Asymptotics

ITT9132 Concrete Mathematics
 Lecture 16-13 May 2019

```
Chapter Nine
    O Manipulation
    Two Asymptotic Tricks
    Euler's Summation Formula
    Final Summations
```


Contents

1 O Manipulation

2 Two Asymptotic Tricks

- Trick 1: Bootstrapping
- Trick 2: Trading tails

3 Euler's Summation Formula

4 Final Summations

- A bell-shaped summand
- Stirling's approximation

Next section

1 O Manipulation

2 Two Asymptotic Tricks

- Trick 1: Bootstrapping
- Trick 2: Trading tails

3 Euler's Summation Formula

4 Final Summations

- A bell-shaped summand
- Stirling's approximation

层合

Another application of power series

Theorem

Let $G(z)=\sum_{k \geqslant 0} g_{k} z^{k}$ have convergence radius $R>0$. If either:

- $f(n) \prec 1$, or
- $R=\infty$ and $f(n)=O(1)$,
then for every $m \geqslant 1$, if $h(n)=O(f(n))$ then:

$$
G(h(n))=\sum_{0 \leqslant k<m} g_{k}(h(n))^{k}+O\left((f(n))^{m}\right)
$$

Remark:

- $f(n) \prec 1$ if and only if $\lim _{n \rightarrow \infty} f(n)=0$: that is, f vanishes at infinity.
- $f(n)=O(1)$ if and only if $|f(n)| \leqslant C$ for some $C>0$ and every n : that is, f is bounded.
- The thesis is equivalent to saying that:

$$
\sum_{k \geqslant m} g_{k}(h(n))^{k}=O\left((f(n))^{m}\right) \text { whenever } h(n)=O(f(n)) .
$$

Another application of power series

Theorem

Let $G(z)=\sum_{k \geqslant 0} g_{k} z^{k}$ have convergence radius $R>0$. If either:

- $f(n) \prec 1$, or
- $R=\infty$ and $f(n)=O(1)$,
then for every $m \geqslant 1$, if $h(n)=O(f(n))$ then:

$$
G(h(n))=\sum_{0 \leqslant k<m} g_{k}(h(n))^{k}+O\left((f(n))^{m}\right)
$$

Examples:

- $\ln (1+O(1 / n))=O(1 / n)$.
- $\ln (1+1 / n)=\frac{1}{n}-\frac{1}{2 n^{2}}+\frac{1}{3 n^{3}}+O\left(\frac{1}{n^{4}}\right)$.
- $e^{\frac{\ln n}{n}}=1+\frac{\ln n}{n}+\frac{(\ln n)^{2}}{2 n^{2}}+O\left(\left(\frac{\ln n}{n}\right)^{3}\right)$.
- $e^{1-1 / n}=\frac{5}{2}-\frac{2}{n}+\frac{1}{2 n^{2}}+O\left(\left(1-\frac{1}{n}\right)^{3}\right)$.

This holds because $e^{z}=\sum_{k \geqslant 0} \frac{z^{k}}{k!}$ has infinite convergence radius.

Another application of power series

Theorem

Let $G(z)=\sum_{k \geqslant 0} g_{k} z^{k}$ have convergence radius $R>0$. If either:

- $f(n) \prec 1$, or
- $R=\infty$ and $f(n)=O(1)$,
then for every $m \geqslant 1$, if $h(n)=O(f(n))$ then:

$$
G(h(n))=\sum_{0 \leqslant k<m} g_{k}(h(n))^{k}+O\left((f(n))^{m}\right)
$$

Proof for $R<\infty$ and $f \prec 1$:

- Let $h(n)=O(f(n))$. Choose $C>0$ such that $|h(n)| \leqslant C \cdot|f(n)|$ for every $n \geqslant 0$.
- Fix $\delta \in(0, R)$. Then $K_{m}=C^{m} \cdot \sum_{k \geqslant m}\left|g_{k}\right| \delta^{k-m}<\infty$.
- Choose n_{0} such that $|f(n)|<\delta / C$ for every $n \geqslant n_{0}$: for such $n,|h(n)|<\delta$.
- Then for $n \geqslant n_{0}$:

$$
\left|\sum_{k \geqslant m} g_{k}(h(n))^{k}\right|<|h(n)|^{m} \cdot \sum_{k \geqslant m}\left|g_{k}\right| \cdot \delta^{k-m} \leqslant K_{m} \cdot|f(n)|^{m} .
$$

Another application of power series

Theorem

Let $G(z)=\sum_{k \geqslant 0} g_{k} z^{k}$ have convergence radius $R>0$. If either:

- $f(n) \prec 1$, or
- $R=\infty$ and $f(n)=O(1)$,
then for every $m \geqslant 1$, if $h(n)=O(f(n))$ then:

$$
G(h(n))=\sum_{0 \leqslant k<m} g_{k}(h(n))^{k}+O\left((f(n))^{m}\right)
$$

Proof for $R=\infty$ and $f(n)=O(1)$:

- Let $h(n)=O(f(n))$. Choose $C>0$ such that $|h(n)| \leqslant C \cdot|f(n)|$ for every $n \geqslant 0$.
- Fix $\delta>0$ such that $|f(n)| \leqslant \delta / C$ for every n. Then $|h(n)| \leqslant \delta$ for every n too.
- As $R=\infty, K_{m}=C^{m} \cdot \sum_{k \geqslant m}\left|g_{k}\right| \delta^{k-m}<\infty$.
- Then for every n :

$$
\left|\sum_{k \geqslant m} g_{k}(h(n))^{k}\right| \leqslant|h(n)|^{m} \cdot \sum_{k \geqslant m}\left|g_{k}\right| \cdot \delta^{k-m} \leqslant K_{m} \cdot|f(n)|^{m} .
$$

Next section

1 O Manipulation

2 Two Asymptotic Tricks

- Trick 1: Bootstrapping
- Trick 2: Trading tails

3 Euler's Summation Formula

4 Final Summations

- A bell-shaped summand
- Stirling's approximation

抳

Next subsection

1 O Manipulation

2 Two Asymptotic Tricks
■ Trick 1: Bootstrapping

- Trick 2: Trading tails

3 Euler's Summation Formula

4 Final Summations

- A bell-shaped summand
- Stirling's approximation

Bootstrapping

To get an asymptotics for the solution of a recurrence:
1 first, take a rough estimate;
2 next, substitute the estimate into the recurrence.
This is an example of "pulling oneself up by one's bootstraps".

