
Asymptotics

ITT9132 Concrete Mathematics

Lecture 15 � 6 May 2019

Chapter Nine

A Hierarchy

O Notation

O Manipulation

Contents

1 A Hierarchy

2 O notation

3 O Manipulation

Why asymptotics?

Suppose that an algorithm requires

Sn =
n

∑
k=0

(
3n

k

)

operations to compute the output on an input of length n.

There seems to be no closed formula for Sn.

But we need some information of what is �more or less� Sn for large values of n.
(So that we know that computation will �nish by a certain time.)

For example: between Sn and f4n, which is �larger� when n is �large�?

Asymptotics provide a way to:

determine what �more or less� means in this context;

make comparisons between things that �grow unboundedly�.

Next section

1 A Hierarchy

2 O notation

3 O Manipulation

A hierarchy between rates of growth

De�nition

Let f and g be two real-valued functions de�ned on the natural numbers.
We say that g grows asymptotically faster than f , and write f (n)≺ g(n), if the ratio
f (n)/g(n) converges to zero for n→ ∞.

A hierarchy between rates of growth

De�nition

Let f and g be two real-valued functions de�ned on the natural numbers.
We say that g grows asymptotically faster than f , and write f (n)≺ g(n), if the ratio
f (n)/g(n) converges to zero for n→ ∞.

The relation ≺ is transitive:
If f (n)≺ g(n) and g(n)≺ h(n) then f (n)≺ h(n).

The relation ≺ is not re�exive!
For every f : N→ R, limn→∞ f (n)/f (n) = 1 6= 0.

For α,β > 0, nα ≺ nβ if and only if α < β .

If f (n) and g(n) are never zero and limn→∞ f (n) = limn→∞ g(n) = 0, then:

f (n)≺ g(n) if and only if
1

g(n)
≺ 1

f (n)
.

That is: the same notation works for the in�nitely small as well as for the
in�nitely large.

A hierarchy of functions

For 0< ε < 1< c:

1 ≺ log logn

≺ logn

≺ nε

≺ n

≺ nc

≺ nlogn

≺ cn

≺ n!

≺ nn

≺ cc
n

We �think big�:

we do not care if a function goes to in�nity,
but how fast it does

Example: Iterated logarithm

De�nition

Let ~α = (α1, . . . ,αd) and ~β = (β1, . . . ,βd) be d-tuples of real numbers. We say that ~α

precedes ~β in lexicographic order, and write ~α <L
~β , if there exists i ∈ [1 : d] such that

αi < βi and αj = βj for every j < i .

For example, (1,2,3) <L (2,0,0) and (1,2,3,4,5) <L (1,2,4,8,0).

Theorem

Let α1,α2,α3,β1,β2,β3 > 0. The following are equivalent:

1 nα1 (logn)α2 (log logn)α3 ≺ nβ1 (logn)β2 (log logn)β3 .

2 (α1,α2,α3) <L (β1,β2,β3).

Warmup: where does e
√
lnn belong?

Theorem

For every ε > 0, logn ≺ e
√

lnn ≺ nε .

Warmup: where does e
√
lnn belong?

Theorem

For every ε > 0, logn ≺ e
√

lnn ≺ nε .

Lemma

Let f (n) and g(n) be such that limn→∞ f (n) = limn→∞ g(n) = +∞. Then:

ef (n) ≺ eg(n) if and only if lim
n→∞

(f (n)−g(n)) =−∞ .

Proof of the lemma:

ef (n) ≺ eg(n) if and only if lim
n→∞

ef (n)

eg(n)
= 0

if and only if lim
n→∞

ef (n)−g(n) = 0

if and only if lim
n→∞

f (n)−g(n) =−∞

Q.E.D.

Warmup: where does e
√
lnn belong?

Theorem

For every ε > 0, logn ≺ e
√

lnn ≺ nε .

Proof of the theorem:

By the lemma,

lim
n→∞

logn

e
√

logn
= 0 if and only if lim

n→∞
log logn−

√
logn =−∞ ,

which is the case.

Similarly,

lim
n→∞

e
√

logn

nε
= 0 if and only if lim

n→∞

√
logn− ε logn =−∞ ,

which is the case.

An equivalence of rates of growth

De�nition

We say that f (n) and g(n) have the same rate of growth, and write f (n)� g(n), if
there exist n0 ∈ N and C > 0 such that

|f (n)|6 C · |g(n)| and |g(n)|6 C · |f (n)| ∀n > n0 .

� is easily shown to be an equivalence relation.
If, in particular, limn→∞ f (n)/g(n) = 1, then we write f (n)∼ g(n).

An equivalence of rates of growth

De�nition

We say that f (n) and g(n) have the same rate of growth, and write f (n)� g(n), if
there exist n0 ∈ N and C > 0 such that

|f (n)|6 C · |g(n)| and |g(n)|6 C · |f (n)| ∀n > n0 .

