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Another application of power series

Let G(z) = Lx=08x2" have convergence radius R > 0. If either:
m f(n)=<1,or
m R=c and f(n) = O(1),

then for every m > 1, if h(n) = O(f(n)) then:

G(h(n) =Y. &k(h(m)*+O((f(n)™)

0<k<m

Remark:
m f(n) <1 if and only if lim,_. f(n) =0: that is, f vanishes at infinity.

m f(n) = O(1) if and only if |f(n)| < C for some C >0 and every n: that is, f is
bounded.

m The thesis is equivalent to saying that:

Z gk(h(n))k = O((f(n))™) whenever h(n) = O(f(n)).

k>m
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Another application of power series

Let G(z) = Yy=08x2" have convergence radius R > 0. If either:
m f(n) <1, or
m R=w and f(n) = O(1),

then for every m > 1, if h(n) = O(f(n)) then:

G(h(m) =Y, ex(h(m)*+O((f(n)™)

0<k<m

Examples:
= In(1+O(1/n))=O(1/n)
" I"(1+1/"):}1 2n2 3n3 (%)

m et = 4—'"7"'+(In")2 (( ))
t1m_5_ 2 1 1
me _2—+2nz+o<(1—n) )

k TAL
This holds because e =Y ¢ % has infinite convergence radius. TECH



Another application of power series

Let G(z) = Lx=08x2" have convergence radius R > 0. If either:
m f(n)<1, or
m R=c and f(n) = O(1),

then for every m > 1, if h(n) = O(f(n)) then:

G(h(m) =Y, &k(h(m)“+O((f(n)™)

0<k<m

Proof for R < and f <1:

Let h(n) = O(f(n)). Choose C > 0 such that |h(n)| < C-|f(n)| for every n> 0.
m Fix § € (0,R). Then K= C™ Yo |gk|6K M < co.

m Choose ng such that |f(n)| < 8/C for every n> np: for such n, |h(n)| < 6.

u

Then for n> ng:

<|h(n)|™- Y lgkl- 857" < K- |F(n)|™.

k>=m

T ak(h(n)"

k>=m
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Another application of power series

Let G(z) = Yy=08x2" have convergence radius R > 0. If either:
m f(n) <1, or
m R=o0and f(n)=0O(1),

then for every m > 1, if h(n) = O(f(n)) then:

G(h(m)= Y &x(h(n))*+O((f(n)™)

0<k<m

Proof for R =0 and f(n) = O(1):
m Let h(n) = O(f(n)). Choose C >0 such that |h(n)| < C-|f(n)| for every n> 0.
m Fix 6 > 0 such that |f(n)| < 8/C for every n. Then |h(n)| < & for every n too.
B As R=o0, Kpn=C"-Yismlg|6K M < co.

m Then for every n:

Y g(h(n)

k>=m

<Ih(n)™- Y lgkl- 857" < K- |F(n)|™.

k>m
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Two Asymptotic Tricks
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Next subsection

Two Asymptotic Tricks
m Trick 1: Bootstrapping
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Bootstrapping

To get an asymptotics for the solution of a recurrence:
first, take a rough estimate;
next, substitute the estimate into the recurrence.
This is an example of “pulling oneself up by one's bootstraps’.
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Example: Estimating a growth rate

ok
Find an asymptotic estimate for g, = [z"] G(z) where G(z) = Ltz
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Example: Estimating a growth rate

o
Find an asymptotic estimate for g, = [z"] G(z) where G(z) = Ltz

Step 1: Look for a simple asymptotics

As we have an exponential, it might be a good idea to differentiate by series, and see
if a more manageable formula appears:

k—1
. z .
Y ngnz" ' =G(z)- ¥ = A

n>1 k>1 n>10<k<n 1~

which gives us the recurrence:
=
ngn = e Vn>1
n—
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Example: Estimating a growth rate

2k
Find an asymptotic estimate for g, = [z2"]G(z) where G(z) = iz

Step 1: Look for a simple asymptotics

A numerical computation of the first values gives:

n|0o 1 2 3 4 5 6
| 1 1 3 19 107 641 51103
&n 4 36 288 2400 259200

It looks like all the terms are positive and not larger than 1: which can easily be
proved by induction. Then: g, = O(1).
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Example: Estimating a growth rate

2k
Find an asymptotic estimate for g, = [z"]G(z) where G(z) = erk>14z

Step 2: Plug in the asymptotics

If we replace the g on the right-hand side with O(1), we find:

n—1 n
na= Y ,?EIZ —y %W _ 4 o) = 0logn).