Example: Estimating a growth rate

Problem

Find an asymptotic estimate for $g_{n}=\left[z^{n}\right] G(z)$ where $G(z)=e^{\sum_{k \geqslant 1} \frac{z^{k}}{k^{2}}}$.

Example: Estimating a growth rate

Problem

Find an asymptotic estimate for $g_{n}=\left[z^{n}\right] G(z)$ where $G(z)=e^{\sum_{k \geqslant 1} \frac{z^{k}}{k^{2}}}$.

Step 1: Look for a simple asymptotics

As we have an exponential, it might be a good idea to differentiate by series, and see if a more manageable formula appears:

$$
\sum_{n \geqslant 1} n g_{n} z^{n-1}=G(z) \cdot \sum_{k \geqslant 1} \frac{z^{k-1}}{k}=\sum_{n \geqslant 1} \sum_{0 \leqslant k<n} \frac{g_{k}}{n-k} z^{n-1}
$$

which gives us the recurrence:

$$
n g_{n}=\sum_{k=0}^{n-1} \frac{g_{k}}{n-k} \forall n \geqslant 1 .
$$

Example: Estimating a growth rate

Problem

Find an asymptotic estimate for $g_{n}=\left[z^{n}\right] G(z)$ where $G(z)=e^{\sum_{k \geqslant 1} \frac{z^{k}}{k^{2}}}$.

Step 1: Look for a simple asymptotics

A numerical computation of the first values gives:

n	0	1	2	3	4	5	6
g_{n}	1	1	$\frac{3}{4}$	$\frac{19}{36}$	$\frac{107}{288}$	$\frac{641}{2400}$	$\frac{51103}{259200}$

It looks like all the terms are positive and not larger than 1: which can easily be proved by induction. Then: $g_{n}=O(1)$.

Example: Estimating a growth rate

Problem

Find an asymptotic estimate for $g_{n}=\left[z^{n}\right] G(z)$ where $G(z)=e^{\sum_{k \geqslant 1} \frac{z^{k}}{k^{2}}}$.

Step 2: Plug in the asymptotics

If we replace the g_{k} on the right-hand side with $O(1)$, we find:

$$
n g_{n}=\sum_{k=0}^{n-1} \frac{O(1)}{n-k}=\sum_{k=1}^{n} \frac{O(1)}{k}=H_{n} \cdot O(1)=O(\log n) .
$$

Then: $g_{n}=O\left(\frac{\log n}{n}\right)$.

Example: Estimating a growth rate

Problem

Find an asymptotic estimate for $g_{n}=\left[z^{n}\right] G(z)$ where $G(z)=e^{\sum_{k \geqslant 1} \frac{z^{k}}{k^{2}}}$.

Step 2: Plug in the asymptotics again

If we replace the g_{k} on the right-hand side with $O(\log (k) / k)$ and put the first summand out of the sum, we find:

$$
n g_{n}=\frac{1}{n}+\sum_{k=1}^{n-1} \frac{1}{n-k} O\left(\frac{\log k}{k}\right)=\frac{1}{n}+\sum_{k=1}^{n-1} \frac{O(\log k)}{k(n-k)}=\frac{1}{n}+\frac{2}{n} H_{n-1} O(\log n)
$$

because $\frac{1}{k(n-k)}=\frac{1}{n}\left(\frac{1}{k}+\frac{1}{n-k}\right)$ and $k=O(n)$. Then $g_{n}=O\left(\left(\frac{\log n}{n}\right)^{2}\right)$.

Example: Estimating a growth rate

Problem

Find an asymptotic estimate for $g_{n}=\left[z^{n}\right] G(z)$ where $G(z)=e^{\sum k \geqslant 1 \frac{z^{k}}{k^{2}}}$.

Step 3: Manipulate the estimate obtained

We now rewrite our original recurrence by "pulling out the largest part":

$$
n g_{n}=\sum_{k=0}^{n-1} \frac{g_{k}}{n}+\sum_{k=0}^{n-1} g_{k}\left(\frac{1}{n-k}-\frac{1}{n}\right)=\frac{1}{n} \sum_{k \geqslant 0} g_{k}-\frac{1}{n} \sum_{k \geqslant n} g_{k}+\frac{1}{n} \sum_{k=0}^{n-1} \frac{k g_{k}}{n-k} .
$$

Example: Estimating a growth rate

Problem

Find an asymptotic estimate for $g_{n}=\left[z^{n}\right] G(z)$ where $G(z)=e^{\sum_{k \geqslant 1} \frac{z^{k}}{k^{2}}}$.

Step 3: Manipulate the estimate obtained

We now rewrite our original recurrence by "pulling out the largest part":

$$
n g_{n}=\sum_{k=0}^{n-1} \frac{g_{k}}{n}+\sum_{k=0}^{n-1} g_{k}\left(\frac{1}{n-k}-\frac{1}{n}\right)=\frac{1}{n} \sum_{k \geqslant 0} g_{k}-\frac{1}{n} \sum_{k \geqslant n} g_{k}+\frac{1}{n} \sum_{k=0}^{n-1} \frac{k g_{k}}{n-k} .
$$

As $\sum_{k \geqslant 1} \frac{z^{k}}{k^{2}}$ converges at $z=1$, the first sum is "simply" $G(1)=e^{\sum_{k \geqslant 1} 1 / k^{2}}=e^{\pi^{2} / 6}$. For the second sum, we observe that:

$$
\sum_{k>n} \frac{\log ^{2} k}{k^{2}}<\sum_{m \geqslant 1} \sum_{n^{m}<k \leqslant n^{m+1}} \frac{\log ^{2} n^{m+1}}{k(k-1)}<\sum_{m \geqslant 1} \frac{(m+1)^{2} \log ^{2} n}{n^{m}}=O\left(\frac{\log ^{2} n}{n}\right),
$$

$$
\text { so } \sum_{k \geqslant n} g_{k}=\sum_{k \geqslant n} O\left(\frac{\log ^{2} k}{k^{2}}\right)=O\left(\sum_{k \geqslant n} \frac{\log ^{2} k}{k^{2}}\right)=O\left(O\left(\frac{\log ^{2} n}{n}\right)\right)=O\left(\frac{\log ^{2} n}{n}\right) \text {. }
$$