� is easily shown to be an equivalence relation.
If, in particular, limn→∞ f (n)/g(n) = 1, then we write f (n)∼ g(n).

≺ and � do not de�ne a preorder!

It can be that none of the three relations:

f (n)≺ g(n),

g(n)≺ f (n),

f (n)� g(n)

holds. For example, it could be liminfn>1
|f (n)|
|g(n)|

= 0 and limsupn>1
|f (n)|
|g(n)|

= +∞.

The class L of logarithmico-exponential functions

Godfrey Harold Hardy de�ned the class L of logarithmico-exponential functions as the
smallest class of functions satisfying the following properties:

1 For every α ∈ R, the constant function f (n) = α is in L.

2 The identity function f (n) = n is in L.

3 If f (n),g(n) ∈ L, then f (n)−g(n) ∈ L.

4 If f (n) ∈ L, then ef (n) ∈ L.

5 If f (n) ∈ L is ultimately positive, then ln f (n) ∈ L.

A function f ultimately has property P if f (n) has property P for every n large enough
(equivalently, if f (n) does not have property P only for �nitely many values of n)

The class L of logarithmico-exponential functions

Godfrey Harold Hardy de�ned the class L of logarithmico-exponential functions as the
smallest class of functions satisfying the following properties:

1 For every α ∈ R, the constant function f (n) = α is in L.

2 The identity function f (n) = n is in L.

3 If f (n),g(n) ∈ L, then f (n)−g(n) ∈ L.

4 If f (n) ∈ L, then ef (n) ∈ L.

5 If f (n) ∈ L is ultimately positive, then ln f (n) ∈ L.

A function f ultimately has property P if f (n) has property P for every n large enough
(equivalently, if f (n) does not have property P only for �nitely many values of n)

Examples

If f (n),g(n) ∈ L, then so are:

f (n) +g(n) = f (n)− (0−g(n));

f (n) ·g(n) = e ln f (n)+lng(n) and f (n)/g(n) = e ln f (n)−lng(n)

if f (n),g(n) > 0 for every n large enough;√
f (n) = e

1

2
lnn

again if f (n) > 0 for every n large enough;

. . .

The class L of logarithmico-exponential functions

Godfrey Harold Hardy de�ned the class L of logarithmico-exponential functions as the
smallest class of functions satisfying the following properties:

1 For every α ∈ R, the constant function f (n) = α is in L.

2 The identity function f (n) = n is in L.

3 If f (n),g(n) ∈ L, then f (n)−g(n) ∈ L.

4 If f (n) ∈ L, then ef (n) ∈ L.

5 If f (n) ∈ L is ultimately positive, then ln f (n) ∈ L.

A function f ultimately has property P if f (n) has property P for every n large enough
(equivalently, if f (n) does not have property P only for �nitely many values of n)

Theorem 1 (Hardy)

Every function f (n) ∈ L is

either ultimately positive,

or ultimately negative,

or identically zero.

The class L of logarithmico-exponential functions

Godfrey Harold Hardy de�ned the class L of logarithmico-exponential functions as the
smallest class of functions satisfying the following properties:

1 For every α ∈ R, the constant function f (n) = α is in L.

2 The identity function f (n) = n is in L.

3 If f (n),g(n) ∈ L, then f (n)−g(n) ∈ L.

4 If f (n) ∈ L, then ef (n) ∈ L.

5 If f (n) ∈ L is ultimately positive, then ln f (n) ∈ L.

A function f ultimately has property P if f (n) has property P for every n large enough
(equivalently, if f (n) does not have property P only for �nitely many values of n)

Theorem 2 (Hardy)

For every two functions f (n),g(n) ∈ L,

either f (n)≺ g(n),

or g(n)≺ f (n),

or f (n)� g(n): in which case f (n)∼ αg(n) for suitable α.

Next section

1 A Hierarchy

2 O notation

3 O Manipulation

O notation

De�nition

We write f (n) = O(g(n)), and say that f (n) is big-O of g(n), if |f (n)|6 C · |g(n)| for
a suitable constant C and for every n.

O notation

De�nition

We write f (n) = O(g(n)), and say that f (n) is big-O of g(n), if |f (n)|6 C · |g(n)| for
a suitable constant C and for every n.

Note: this is a small abuse of notation.

Rather than a single function, O(g(n)) is a class of functions f (n) such that
|f (n)|6 C · |g(n)| for a suitable constant C and for every n.

Therefore, it would be more precise to write f (n) ∈O(g(n)) rather than
f (n) ∈O(g(n)).

However, the symbol of equality is much easier to use, and it is clear from the
context that we mean membership to a class.

The same convention holds when comparing big-O classes:
By writing O(f (n)) = O(g(n)) we usually mean O(f (n))⊆O(g(n)) instead.