Then: g, = O <IO£)

n

TAL
TECH



Example: Estimating a growth rate

Find an asymptotic estimate for g, = [z2"]G(z) where G(z) = e~**1 2.

Step 2: Plug in the asymptotics again

If we replace the g on the right-hand side with O(log(k)/k) and put the first
summand out of the sum, we find:

1 n—1
ngn = ;+ Z

= n—k

because #—1 EJ’, 1 and k_o( ) Then -0 |0gn 2
! k(n—k) — n\k  n—k = &n). &n = T .

logk\ 1 7=l O(logk) 1
O( P )—;-i— = k(n— ) 7+ H,, 10(logn),

TAL
TECH



Example: Estimating a growth rate

2k
Find an asymptotic estimate for g, = [z"] G(z) where G(z) = eXk>? i2 .

Step 3: Manipulate the estimate obtained

We now rewrite our original recurrence by “pulling out the largest part”:

ngn—zngrZ (——7) Zg—*ZgnLanlkgk

k>0 k>n
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Example: Estimating a growth rate

ok
Find an asymptotic estimate for g, = [2"] G(z) where G(z) = efetie

Step 3: Manipulate the estimate obtained
We now rewrite our original recurrence by “pulling out the largest part’™

n—1 8k n—1
ngo =Y, 7+ng<n
k=0

k=0

1= 1 kgk
= Z &k — — Z &g+ — Z
) n k>0 n>n Ng=on—
2 . s 1/k2 2
As Y1 73 converges at z =1, the first sum is “simply” G(1) = eXk>11/k* = o7°/6,
For the second sum, we observe that:

y log? k <y y log? n™t1 _ (m+1)%log®n O(Iog2n)
k>n k2 m>1pm k< pm+1 k(kil) m>1 nm i ’

log? k log? k log? log?
B =0 () 0 50 ) =00 57)) <0 (7). 1y
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Example: Estimating a growth rate

Zk
Find an asymptotic estimate for g, = [z2"]G(z) where G(z) = iz,

Step 3: Manipulate the estimate obtained

We now rewrite our original recurrence by “pulling out the largest part™:

n—1 n—1 n—1
&k 11 1 1 1

ngn = *+z gk( k—*>=*§gk—*zgk+*z

-0 "7 ko W= Z N >o f N =0

k=i k=n

kg

n

For the third and last sum, we again plug in the asymptotics:

kg k (Iogk)z log? k
= 0 =© 196 *
0<zk:<n”7k 0<2k:<n”’k ( k o<zk:<n k(n— k)
1/1 1
(0] — (f + ) log? n>
<0<;<n n\k n—k

2 3
O(anllogn n> :O(Iogn n)

We can take out the big-O because all summands are nonnegative.
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Example: Estimating a growth rate

2k
Find an asymptotic estimate for g, = [z2"]G(z) where G(z) = efetiz

Step 3: Manipulate the estimate obtained

We now rewrite our original recurrence by “pulling out the largest part”:

n—1 n—1
_y &k _1 1y 1 _1 1N kek
ng"_kgon—i_kg’ogk(n—k n)_nkg‘og nzgk—’—nkz:"on—k'

k>=n

We conclude:

e™>/6 1 log? n 1 logn
o = Sero(Fo(r)) o (o))
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Next subsection

Two Asymptotic Tricks

m Trick 2: Trading tails
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Trading tails: The trick

Suppose we must approximate a function of the form:

f(n)= ;ak(n).

For each n, split the ks between a dominant set D, and a tail set T,.
Find asymptotic estimates ax(n) = bx(n)+ O(ck(n)) which hold for k € D,,.
Make sure that the following three sums are all “small”:

Sa(n)= ), ak(n): Sp(n)=Y, bu(n); 5c(")=k2;,) CAGIE

keT, keTy

Then the following estimate holds:

f(n) = Zk‘,bk(") + 0(S5(n)) + O(Sp(n)) + O(Sc(n)) -
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Trading tails: The rationale

Suppose we performed the three steps in the previous slide. Then:
m For k in the dominant set, we have the estimate:

Y a(n) = ) (b(n)+O(ck(n))

keDp keDp

< Y bk(n)> + O(Sc(n))

keDp

Note that, to pass the big-O outside the summation, we needed the absolute
values of the ¢ (n).

m For k in the tail set, we have the estimate:

Y a(n) Y (bk(n)+ak(n) — bi(n))

keT, keT,

( Y bk(”)) + O(Sa(n)) + O(Sp(n))

keTy

We did not need the absolute values of ax(n) and bk (n), because they did
appear explicitly in the summation, not inside a big-O. TAL
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Trading tails: Example

Find an asymptotic estimate for the following sequence:

We immediately observe that, if k is “small” and n is “large”, then:

2k 2k 22k 23k
Ky _ ) 20\ = < s <
In(n+2%)=In (n (1+ n)) Inn+ oo +O< n3>

and we can surely use this approximation within the convergence radius of the Taylor
series of In(1+z) at the origin of the complex plane.
Such convergence radius is 1, so we require 2k < n, that is, k < |lgn].
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Trading tails: Example

Find an asymptotic estimate for the following sequence:

Step 1 For every n>1 we set:
D,=[0:|lgn|—1] and T,=N\D,={|lgn|,|lgn|+1,...}

Step 2 For k € D, we write ax(n) = bx(n)+ O(ck(n)) where:

In(n—+2k
ak(n) = In(n+2%) o );
1 2k gk
b(n) = ﬂ('”"*?‘ﬁ)
Sk
w(m = S
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Trading tails: Example

Find an asymptotic estimate for the following sequence:

L, = Z In(n+2%)

1
>0 k!

Step 3c The estimate for S.(n) is immediate:

gk 1 gk & 1
ﬁ<7'2ﬂ2%20<7>'
o<k<llgn] T KM s KM 2
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Trading tails: Example

Find an asymptotic estimate for the following sequence:

Ln:ZM

1
>0 k!

2k 4k ,
Step 3b To estimate Sp(n) we can replace — 57 with 2K 4+ 4k and find:

Inn+ 2k 4 4k
Z bk(n) < Z T
k>|lgn] k>lgn] ’
Inn+2llen] 4 4llgn] 4k
llgn]! kgbﬁ
The last sum is e*, while the fraction is O (Ué’—iﬂ> because of the

summand 4187 = n2_ But [lgn]! grows faster than any power of n,
so Sp(n) is really very small for large n.
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Trading tails: Example

Find an asymptotic estimate for the following sequence:

L= Z In(n—+2%)

1
o k!

Step 3a The estimate for S;(n) is easy to compute: for n>2 and k> 1,

k ok
In(nlj'—2)< Yy In(r;(l2)< y k-i;(llnn:O( I1 |)
Kelgall 2 e K olEn K Llgn)!

because In2% < Inek = k.
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Trading tails: Example

Find an asymptotic estimate for the following sequence:

L= Z In(n+2%)

1
o k!

We can now summarize:

e R
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Next section

Euler's Summation Formula
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Euler's summation formula

If £(x) is differentiable m times in an open interval which contains [a: b], then:

Y f(k) :/b £(x) dx + '{"‘, % (f‘kfl)(b)—f(H)(a)) +Rm,
& k=1 "°

a<k<b

where By is the kth Bernoulli number and where:

Rm = (-1)m*1 /b B"'i'(n{!x}) £0m) (x) dx,

a

where, in turn, Bm(x) = Lk (7) Bkx™ ¥ is the mth Bernoulli polynomial.
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Euler's summation formula: A special case

If f(x) =x™"1 with m positive integer, then Euler's summation formula becomes:

m-1 bm—am & By KoL ek
X = +) kl m—1)X(b™* —a™*)+0
a<k<b g k=1 %
1 & m(mfl)k;1 K X
= - ) BkT(bm’ —a™ ") because By =1
k=0 :
— % i (’:) (bm—k_am—k)
k=0
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Euler's summation formula: The rationale

Let Y, A, [ and D be the operators of summation, difference, integration, and
differentiation, respectively.

m Suppose that f is smooth: that is, it has derivatives of any order.

m Taylor's formula tells us that: f(x+¢&)=f(x)+f(x)e+ ——= ( )

m For e =1, and writing D¥f in place of (), this becomes:

k X
A= ¥ 20— (o0 1yr(v),

k>1

with what looks like a little abuse of notation . ..

= Now, if A =eP —1, then its inverse Y must be:
1 1 D 1 Bk / k1
= =—.— —=—.|1 —D D
Z eP—1 D e£L—-1 D <+k§1 k! > +k§’1

which is Euler's summation formula with an infinite sum and no remainder.
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Euler's summation formula: the proof

We give the proof by induction on m>1 with a=0 and b=1.
We only need this case, because if a < ¢ < b, then:

B Yockeb F(K) = Lackac F(K) +Lecken f(K);
w [PF(x)dx = [SF(x)dx+ [P F(x)dx, and similar for [2 BmUx) £(m) () dx;

m D (p) — FED(a) = (F-1)(c) — Fk-1(a)) + (FED(b) — F-1)(c)) for
every k from 1 to m; and

m if a# 0 we can replace f(x) with g(x) = f(x+ a).