Example: Estimating a growth rate

Problem

Find an asymptotic estimate for $g_{n}=\left[z^{n}\right] G(z)$ where $G(z)=e^{\sum k \geqslant 1 \frac{z^{k}}{k^{2}}}$.
Step 3: Manipulate the estimate obtained
We now rewrite our original recurrence by "pulling out the largest part":

$$
n g_{n}=\sum_{k=0}^{n-1} \frac{g_{k}}{n}+\sum_{k=0}^{n-1} g_{k}\left(\frac{1}{n-k}-\frac{1}{n}\right)=\frac{1}{n} \sum_{k \geqslant 0} g_{k}-\frac{1}{n} \sum_{k \geqslant n} g_{k}+\frac{1}{n} \sum_{k=0}^{n-1} \frac{k g_{k}}{n-k} .
$$

For the third and last sum, we again plug in the asymptotics:

$$
\begin{aligned}
\sum_{0 \leqslant k<n} \frac{k g_{k}}{n-k} & =\sum_{0<k<n} \frac{k}{n-k} O\left(\left(\frac{\log k}{k}\right)^{2}\right)=O\left(\sum_{0<k<n} \frac{\log ^{2} k}{k(n-k)}\right) \\
& =O\left(\sum_{0<k<n} \frac{1}{n}\left(\frac{1}{k}+\frac{1}{n-k}\right) \log ^{2} n\right) \\
& =O\left(H_{n-1} \frac{\log ^{2} n}{n}\right)=O\left(\frac{\log ^{3} n}{n}\right)
\end{aligned}
$$

We can take out the big-O because all summands are nonnegative.

Example: Estimating a growth rate

Problem

Find an asymptotic estimate for $g_{n}=\left[z^{n}\right] G(z)$ where $G(z)=e^{\sum k \geqslant 1 \frac{z^{k}}{k^{2}}}$.

Step 3: Manipulate the estimate obtained

We now rewrite our original recurrence by "pulling out the largest part":

$$
n g_{n}=\sum_{k=0}^{n-1} \frac{g_{k}}{n}+\sum_{k=0}^{n-1} g_{k}\left(\frac{1}{n-k}-\frac{1}{n}\right)=\frac{1}{n} \sum_{k \geqslant 0} g_{k}-\frac{1}{n} \sum_{k \geqslant n} g_{k}+\frac{1}{n} \sum_{k=0}^{n-1} \frac{k g_{k}}{n-k} .
$$

We conclude:

$$
\begin{aligned}
g_{n} & =\frac{e^{\pi^{2} / 6}}{n^{2}}+O\left(\frac{1}{n^{2}} O\left(\frac{\log ^{2} n}{n}\right)\right)+O\left(\frac{1}{n^{2}} O\left(\frac{\log ^{3} n}{n}\right)\right) \\
& =\frac{e^{\pi^{2} / 6}}{n^{2}}+O\left(\left(\frac{\log n}{n}\right)^{3}\right)
\end{aligned}
$$

Next subsection

1 O Manipulation

2 Two Asymptotic Tricks

- Trick 1: Bootstrapping
- Trick 2: Trading tails

3 Euler's Summation Formula

4 Final Summations

- A bell-shaped summand
- Stirling's approximation

Trading tails: The trick

Suppose we must approximate a function of the form:

$$
f(n)=\sum_{k} a_{k}(n) .
$$

1 For each n, split the k s between a dominant set D_{n} and a tail set T_{n}.
2 Find asymptotic estimates $a_{k}(n)=b_{k}(n)+O\left(c_{k}(n)\right)$ which hold for $k \in D_{n}$.
3 Make sure that the following three sums are all "small":

$$
S_{a}(n)=\sum_{k \in T_{n}} a_{k}(n) ; S_{b}(n)=\sum_{k \in T_{n}} b_{k}(n) ; S_{c}(n)=\sum_{k \in D_{n}}\left|c_{k}(n)\right| .
$$

Then the following estimate holds:

$$
f(n)=\sum_{k} b_{k}(n)+O\left(S_{a}(n)\right)+O\left(S_{b}(n)\right)+O\left(S_{c}(n)\right) .
$$

Trading tails: The rationale

Suppose we performed the three steps in the previous slide. Then:

- For k in the dominant set, we have the estimate:

$$
\begin{aligned}
\sum_{k \in D_{n}} a_{k}(n) & =\sum_{k \in D_{n}}\left(b_{k}(n)+O\left(c_{k}(n)\right)\right) \\
& =\left(\sum_{k \in D_{n}} b_{k}(n)\right)+O\left(S_{c}(n)\right)
\end{aligned}
$$

Note that, to pass the big-O outside the summation, we needed the absolute values of the $c_{k}(n)$.

- For k in the tail set, we have the estimate:

$$
\begin{aligned}
\sum_{k \in T_{n}} a_{k}(n) & =\sum_{k \in T_{n}}\left(b_{k}(n)+a_{k}(n)-b_{k}(n)\right) \\
& =\left(\sum_{k \in T_{n}} b_{k}(n)\right)+O\left(S_{a}(n)\right)+O\left(S_{b}(n)\right)
\end{aligned}
$$

We did not need the absolute values of $a_{k}(n)$ and $b_{k}(n)$, because they did appear explicitly in the summation, not inside a big-O.

Trading tails: Example

Find an asymptotic estimate for the following sequence:

$$
L_{n}=\sum_{k \geqslant 0} \frac{\ln \left(n+2^{k}\right)}{k!}
$$

We immediately observe that, if k is "small" and n is "large", then:

$$
\ln \left(n+2^{k}\right)=\ln \left(n \cdot\left(1+\frac{2^{k}}{n}\right)\right)=\ln n+\frac{2^{k}}{n}-\frac{2^{2 k}}{2 n^{2}}+O\left(\frac{2^{3 k}}{n^{3}}\right)
$$

and we can surely use this approximation within the convergence radius of the Taylor series of $\ln (1+z)$ at the origin of the complex plane.
Such convergence radius is 1 , so we require $2^{k}<n$, that is, $k<\lfloor\lg n\rfloor$.