In other words: with big-O notation, we usually mean equalities to be �left to right�,
but not necessarily �right to left�.

O notation

De�nition

We write f (n) = O(g(n)), and say that f (n) is big-O of g(n), if |f (n)|6 C · |g(n)| for
a suitable constant C and for every n.

Example:

Let �n = ∑
n
k=0

k2. Then �n = O(n3) with C = 1, because for every n:

|�n|=
∣∣∣∣13n3 +

1

2
n2 +

1

6
n

∣∣∣∣6 1

3
|n3|+ 1

2
|n2|+ 1

6
|n|6

(
1

3
+

1

2
+

1

6

)
|n3|= |n3| .

Also, �n =
1

3
n3 +O(n2), where the O notation has C = 1

2
.

Also, �n = O(n17). We can be as �sloppy� as we want!

A cautionary tale

Student:

I have found a more e�cient algorithm!
The old algorithm requires O (n lnn ln lnn) bits of memory:

my algorithm only requires O (n lnn) bits!

A cautionary tale

Student:

I have found a more e�cient algorithm!
The old algorithm requires O (n lnn ln lnn) bits of memory:

my algorithm only requires O (n lnn) bits!

Robert Sedgewick:

. . . but in the real world, � ln lnn� means �six�!

(There are less than 10100 atoms in the universe; ln ln 10100 = 5.4392026)

Big-Omega and big-Theta notation

De�nition

We write f (n) = Ω(g(n)), and say that f (n) is big-Omega of g(n), if |f (n)|> C · |g(n)|
for a suitable constant C and for every n.

In other words:

De�nition

We write f (n) = Θ(g(n)), and say that f (n) is big-Theta of g(n), if both
f (n) = O(g(n)) and f (n) = Ω(g(n))

Note that:

f (n) = Ω(g(n)) if and only if g(n) = O(f (n));

f (n) = Θ(g(n)) if and only if f (n)� g(n).

Again, equalities are meant to be �left to right�.

Next section

1 A Hierarchy

2 O notation

3 O Manipulation

Basic operations

f (n) = O(f (n))

c ·O(f (n)) = O(f (n)) , c constant

O(O(f (n))) = O(f (n))

O(f (n)) ·O(g(n)) = O(f (n) ·g(n))

f (n) ·O(g(n)) = O(f (n) ·g(n))

nα = O(nβ) , if α 6 β

O(f (n)) +O(g(n)) = O(|f (n)|+ |g(n)|)

The following rule is also useful:

f (n) = g(n) +O(h(n)) if and only if g(n) = f (n) +O(h(n))

Indeed, each side can be obtained from the other by multiplying by −1 and adding
f (n) +g(n).

Warmup: O notation and sums

Problem

Prove or disprove: if f (n) and g(n) are positive for all n, then

O(f (n) +g(n)) = f (n) +O(g(n))

Warmup: O notation and sums

Problem

Prove or disprove: if f (n) and g(n) are positive for all n, then

O(f (n) +g(n)) = f (n) +O(g(n))

Solution

Let us check what the two classes actually are:

O(f (n) +g(n)) is the class of the functions h(n) such that:

∃C > 0.∀n ∈ N.|h(n)|6 C · |f (n) +g(n)|

f (n) +O(g(n)) is the class of the functions h(n) such that:

∃k : N→ C,C > 0.∀n ∈ N.h(n) = f (n) +k(n) and |k(n)|6 C · |g(n)|

If f (n) = n and g(n) = 1, then h(n) = 2n belongs to the �rst class, but not to the
second one.

Power series and O notation

Let S(z) = ∑n>0 anz
n be a power series.

Suppose S(z) converges absolutely for some z0 ∈ C, that is,

∑
n>0
|an| · |z0|n < ∞

Then the following holds:

S(z) = O(1) ∀|z |6 |z0|

Indeed, in this case,

|S(z)|6 ∑
n>0
|an| · |z |n 6 ∑

n>0
|an| · |z0|n < ∞ .

Power series and O notation

Let S(z) = ∑n>0 anz
n be a power series.

Suppose S(z) converges absolutely for some z0 ∈ C, that is,

∑
n>0
|an| · |z0|n < ∞

Then the following holds:

S(z) = O(1) ∀|z |6 |z0|

Indeed, in this case,

|S(z)|6 ∑
n>0
|an| · |z |n 6 ∑

n>0
|an| · |z0|n < ∞ .

Of course, the following relations are also valid:

S(z) = a0 +O(z);

S(z) = a0 +a1z +O(z2);

S(z) = a0 +a1z + . . .+a16z
16 +O(z17);

. . .