So what we need to prove is:
1
/ A Z £ (reD (@) - () _(—1)"’/ B’”T(I")ﬂm)(x) i
0 !

for every function f differentiable m times in (s,t) for some s <0 and t > 1.
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Euler's summation formula: the proof

We give the proof by induction on m>1 with a=0 and b=1.

Base case: m=1. Then B; = —1/2, Bi(x) = x—1/2, and the formula becomes:

£(0) = /01 Ao %(f(l)— f(o))+/01 (x— %) Ao,

or equivalently,

M :/01 f(x)dx-l—/ol (x— %) f'(x) dx,

But the right-hand side is precisely:

Xf ()3~ 5 (F(1) ~ £(0))

f(l)—%f(l)—i—%f(o)

f(0)+f(1)
—

1 , 1 1 ,
/0 (F(x)+xf'(x)) dX_E/o ' (x) dx

TAL
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Euler's summation formula: the proof

We give the proof by induction on m>1 with a=0 and b=1.

Induction: Suppose the thesis is true for m—1 > 1. Proving it for m is
equivalent to proving that Ry, = Rm—1 — B—":(f(’"’l)(l)— f(m=1)(0)),
m!
that is:

(~1)" B (f(’"’l)(l)—f("”l)(o)) - m/ol Bim—1(x)f™ 1 (x) dx

+ /0 B () F(™ (x) dx

TAL
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Euler's summation formula: the proof

We give the proof by induction on m>1 with a=0 and b=1.
Induction: Suppose the thesis is true for m—1 > 1. Proving it for m is

equivalent to proving that Ry, = Rm—1 — %(f(’"’l)(l)f f(m=1)(0)),

that is:
1
(-1)" B, (f(’"’l)(l)—f("’*l)(o)) = m/ Bim1(x)f™ 1) (x) dx
0
1
+ / Bon(x)F (™ (x) dx
0
Now, if By(x) = Xk (7) Bkx™* (which is the case) then:
d m M1
S Bm() = zk:(k)(m—k)ka B
mK(mfk) m—1—k
- ;TB” '
m(mfl)K m—1—k
- ;TBW '
=1l A
- m;(mk )kam TrEmBra()- Ay
TECH



Euler's summation formula: the proof

We give the proof by induction on m>1 with a=0 and b=1.
Induction: Suppose the thesis is true for m—1 > 1. Proving it for m is
B,
equivalent to proving that Ry, = Rm—1 — ﬁ(f(’"’l)(l)f f(m=1)(0)),
that is: '

(-1)" B, (f(’"*l)(l) - f("’*l)(o)) = m/ol Bim1(x)f™ 1 (x) dx

1
+ / Bon(x)F(™ (x) dx
0
- d - .
But since &Bm(x) = mBpn_1(x), the right-hand side is:

[ (o) s )

/0 ' (di'x Bm(x)f(’"’l)(x)> dx
Bm(1)F(m=1)(1) — B,,(0)F(™~1)(0)
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Euler's summation formula: the proof

We give the proof by induction on m>1 with a=0 and b=1.

Induction: Suppose the thesis is true for m—1 > 1. Proving it for m is
B,
equivalent to proving that Ry, = Rpmp—1 — ﬁ(f(’"’l)(l)f f(m=1)(0)),
that is: '

(—1)"Bm (F"D(1) = F71(0) ) = Bn(1) ("D (1) - Bm(0)F" 1) (0)
But the above can be rewritten:
g(1)fm (1) —g(0)F(m1)(0) = 0 with g(x) = Bm(x)~(~1)"Bum

and this must hold for every f differentiable m times: the only
possibility is that g(0) = g(1) =0, that is,

Bun(0) = Bm(1) = (~1)"Bp
and this must hold whatever m > 2 is.
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TECH



Euler's summation formula: the proof

We give the proof by induction on m>1 with a=0 and b=1.

Induction: Suppose the thesis is true for m—1 > 1. Proving it for m is
equivalent to proving that

Bin(0) = Bm(1) = (~1)" B, m>2.