Trading tails: Example

Find an asymptotic estimate for the following sequence:

$$
L_{n}=\sum_{k \geqslant 0} \frac{\ln \left(n+2^{k}\right)}{k!}
$$

Step 1 For every $n \geqslant 1$ we set:

$$
D_{n}=[0:\lfloor\lg n\rfloor-1] \text { and } T_{n}=\mathbb{N} \backslash D_{n}=\{\lfloor\lg n\rfloor,\lfloor\lg n\rfloor+1, \ldots\}
$$

Step 2 For $k \in D_{n}$ we write $a_{k}(n)=b_{k}(n)+O\left(c_{k}(n)\right)$ where:

$$
\begin{aligned}
a_{k}(n) & =\frac{\ln \left(n+2^{k}\right)}{k!} \\
b_{k}(n) & =\frac{1}{k!}\left(\ln n+\frac{2^{k}}{n}-\frac{4^{k}}{2 n^{2}}\right) \\
c_{k}(n) & =\frac{8^{k}}{n^{3} \cdot k!}
\end{aligned}
$$

Trading tails: Example

Find an asymptotic estimate for the following sequence:

$$
L_{n}=\sum_{k \geqslant 0} \frac{\ln \left(n+2^{k}\right)}{k!}
$$

Step 3c The estimate for $S_{c}(n)$ is immediate:

$$
\sum_{0 \leqslant k<\lfloor\lg n\rfloor} \frac{8^{k}}{n^{3} \cdot k!} \leqslant \frac{1}{n^{3}} \cdot \sum_{k \geqslant 0} \frac{8^{k}}{k!}=\frac{e^{8}}{n^{3}}=O\left(\frac{1}{n^{3}}\right) .
$$

Trading tails: Example

Find an asymptotic estimate for the following sequence:

$$
L_{n}=\sum_{k \geqslant 0} \frac{\ln \left(n+2^{k}\right)}{k!}
$$

Step 3b To estimate $S_{b}(n)$ we can replace $\frac{2^{k}}{n}-\frac{4^{k}}{2 n^{2}}$ with $2^{k}+4^{k}$ and find:

$$
\begin{aligned}
\left|\sum_{k \geqslant\lfloor\lg n\rfloor} b_{k}(n)\right| & <\sum_{k \geqslant\lfloor\lg n\rfloor} \frac{\ln n+2^{k}+4^{k}}{k!} \\
& <\frac{\ln n+2^{\lfloor\lg n\rfloor}+4^{\lfloor\lg n\rfloor}}{\lfloor\lg n\rfloor!} \cdot \sum_{k \geqslant 0} \frac{4^{k}}{k!} .
\end{aligned}
$$

The last sum is e^{4}, while the fraction is $O\left(\frac{n^{2}}{\lfloor\lg n!!}\right)$ because of the summand $4^{\lfloor\lg n\rfloor}=n^{2}$. But $\lfloor\lg n\rfloor!$ grows faster than any power of n, so $S_{b}(n)$ is really very small for large n.

Trading tails: Example

Find an asymptotic estimate for the following sequence:

$$
L_{n}=\sum_{k \geqslant 0} \frac{\ln \left(n+2^{k}\right)}{k!}
$$

Step 3a The estimate for $S_{a}(n)$ is easy to compute: for $n \geqslant 2$ and $k \geqslant 1$,

$$
\sum_{k \geqslant\lfloor\lg n\rfloor} \frac{\ln \left(n+2^{k}\right)}{k!} \leqslant \sum_{k \geqslant\lfloor\lg n\rfloor} \frac{\ln \left(n \cdot 2^{k}\right)}{k!}<\sum_{k \geqslant\lfloor\lg n\rfloor} \frac{k+\ln n}{k!}=O\left(\frac{1}{\lfloor\lg n\rfloor!}\right)
$$

because $\ln 2^{k}<\ln e^{k}=k$.

Trading tails: Example

Find an asymptotic estimate for the following sequence:

$$
L_{n}=\sum_{k \geqslant 0} \frac{\ln \left(n+2^{k}\right)}{k!}
$$

We can now summarize:

$$
\begin{aligned}
L_{n} & =\sum_{k \geqslant 0} \frac{1}{k!}\left(\ln n+\frac{2^{k}}{n}-\frac{4^{k}}{2 n^{2}}\right)+O\left(\frac{1}{\lfloor\lg n\rfloor!}\right)+O\left(\frac{n^{2}}{\lfloor\lg n\rfloor!}\right)+O\left(\frac{1}{n^{3}}\right) \\
& =e \ln n+\frac{e^{2}}{n}-\frac{e^{4}}{2 n^{2}}+O\left(\frac{1}{n^{3}}\right) .
\end{aligned}
$$

Next section

1 O Manipulation

2 Two Asymptotic Tricks Trick 1: Bootstrapping
Trick 2: Trading tails

3 Euler's Summation Formula

4 Final Summations

- A bell-shaped summand - Stirling's approximation

Euler's summation formula

Theorem

If $f(x)$ is differentiable m times in an open interval which contains [a:b], then:

$$
\sum_{a \leqslant k<b} f(k)=\int_{a}^{b} f(x) d x+\sum_{k=1}^{m} \frac{B_{k}}{k!}\left(f^{(k-1)}(b)-f^{(k-1)}(a)\right)+R_{m},
$$

where B_{k} is the k th Bernoulli number and where:

$$
R_{m}=(-1)^{m+1} \int_{a}^{b} \frac{B_{m}(\{x\})}{m!} f^{(m)}(x) d x
$$

where, in turn, $B_{m}(x)=\sum_{k}\binom{m}{k} B_{k} x^{m-k}$ is the m th Bernoulli polynomial.

Euler's summation formula: A special case

If $f(x)=x^{m-1}$ with m positive integer, then Euler's summation formula becomes:

$$
\begin{aligned}
\sum_{a \leqslant k<b} x^{m-1} & =\frac{b^{m}-a^{m}}{m}+\sum_{k=1}^{m} \frac{B_{k}}{k!}(m-1)^{\frac{k-1}{}}\left(b^{m-k}-a^{m-k}\right)+0 \\
& =\frac{1}{m} \sum_{k=0}^{m} B_{k} \frac{m(m-1)^{\frac{k-1}{}}}{k!}\left(b^{m-k}-a^{m-k}\right) \text { because } B_{0}=1 \\
& =\frac{1}{m} \sum_{k=0}^{m}\binom{m}{k}\left(b^{m-k}-a^{m-k}\right)
\end{aligned}
$$

Euler's summation formula: The rationale

Let \sum, Δ, \int and D be the operators of summation, difference, integration, and differentiation, respectively.

