove or disprove: if f(n) and g(n) are positive for all n, then

O(f(n) +g(n)) = f(n) + O(g(n))

Let us check what the two classes actually are:
m O(f(n)+g(n)) is the class of the functions h(n) such that:

3C >0.YneN.|h(n)| < C-|f(n)+g(n)|
m f(n)+ O(g(n)) is the class of the functions h(n) such that:
Jk:N— C,C > 0.¥n e N.h(n) = f(n)+ k(n) and |k(n)| < C-|g(n)|
If f(n) =n and g(n) =1, then h(n) = 2n belongs to the first class, but not to the

second one.

TAL
TECH

Power series and O notation

Let S(z) = Y50 anz” be a power series.
m Suppose S(z) converges absolutely for some zy € C, that is,

Y lan| |z0]" <o
n=0

m Then the following holds:
S(z) = 0(1) V|z| < ||
= Indeed, in this case,

1S(2)| < Y. lan]- 12" < Y lan| |20]" < oo.

n=0 n=0

TAL
TECH

Power series and O notation

Let S(z) = Yn>0anz” be a power series.
m Suppose S(z) converges absolutely for some zp € C, that is,

Y lan-|20|" < oo
n=0

m Then the following holds:
S(z)=0(1) V|z| < ||
= Indeed, in this case,

1S(2)| < Y. lan]- 12" < Y lan| |20]" < oo.
n=0 n=0

Of course, the following relations are also valid:

m S(z)=ag+ O(2);
[S(z):ao+a1z+0(22);
m S(z)=ap+aiz+...+a1sz'% + O(z'7);

TAL

A table of asymptotic approximations

1 1 1 1
H, = | — _ =
T o 12n2+120n4+o(n5)
ny\n 1 1 139 1
U= Voan(2) (14— 40— 7 all
" ”"<e> (+ 120 T 2882 51840n3+o(4))
B, = 2[neven)(-1)"2 12 (14241 0(L
T (2m)n on ' 3n 4n
a(n) = L+ n i 2ln n 3ln n n
~ Inn " (Inn)2 " (Inn)3 ' (Inn)* (log n)®
2 22 2 A 5
& = 1+z+7+€+£+o(z)
2 3 4
In(14+2) = z-5+5-2+0(
1
5 = l+z+2+2+24+0(2°)
(1+z)* = 1+oz+ (g)f o <§)23+ (i‘)z“+0(z5)

We use log instead of In in the big-O notation, because changing base corresponds to ;E(L:H
multiply by a nonzero constant.

Errors

Absolute error

An asymptotic approximation for a function f(n) has absolute error O(g(n)) if it has

the form
f(n) = h(n)+ O(g(n))

for some h(n) which does not involve O-notation.
That is: the absolute error |f(n)— h(n)| is bounded by a multiple of |g(n)].

Relative error

An asymptotic approximation for a function f(n) has relative error O(g(n)) if it has

the form
f(n) = h(n)-(1+ O(g(n)))
for some h(n) which does not involve O-notation.

f(n)
h(n)

That is: the relative error —1| is bounded by a multiple of |g(n)|.

TAL
TECH

Example: The nth prime number

Provide an asymptotic estimate for the nth prime number P, as a function of n.

TAL
TECH

Example: The nth prime number

Provide an asymptotic estimate for the nth prime number P, as a function of n.

To simplify notation, we write p instead of P,.
We use:

- n - - - P p
n(n) = Inn+o((logn)2) , sothatfor p=P,, n=n(p)= Inp+o((|ogp)2) .

TAL
TECH

Example: The nth prime number

Provide an asymptotic estimate for the nth prime number P, as a function of n.

To simplify notation, we write p instead of P,,.

We use:
p p
that f¢ = = = — —— | .
)= ((Iog)2>’ SRR P= by =20 lnp+o((logp)2>
|
By the Prime Number Theorem, lim,_ n—;p =1, so ﬁ = 0O(n), and as p > n:

© (eern) = (ez) = (e

By applying the swapping rule to the original estimate:

P _ P _ n
W_nJrO((logp)z) _n+o(logn)

TAL
TECH

Example: The nth prime number

Provide an asymptotic estimate for the nth prime number P, as a function of n.

To simplify notation, we write p instead of P,.
We use:

- _n - - - P p
n(n)_lnn+o<(logn)2>’ so that for p= P,, n= m(p) Inp+o((|ogp)2>'

The estimate o n+ O (L) yields an “approximate recurrence’
Inp logn

p:nlnp-(HO(@))

By applying logarithms and observing that In(1+ O(f(n))) = O(f(n)) we get:

1
|np:|nn+|n|np+0(—)
logn

TAL
Now we have to remove that “Inlnp” from the right-hand side ... TECH

Example: The nth prime number

Problem

Provide an asymptotic estimate for the nth prime number P, as a function of n.
To simplify notation, we write p instead of P,.

We have found:

1
Inp:lnn+|n|np+0(@>

Lemma
p=0(n?).

This lemma is weak, but it implies that Inln p = O(loglog n)—which is sufficient for us.
Proof: As p=(nlnp)-(1+ O(1/logn)), squaring and dividing by pn® we get:

A= (o)

because (1+ O(1+1/logn))? =1+ O(1/logn), and the right-hand side vanishes for
n— oo,

TAL
TECH

Example: The nth prime number

Provide an asymptotic estimate for the nth prime number P, as a function of n.

To simplify notation, we write p instead of P,.
We have found: X
Inp=Inn+Inlnp+ O (—)
logn

But if p= O(n?), then Inp = O(logn) and Inlnp = O(loglogn), and substituting:
1
Inp=Inn+ O(loglogn)+ O (@) =Inn+ O (loglog n)
Plugging in again we get:

log|
Inp:lnn—l—lnlnn—i—O(w)

logn
and substituting into p = (nlnp)-(1+ O(1/logn)) yields:

=ninn+ninlnn+ O TAL
p=nlnn+nininn (n) TEEH

	A Hierarchy
	O notation
	O Manipulation