But Bp,(0) = Bm(1) for m > 2 follows directly from the defining
equation of Bernoulli numbers:

Z(T)Bk:Bm—i—[m:l] for every m > 1
k

and the (—1)™ sign is not a problem, because for odd m>1 it is
Bm =0. Q.E.D.
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Euler's summation formula and asymptotics: Idea

As B/ (x) = mBm_1(x) for every m > 0, from our discussion follows that:

L Bry1(1) — Bmt1(0)
Bom = BrlS) 7 Bmll&) _ g o >1.
/0 (x) dx (mT1)! 0 forevery m

Then the remainder Ry, is the integral of the product of an mth derivative with a
function of average zero, everything divided by a factorial:

( 1) i x1)Fm) (x x—i(_l)nH:l ! X)) (x Ix
Rm = [ Bt ax= X[, B+ id

Such a quantity has good chances to be small, even if the B, grow very large.

Actually, as ¥ pp>0 — | zZM= — 1 and the right-hand side is differentiable in the entire
ez —

complex plane, the left-hand side has infinite convergence radius, so B;,/m! vanishes

faster than exponentially.
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Behavior of Bp,(x) for x € [0,1]

We have observed that B}, (x) = mBm_1(x) for every m>1. If x € [0,1] then:

Bi1(x) = x—1/2 is negative in (0,1/2) and positive in (1/2,1), and
Bl(l —X) = —Bl(X).

Then Bx(x) is decreasing in (0,1/2) and increasing in (1/2,1), and by
comparing derivatives, By (1 —x) = Bz(x). Also, B>(0) =B, =1/6 > 0.

By comparing derivatives, B3(1—x) = —B3(x). As B3(0) = B3 =0 and
Bj(x) =3B2(x) >0 near 0, B3(x) is positive in (0,1/2) and negative in (1/2,1).

Then By(x) is increasing in (0,1/2) and decreasing in (1/2,1), and by
comparing derivatives, Bs(1 —x) = Ba(x). Also, B4(0) = B4 =—-1/30 < 0.

By comparing derivatives, Bs(1—x) = —Bs(x). As Bs(0) = Bs =0 and

Bi(x) =5Ba(x) <0 near 0, Bs(x) is negative in (0,1/2) and positive in (1/2,1).

And soon ...
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Behavior of Bp(x) at x=1/2

From the previous slide we deduce that for x € [0,1], |Bam(x)| is maximum at either
x=0o0rx=1/2.

Lemma

For every m >0, Bm(1/2) = (21"™ —1) Bn,.

TAL
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Behavior of Bp(x) at x=1/2

From the previous slide we deduce that for x € [0,1], |Bam(x)| is maximum at either
x=0o0rx=1/2.

For every m >0, By(1/2) = (21" —1) Bp.

Proof Bm(x) =Lk (7)Bkx™ ¥ is the mth term of the binomial convolution
of (Bm) and (x™). Then:

Bm(x) m_ ze*?

e m! eZ—1’
which for x =1/2 becomes:
¥ Bn(1/2) m _ 22
m! T oer-1

m=0

NI Cilns VI

ez—1 ez—1

B rz\m Bm
LTS e
"éom! % m);om!z

_ oy 1B on TAL
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Behavior of Bp(x) at x=1/2

From the previous slide we deduce that for x € [0,1], |Bam(x)| is maximum at either
x=0o0rx=1/2.

Lemma
For every m >0, By(1/2) = (21" —1) Bp.

As [21=m —1| < 1, we conclude:

Corollary

For every x € [0,1] and integer m > 1, |Bam(x)| < |Bom| = (=1)"" 1 Bopm.

TAL
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Euler's summation formula and asymptotics: Estimates

Let us write Euler's summation formula again:

F(k)= /f(x)dx—i-z (f(k‘l)(b)—f(k‘l)(a)>+(_ln):H /ame({x})f(’")(x)dx.

a<k<b
Since B, =0 for m>1 odd and B; = —7, we can only consider m even and rewrite:
b f(b)— 2 Boy PR PR
flk) = / F(x) dx — ) 4 F@K-1)(p) — F(2k-1)(5)
., ! 7+ L i )

b
7@/3 B2m({X})f(2’")(X) dx.

iti (27)®™ |Bam| 1
But for x € [0,1] it is |Ba2m(x)| < |Bam|, and as > @m)! =Yi>1 5 T (cf. Ch. 6)
B f(b)— m By 3 -
f(k = / f dx — f(Zk 1) b _f-(2k 1)
a<zk:<b 49 , fl)ex 2 = Z (2k)l< (b) (3))

b
0 ((2m)2m) [ 1™ () ax. L



Euler's summation formula and asymptotics: More estimates

If £(2m) is nonnegative in [a, b], then:

|BZm|
(2m)!

bf(zm)(x)dxi ifrznf;‘l ( 2m—1)(b)_f(2m—1)(a)>

|R2m| <

But as Bomy1 =0 for m>1, it is Ry = Ramy1, so the first discarded term when we
approximate to the 2mth order instead of the (2m+2)nd must be Rap — Romio.