- Suppose that f is smooth: that is, it has derivatives of any order.
- Taylor's formula tells us that: $f(x+\varepsilon)=f(x)+f^{\prime}(x) \varepsilon+\frac{f^{\prime \prime}(x)}{2} \varepsilon^{2}+\ldots$
- For $\varepsilon=1$, and writing $D^{k} f$ in place of $f^{(k)}$, this becomes:

$$
\Delta f(x)=\sum_{k \geqslant 1} \frac{D^{k} f(x)}{k!}=\left(e^{D}-1\right) f(x)
$$

with what looks like a little abuse of notation...

- Now, if $\Delta=e^{D}-1$, then its inverse \sum must be:

$$
\sum=\frac{1}{e^{D}-1}=\frac{1}{D} \cdot \frac{D}{e^{D}-1}=\frac{1}{D} \cdot\left(1+\sum_{k \geqslant 1} \frac{B_{k}}{k!} D^{k}\right)=\int+\sum_{k \geqslant 1} \frac{B_{k}}{k!} D^{k-1},
$$

which is Euler's summation formula with an infinite sum and no remainder.

Euler's summation formula: the proof

We give the proof by induction on $m \geqslant 1$ with $a=0$ and $b=1$.
We only need this case, because if $a \leqslant c \leqslant b$, then:

- $\sum_{a \leqslant k<b} f(k)=\sum_{a \leqslant k<c} f(k)+\sum_{c \leqslant k<b} f(k)$;
- $\int_{a}^{b} f(x) d x=\int_{a}^{c} f(x) d x+\int_{c}^{b} f(x) d x$, and similar for $\int_{a}^{b} \frac{B_{m}(\{x\})}{m!} f^{(m)}(x) d x$;
- $f^{(k-1)}(b)-f^{(k-1)}(a)=\left(f^{(k-1)}(c)-f^{(k-1)}(a)\right)+\left(f^{(k-1)}(b)-f^{(k-1)}(c)\right)$ for every k from 1 to m; and
- if $a \neq 0$ we can replace $f(x)$ with $g(x)=f(x+a)$.

So what we need to prove is:

$$
f(0)=\int_{0}^{1} f(x) d x+\sum_{k=1}^{m} \frac{B_{k}}{k!}\left(f^{(k-1)}(1)-f^{(k-1)}(0)\right)-(-1)^{m} \int_{0}^{1} \frac{B_{m}(x)}{m!} f^{(m)}(x) d x
$$

for every function f differentiable m times in (s, t) for some $s<0$ and $t>1$.

Euler's summation formula: the proof

We give the proof by induction on $m \geqslant 1$ with $a=0$ and $b=1$.
Base case: $m=1$. Then $B_{1}=-1 / 2, B_{1}(x)=x-1 / 2$, and the formula becomes:

$$
f(0)=\int_{0}^{1} f(x) d x-\frac{1}{2}(f(1)-f(0))+\int_{0}^{1}\left(x-\frac{1}{2}\right) f^{\prime}(x) d x
$$

or equivalently,

$$
\frac{f(0)+f(1)}{2}=\int_{0}^{1} f(x) d x+\int_{0}^{1}\left(x-\frac{1}{2}\right) f^{\prime}(x) d x
$$

But the right-hand side is precisely:

$$
\begin{aligned}
\int_{0}^{1}\left(f(x)+x f^{\prime}(x)\right) d x-\frac{1}{2} \int_{0}^{1} f^{\prime}(x) d x & =\left.x f(x)\right|_{0} ^{1}-\frac{1}{2}(f(1)-f(0)) \\
& =f(1)-\frac{1}{2} f(1)+\frac{1}{2} f(0) \\
& =\frac{f(0)+f(1)}{2}
\end{aligned}
$$

Euler's summation formula: the proof

We give the proof by induction on $m \geqslant 1$ with $a=0$ and $b=1$.
Induction: Suppose the thesis is true for $m-1 \geqslant 1$. Proving it for m is
equivalent to proving that $R_{m}=R_{m-1}-\frac{B_{m}}{m!}\left(f^{(m-1)}(1)-f^{(m-1)}(0)\right)$, that is:

$$
\begin{aligned}
(-1)^{m} B_{m}\left(f^{(m-1)}(1)-f^{(m-1)}(0)\right)= & m \int_{0}^{1} B_{m-1}(x) f^{(m-1)}(x) d x \\
& +\int_{0}^{1} B_{m}(x) f^{(m)}(x) d x
\end{aligned}
$$

Euler's summation formula: the proof

We give the proof by induction on $m \geqslant 1$ with $a=0$ and $b=1$.
Induction: Suppose the thesis is true for $m-1 \geqslant 1$. Proving it for m is
equivalent to proving that $R_{m}=R_{m-1}-\frac{B_{m}}{m!}\left(f^{(m-1)}(1)-f^{(m-1)}(0)\right)$, that is:

$$
\begin{aligned}
(-1)^{m} B_{m}\left(f^{(m-1)}(1)-f^{(m-1)}(0)\right)= & m \int_{0}^{1} B_{m-1}(x) f^{(m-1)}(x) d x \\
& +\int_{0}^{1} B_{m}(x) f^{(m)}(x) d x
\end{aligned}
$$

Now, if $B_{m}(x)=\sum_{k}\binom{m}{k} B_{k} x^{m-k}$ (which is the case) then:

$$
\begin{aligned}
\frac{d}{d x} B_{m}(x) & =\sum_{k}\binom{m}{k}(m-k) B_{k} x^{m-1-k} \\
& =\sum_{k} \frac{m^{\underline{k}}(m-k)}{k!} B_{k} x^{m-1-k} \\
& =\sum_{k} \frac{m(m-1)^{\underline{k}}}{k!} B_{k} x^{m-1-k} \\
& =m \sum_{k}\binom{m-1}{k} B_{k} x^{m-1-k}=m B_{m-1}(x) .
\end{aligned}
$$

Euler's summation formula: the proof

We give the proof by induction on $m \geqslant 1$ with $a=0$ and $b=1$.
Induction: Suppose the thesis is true for $m-1 \geqslant 1$. Proving it for m is
equivalent to proving that $R_{m}=R_{m-1}-\frac{B_{m}}{m!}\left(f^{(m-1)}(1)-f^{(m-1)}(0)\right)$, that is:

$$
\begin{aligned}
(-1)^{m} B_{m}\left(f^{(m-1)}(1)-f^{(m-1)}(0)\right)= & m \int_{0}^{1} B_{m-1}(x) f^{(m-1)}(x) d x \\
& +\int_{0}^{1} B_{m}(x) f^{(m)}(x) d x
\end{aligned}
$$