A table of asymptotic approximations

Hn = lnn+ γ +
1

2n
− 1

12n2
+

1

120n4
+O

(
1

n6

)
n! =

√
2πn

(n
e

)n
·
(
1+

1

12n
+

1

288n2
− 139

51840n3
+O

(
1

n4

))
Bn = 2 [n even] (−1)n/2−1

n!

(2π)n
·
(
1+

1

2n
+

1

3n
+O

(
1

4n

))
π(n) =

n

lnn
+

n

(lnn)2
+

2!n

(lnn)3
+

3!n

(lnn)4
+O

(
n

(logn)5

)
ez = 1+ z +

z2

2
+

z3

6
+

z4

24
+O(z5)

ln(1+ z) = z− z2

2
+

z3

3
− z4

4
+O(z5)

1

1−z
= 1+ z + z2 + z3 + z4 +O(z5)

(1+ z)α = 1+ αz +

(
α

2

)
z2 +

(
α

3

)
z3 +

(
α

4

)
z4 +O(z5)

We use log instead of ln in the big-O notation, because changing base corresponds to
multiply by a nonzero constant.

Errors

Absolute error

An asymptotic approximation for a function f (n) has absolute error O(g(n)) if it has
the form

f (n) = h(n) +O(g(n))

for some h(n) which does not involve O-notation.

That is: the absolute error |f (n)−h(n)| is bounded by a multiple of |g(n)|.

Relative error

An asymptotic approximation for a function f (n) has relative error O(g(n)) if it has
the form

f (n) = h(n) · (1+O(g(n)))

for some h(n) which does not involve O-notation.

That is: the relative error

∣∣∣∣ f (n)

h(n)
−1
∣∣∣∣ is bounded by a multiple of |g(n)|.

Example: The nth prime number

Problem

Provide an asymptotic estimate for the nth prime number Pn as a function of n.

Example: The nth prime number

Problem

Provide an asymptotic estimate for the nth prime number Pn as a function of n.

To simplify notation, we write p instead of Pn.
We use:

π(n) =
n

lnn
+O

(
n

(logn)2

)
, so that for p = Pn , n = π(p) =

p

lnp
+O

(
p

(logp)2

)
.

Example: The nth prime number

Problem

Provide an asymptotic estimate for the nth prime number Pn as a function of n.

To simplify notation, we write p instead of Pn.
We use:

π(n) =
n

lnn
+O

(
n

(logn)2

)
, so that for p = Pn , n = π(p) =

p

lnp
+O

(
p

(logp)2

)
.

By the Prime Number Theorem, limn→∞

n lnp

p
= 1, so

p

lnp
= O(n), and as p > n:

O

(
p

(logp)2

)
= O

(
n

logp

)
= O

(
n

logn

)
By applying the swapping rule to the original estimate:

p

lnp
= n+O

(
p

(logp)2

)
= n+O

(
n

logn

)

Example: The nth prime number

Problem

Provide an asymptotic estimate for the nth prime number Pn as a function of n.

To simplify notation, we write p instead of Pn.
We use:

π(n) =
n

lnn
+O

(
n

(logn)2

)
, so that for p = Pn , n = π(p) =

p

lnp
+O

(
p

(logp)2

)
.

The estimate
p

lnp
= n+O

(
n

logn

)
yields an �approximate recurrence�:

p = n lnp ·
(
1+O

(
1

logn

))
By applying logarithms and observing that ln(1+O(f (n))) = O(f (n)) we get:

lnp = lnn+ lnlnp+O

(
1

logn

)
Now we have to remove that � ln lnp� from the right-hand side . . .

Example: The nth prime number

Problem

Provide an asymptotic estimate for the nth prime number Pn as a function of n.

To simplify notation, we write p instead of Pn.
We have found:

lnp = lnn+ lnlnp+O

(
1

logn

)

Lemma

p = O(n2).

This lemma is weak, but it implies that ln lnp = O(log logn)�which is su�cient for us.
Proof: As p = (n lnp) · (1+O(1/ logn)), squaring and dividing by pn2 we get:

p

n2
=

(lnp)2

p
·
(
1+O

(
1

logn

))

because (1+O(1+1/ logn))2 = 1+O(1/ logn), and the right-hand side vanishes for
n→ ∞.

Example: The nth prime number

Problem

Provide an asymptotic estimate for the nth prime number Pn as a function of n.

To simplify notation, we write p instead of Pn.
We have found:

lnp = lnn+ lnlnp+O

(
1

logn

)
But if p = O(n2), then lnp = O(logn) and ln lnp = O(log logn), and substituting:

lnp = lnn+O (log logn) +O

(
1

logp

)
= lnn+O (log logn)

Plugging in again we get:

lnp = lnn+ lnlnn+O

(
log logn

logn

)
and substituting into p = (n lnp) · (1+O(1/ logn)) yields:

p = n lnn+n ln lnn+O(n)

	A Hierarchy
	O notation
	O Manipulation