Lemma

If fm+2)(x) > 0 for every x € [a,b], then (—1)™Rzm > 0.
Proof for a=0 and b=1: (general case follows easily)
B Rom=Romy1 = (2m+1 IfO Bgm+1(x)f(2m+1 (x) dx.

m As F2m+2) > o f(2m+1) ig nondecreasing, and since Bpp+1 is symmetric around
x =1/2, the second half of the sinusoid counts more than the first.

m For m even, Bap,11 is negative in (0,1/2) and positive in (1/2,1); for m odd,
Bomy1 is positive in (0,1/2) and negative in (1/2,1). The thesis follows.
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Next section

Final Summations
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Next subsection

Final Summations
m A bell-shaped summand
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A bell-shaped approximation

Give an asymptotic approximation of:

On = Ze’kz/"
3
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A bell-shaped approximation

Give an asymptotic approximation of:

en — Zesz/n
k

Let us think first of the behavior of the summand:

= The function f(x) =e %" is maximum at x = 0 with f(0) = 1; stays near 1 in
[-1,1]; and becomes very small very quickly for x — =co.

m Then fh(x) = e3/n stays near 1 for |x| < /n, and vanishes quickly for x — oo
= We then expect ©, to be of the form ©,~ C-/n.
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Euler's summation formula at infinity

Since Euler's summation formula holds for every a < b, it also holds for the limits for
a— —o and b — oo when they exist.
This is the case for f,(x) = e>*/n so

oo
Ze_kz/" = / e2/n g
- e
+ 3 2 lim £ D00~ lim_ ()
&y K \xote n x—p—oo !

ey [ BB i

Now, for f(x) =e = it s £(K) (x) Pr(x)e™ = for a polynomial Pm(x) of degree k.
As fn(x) = f(x/+/n), we have fik (x) = nk/2£(K)(x/\/n) — 0 for x — +eo, hence:

Ze’kz/" =/7n+ (—1)m+1/ Bm({x}) f(m)(x) dx for suitable C > 0.
K
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The Gaussian integral

oo,
/ e X dx=+/x.
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The Gaussian integral

e 2
/ e dx=r.

Proof:

+oo 2 +oo
(/ e dx) = / e Py gy dy
2T e
/ / e P pdpdo
6=0.Jp=0
on 1/+w “tdt
2 Jo €

with the change of variable t = p

2
= 2T =n.

QED.pap
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The Gaussian integral

teo 2
/ e X dx=+/x.

Corollary

oo,
/ e X /"dx = /zn.
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An estimate for the error

The absolute error we make by approximating ©, with \/7n is:

(_1)m+1/_+ww,cn(m)(x)dx _ (71)m+1 /+°° Bm({x}) £(m) <%)dx

nm/2 ) m!

53

_ (—1)m+1 /+m Bm({tﬁ})f(m)(t)dt
|

n(m’l)/z —oo m:

with the change of variable t = x/y/n
- 0 (n(lfm)/2>

because By,(x) is bounded in [0,1] and [T |F(™)(x)| dx is finite.
But m >1 is arbitrary, because f(x) is smooth in R: we conclude

@n:\/ﬂ:in—&-O(n’M) for any M > 0.
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Next subsection

Final Summations

m Stirling’s approximation
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Stirling’s approximation

Inn!:(n-i—%) Inn—n+Inv2rx+ L L +O(i)

12n  360n3 n®
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Stirling’s approximation

1 1 1 1
I'= = = \/ - _
Inn! (”+2)'"" ntinv2z+ o0 360n3+o( )

Proof: (sketch; see the textbook for details)

Prove that there exists a constant o such that:

Inn! = n—i—1 Inn—n+6+i—i+0 1
T 2 12n  360n3 ns )"

Use the formula from point 1, the trading tails technique, and the
approximation for ©, from the previous section to prove that:

¥ (3) =220 2E (140 (n¥2)) moro <.

k k °

Conclude that it must be o = In/27. TAL
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