But since $\frac{d}{d x} B_{m}(x)=m B_{m-1}(x)$, the right-hand side is:

$$
\begin{aligned}
& \int_{0}^{1}\left(\left(\frac{d}{d x} B_{m}(x)\right) f^{(m-1)}(x)+B_{m}(x) \frac{d}{d x} f^{(m-1)}(x)\right) d x \\
= & \int_{0}^{1}\left(\frac{d}{d x} B_{m}(x) f^{(m-1)}(x)\right) d x \\
= & B_{m}(1) f^{(m-1)}(1)-B_{m}(0) f^{(m-1)}(0)
\end{aligned}
$$

Euler's summation formula: the proof

We give the proof by induction on $m \geqslant 1$ with $a=0$ and $b=1$.
Induction: Suppose the thesis is true for $m-1 \geqslant 1$. Proving it for m is
equivalent to proving that $R_{m}=R_{m-1}-\frac{B_{m}}{m!}\left(f^{(m-1)}(1)-f^{(m-1)}(0)\right)$, that is:

$$
(-1)^{m} B_{m}\left(f^{(m-1)}(1)-f^{(m-1)}(0)\right)=B_{m}(1) f^{(m-1)}(1)-B_{m}(0) f^{(m-1)}(0)
$$

But the above can be rewritten:

$$
g(1) f^{(m-1)}(1)-g(0) f^{(m-1)}(0)=0 \text { with } g(x)=B_{m}(x)-(-1)^{m} B_{m}
$$

and this must hold for every f differentiable m times: the only possibility is that $g(0)=g(1)=0$, that is,

$$
B_{m}(0)=B_{m}(1)=(-1)^{m} B_{m}
$$

and this must hold whatever $m \geqslant 2$ is.

Euler's summation formula: the proof

We give the proof by induction on $m \geqslant 1$ with $a=0$ and $b=1$.
Induction: Suppose the thesis is true for $m-1 \geqslant 1$. Proving it for m is equivalent to proving that

$$
B_{m}(0)=B_{m}(1)=(-1)^{m} B_{m}, m \geqslant 2 .
$$

But $B_{m}(0)=B_{m}(1)$ for $m \geqslant 2$ follows directly from the defining equation of Bernoulli numbers:

$$
\sum_{k}\binom{m}{k} B_{k}=B_{m}+[m=1] \text { for every } m \geqslant 1
$$

and the $(-1)^{m}$ sign is not a problem, because for odd $m>1$ it is $B_{m}=0$.
Q.E.D.

Euler's summation formula and asymptotics: Idea

As $B_{m}^{\prime}(x)=m B_{m-1}(x)$ for every $m \geqslant 0$, from our discussion follows that:

$$
\int_{0}^{1} B_{m}(x) d x=\frac{B_{m+1}(1)-B_{m+1}(0)}{(m+1)!}=0 \text { for every } m \geqslant 1
$$

Then the remainder R_{m} is the integral of the product of an m th derivative with a function of average zero, everything divided by a factorial:

$$
R_{m}=\frac{(-1)^{m+1}}{m!} \int_{a}^{b} B_{m}(\{x\}) f^{(m)}(x) d x=\frac{(-1)^{m+1}}{m!} \sum_{a \leqslant k<b} \int_{0}^{1} B_{m}(x) f^{(m)}(x+k) d x
$$

Such a quantity has good chances to be small, even if the B_{m} grow very large. Actually, as $\sum_{m \geqslant 0} \frac{B_{m}}{m!} z^{m}=\frac{z}{e^{z}-1}$ and the right-hand side is differentiable in the entire complex plane, the left-hand side has infinite convergence radius, so B_{m} / m ! vanishes faster than exponentially.

Behavior of $B_{m}(x)$ for $x \in[0,1]$

We have observed that $B_{m}^{\prime}(x)=m B_{m-1}(x)$ for every $m \geqslant 1$. If $x \in[0,1]$ then:

- $B_{1}(x)=x-1 / 2$ is negative in $(0,1 / 2)$ and positive in ($1 / 2,1$), and $B_{1}(1-x)=-B_{1}(x)$.
- Then $B_{2}(x)$ is decreasing in $(0,1 / 2)$ and increasing in $(1 / 2,1)$, and by comparing derivatives, $B_{2}(1-x)=B_{2}(x)$. Also, $B_{2}(0)=B_{2}=1 / 6>0$.
- By comparing derivatives, $B_{3}(1-x)=-B_{3}(x)$. As $B_{3}(0)=B_{3}=0$ and $B_{3}^{\prime}(x)=3 B_{2}(x)>0$ near $0, B_{3}(x)$ is positive in $(0,1 / 2)$ and negative in $(1 / 2,1)$.
- Then $B_{4}(x)$ is increasing in $(0,1 / 2)$ and decreasing in $(1 / 2,1)$, and by comparing derivatives, $B_{4}(1-x)=B_{4}(x)$. Also, $B_{4}(0)=B_{4}=-1 / 30<0$.
- By comparing derivatives, $B_{5}(1-x)=-B_{5}(x)$. As $B_{5}(0)=B_{5}=0$ and $B_{5}^{\prime}(x)=5 B_{4}(x)<0$ near $0, B_{5}(x)$ is negative in $(0,1 / 2)$ and positive in $(1 / 2,1)$.
- And so on...

Behavior of $B_{m}(x)$ at $x=1 / 2$

From the previous slide we deduce that for $x \in[0,1],\left|B_{2 m}(x)\right|$ is maximum at either $x=0$ or $x=1 / 2$.

Lemma

For every $m \geqslant 0, B_{m}(1 / 2)=\left(2^{1-m}-1\right) B_{m}$.

Behavior of $B_{m}(x)$ at $x=1 / 2$

From the previous slide we deduce that for $x \in[0,1],\left|B_{2 m}(x)\right|$ is maximum at either $x=0$ or $x=1 / 2$.

Lemma

For every $m \geqslant 0, B_{m}(1 / 2)=\left(2^{1-m}-1\right) B_{m}$.
Proof $B_{m}(x)=\sum_{k}\binom{m}{k} B_{k} x^{m-k}$ is the m th term of the binomial convolution of $\left\langle B_{m}\right\rangle$ and $\left\langle x^{m}\right\rangle$. Then:

$$
\sum_{m \geqslant 0} \frac{B_{m}(x)}{m!} z^{m}=\frac{z e^{x z}}{e^{z}-1},
$$

which for $x=1 / 2$ becomes:

$$
\begin{aligned}
\sum_{m \geqslant 0} \frac{B_{m}(1 / 2)}{m!} z^{m} & =\frac{z e^{z / 2}}{e^{z}-1} \\
& =2 \frac{(z / 2)\left(e^{z / 2}+1\right)}{e^{z}-1}-\frac{z}{e^{z}-1} \\
& =2 \sum_{m \geqslant 0} \frac{B_{m}}{m!}\left(\frac{z}{2}\right)^{m}-\sum_{m \geqslant 0} \frac{B_{m}}{m!} z^{m} \\
& =\sum_{m \geqslant 0} \frac{\left(2^{1-m}-1\right) B_{m}}{m!} z^{m}
\end{aligned}
$$

Behavior of $B_{m}(x)$ at $x=1 / 2$

From the previous slide we deduce that for $x \in[0,1],\left|B_{2 m}(x)\right|$ is maximum at either $x=0$ or $x=1 / 2$.

Lemma

For every $m \geqslant 0, B_{m}(1 / 2)=\left(2^{1-m}-1\right) B_{m}$.
As $\left|2^{1-m}-1\right|<1$, we conclude:
Corollary
For every $x \in[0,1]$ and integer $m \geqslant 1,\left|B_{2 m}(x)\right| \leqslant\left|B_{2 m}\right|=(-1)^{m-1} B_{2 m}$.

Euler's summation formula and asymptotics: Estimates

Let us write Euler's summation formula again:

$$
\sum_{a \leqslant k<b} f(k)=\int_{a}^{b} f(x) d x+\sum_{k=1}^{m} \frac{B_{k}}{k!}\left(f^{(k-1)}(b)-f^{(k-1)}(a)\right)+\frac{(-1)^{m+1}}{m!} \int_{a}^{b} B_{m}(\{x\}) f^{(m)}(x) d x .
$$

Since $B_{m}=0$ for $m>1$ odd and $B_{1}=-\frac{1}{2}$, we can only consider m even and rewrite:

$$
\begin{aligned}
\sum_{a \leqslant k<b} f(k)= & \int_{a}^{b} f(x) d x-\frac{f(b)-f(a)}{2}+\sum_{k=1}^{m} \frac{B_{2 k}}{(2 k)!}\left(f^{(2 k-1)}(b)-f^{(2 k-1)}(a)\right) \\
& -\frac{1}{(2 m)!} \int_{a}^{b} B_{2 m}(\{x\}) f^{(2 m)}(x) d x
\end{aligned}
$$

But for $x \in[0,1]$ it is $\left|B_{2 m}(x)\right| \leqslant\left|B_{2 m}\right|$, and as $\frac{(2 \pi)^{2 m}}{2} \frac{\left|B_{2 m}\right|}{(2 m)!}=\sum_{k \geqslant 1} \frac{1}{k^{2 m}}$ (cf. Ch. 6)

$$
\begin{aligned}
\sum_{a \leqslant k<b} f(k)= & \int_{a}^{b} f(x) d x-\frac{f(b)-f(a)}{2}+\sum_{k=1}^{m} \frac{B_{2 k}}{(2 k)!}\left(f^{(2 k-1)}(b)-f^{(2 k-1)}(a)\right) \\
& +O\left((2 \pi)^{-2 m}\right) \int_{a}^{b}\left|f^{(2 m)}(x)\right| d x
\end{aligned}
$$

Euler's summation formula and asymptotics: More estimates

If $f^{(2 m)}$ is nonnegative in $[a, b]$, then:

$$
\left|R_{2 m}\right| \leqslant \frac{\left|B_{2 m}\right|}{(2 m)!} \int_{a}^{b} f^{(2 m)}(x) d x=\frac{\left|B_{2 m}\right|}{(2 m)!}\left(f^{(2 m-1)}(b)-f^{(2 m-1)}(a)\right)
$$

But as $B_{2 m+1}=0$ for $m \geqslant 1$, it is $R_{2 m}=R_{2 m+1}$, so the first discarded term when we approximate to the $2 m$ th order instead of the $(2 m+2)$ nd must be $R_{2 m}-R_{2 m+2}$.

Lemma

If $f^{(2 m+2)}(x) \geqslant 0$ for every $x \in[a, b]$, then $(-1)^{m} R_{2 m} \geqslant 0$.
Proof for $a=0$ and $b=1$: (general case follows easily)

- $R_{2 m}=R_{2 m+1}=\frac{1}{(2 m+1)!} \int_{0}^{1} B_{2 m+1}(x) f^{(2 m+1)}(x) d x$.
- As $f^{(2 m+2)} \geqslant 0, f^{(2 m+1)}$ is nondecreasing, and since $B_{2 m+1}$ is symmetric around $x=1 / 2$, the second half of the sinusoid counts more than the first.
- For m even, $B_{2 m+1}$ is negative in $(0,1 / 2)$ and positive in $(1 / 2,1)$; for m odd, $B_{2 m+1}$ is positive in $(0,1 / 2)$ and negative in $(1 / 2,1)$. The thesis follows.

Next section

1 O Manipulation

2 Two Asymptotic Tricks

- Trick 1: Bootstrapping
- Trick 2: Trading tails

3 Euler's Summation Formula

4 Final Summations

- A bell-shaped summand
- Stirling's approximation

Next subsection

1 O Manipulation

2 Two Asymptotic Tricks
Trick 1: Bootstrapping

3 Euler's Summation Formula

4 Final Summations

- A bell-shaped summand
- Stirling's approximation

A bell-shaped approximation

Problem
Give an asymptotic approximation of:

$$
\Theta_{n}=\sum_{k} e^{-k^{2} / n}
$$

A bell-shaped approximation

Problem

Give an asymptotic approximation of:

$$
\Theta_{n}=\sum_{k} e^{-k^{2} / n}
$$

Let us think first of the behavior of the summand:

- The function $f(x)=e^{-x^{2}}$ is maximum at $x=0$ with $f(0)=1$; stays near 1 in $[-1,1]$; and becomes very small very quickly for $x \rightarrow \pm \infty$.
- Then $f_{n}(x)=e^{-x^{2} / n}$ stays near 1 for $|x| \leqslant \sqrt{n}$, and vanishes quickly for $x \rightarrow \pm \infty$.
- We then expect Θ_{n} to be of the form $\Theta_{n} \approx C \cdot \sqrt{n}$.

Euler's summation formula at infinity

Since Euler's summation formula holds for every $a \leqslant b$, it also holds for the limits for $a \rightarrow-\infty$ and $b \rightarrow+\infty$ when they exist.
This is the case for $f_{n}(x)=e^{-x^{2} / n}$, so:

$$
\begin{aligned}
\sum_{k} e^{-k^{2} / n}= & \int_{-\infty}^{+\infty} e^{-x^{2} / n} d x \\
& +\sum_{k=1}^{m} \frac{B_{k}}{k!}\left(\lim _{x \rightarrow+\infty} f_{n}^{(k-1)}(x)-\lim _{x \rightarrow-\infty} f_{n}^{(k-1)}(x)\right) \\
& +(-1)^{m+1} \int_{-\infty}^{+\infty} \frac{B_{m}(\{x\})}{m!} f_{n}^{(m)}(x) d x
\end{aligned}
$$

Now, for $f(x)=e^{-x^{2}}$ it is $f^{(k)}(x)=P_{k}(x) e^{-x^{2}}$ for a polynomial $P_{m}(x)$ of degree k. As $f_{n}(x)=f(x / \sqrt{n})$, we have $f_{n}^{(k)}(x)=n^{-k / 2} f^{(k)}(x / \sqrt{n}) \rightarrow 0$ for $x \rightarrow \pm \infty$, hence:

$$
\sum_{k} e^{-k^{2} / n}=\sqrt{\pi n}+(-1)^{m+1} \int_{-\infty}^{+\infty} \frac{B_{m}(\{x\})}{m!} f_{n}^{(m)}(x) d x \text { for suitable } C>0 .
$$

The Gaussian integral

$$
\int_{-\infty}^{+\infty} e^{-x^{2}} d x=\sqrt{\pi}
$$

The Gaussian integral

$$
\int_{-\infty}^{+\infty} e^{-x^{2}} d x=\sqrt{\pi}
$$

Proof:

$$
\begin{aligned}
\left(\int_{-\infty}^{+\infty} e^{-x^{2}} d x\right)^{2}= & \int_{-\infty}^{+\infty} e^{-\left(x^{2}+y^{2}\right)} d x d y \\
= & \int_{\theta=0}^{2 \pi} \int_{\rho=0}^{+\infty} e^{-\rho^{2}} \rho d \rho d \theta \\
= & 2 \pi \cdot \frac{1}{2} \int_{0}^{+\infty} e^{-t} d t \\
& \text { with the change of variable } t=\rho^{2} \\
= & \pi \cdot\left[-e^{-t}\right]_{0}^{+\infty}=\pi
\end{aligned}
$$

The Gaussian integral

Theorem

$$
\int_{-\infty}^{+\infty} e^{-x^{2}} d x=\sqrt{\pi}
$$

Corollary

$$
\int_{-\infty}^{+\infty} e^{-x^{2} / n} d x=\sqrt{\pi n}
$$

An estimate for the error

The absolute error we make by approximating Θ_{n} with $\sqrt{\pi n}$ is:

$$
\begin{aligned}
(-1)^{m+1} \int_{-\infty}^{+\infty} \frac{B_{m}(\{x\})}{m!} f_{n}^{(m)}(x) d x= & \frac{(-1)^{m+1}}{n^{m / 2}} \int_{-\infty}^{+\infty} \frac{B_{m}(\{x\})}{m!} f^{(m)}\left(\frac{x}{\sqrt{n}}\right) d x \\
= & \frac{(-1)^{m+1}}{n^{(m-1) / 2}} \int_{-\infty}^{+\infty} \frac{B_{m}(\{t \sqrt{n}\})}{m!} f^{(m)}(t) d t \\
& \text { with the change of variable } t=x / \sqrt{n} \\
= & O\left(n^{(1-m) / 2}\right)
\end{aligned}
$$

because $B_{m}(x)$ is bounded in $[0,1]$ and $\int_{-\infty}^{+\infty}\left|f^{(m)}(x)\right| d x$ is finite. But $m \geqslant 1$ is arbitrary, because $f(x)$ is smooth in \mathbb{R} : we conclude

$$
\Theta_{n}=\sqrt{\pi n}+O\left(n^{-M}\right) \text { for any } M>0
$$

Next subsection

1 O Manipulation

2 Two Asymptotic Tricks

- Trick 1: Bootstrapping - Trick 2: Trading tails

3 Euler's Summation Formula

4 Final Summations

- A bell-shaped summand
- Stirling's approximation

Stirling's approximation

$$
\ln n!=\left(n+\frac{1}{2}\right) \ln n-n+\ln \sqrt{2 \pi}+\frac{1}{12 n}-\frac{1}{360 n^{3}}+O\left(\frac{1}{n^{5}}\right)
$$

Stirling's approximation

Theorem

$$
\ln n!=\left(n+\frac{1}{2}\right) \ln n-n+\ln \sqrt{2 \pi}+\frac{1}{12 n}-\frac{1}{360 n^{3}}+O\left(\frac{1}{n^{5}}\right)
$$

Proof: (sketch; see the textbook for details)
1 Prove that there exists a constant σ such that:

$$
\ln n!=\left(n+\frac{1}{2}\right) \ln n-n+\sigma+\frac{1}{12 n}-\frac{1}{360 n^{3}}+O\left(\frac{1}{n^{5}}\right) .
$$

2 Use the formula from point 1, the trading tails technique, and the approximation for Θ_{n} from the previous section to prove that:

$$
\sum_{k}\binom{2 n}{k}=2^{2 n} \frac{\sqrt{2 \pi}}{e^{\sigma}}\left(1+O\left(n^{-1 / 2+3 \varepsilon}\right)\right) \text { for } 0<\varepsilon<\frac{1}{6}
$$

3 Conclude that it must be $\sigma=\ln \sqrt{2 \pi}$.

