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Another application of power series

Theorem

Let G(z) = ∑k>0 gkz
k have convergence radius R > 0. If either:

f (n)≺ 1, or

R = ∞ and f (n) = O(1),

then for every m > 1, if h(n) = O(f (n)) then:

G(h(n)) = ∑
06k<m

gk (h(n))k +O((f (n))m)

Remark:

f (n)≺ 1 if and only if limn→∞ f (n) = 0: that is, f vanishes at in�nity.

f (n) = O(1) if and only if |f (n)|6 C for some C > 0 and every n: that is, f is
bounded.

The thesis is equivalent to saying that:

∑
k>m

gk (h(n))k = O((f (n))m) whenever h(n) = O(f (n)) .



Another application of power series

Theorem

Let G(z) = ∑k>0 gkz
k have convergence radius R > 0. If either:

f (n)≺ 1, or

R = ∞ and f (n) = O(1),

then for every m > 1, if h(n) = O(f (n)) then:

G(h(n)) = ∑
06k<m

gk (h(n))k +O((f (n))m)

Examples:

ln(1+O(1/n)) = O(1/n).

ln(1+1/n) =
1

n
− 1

2n2
+

1

3n3
+O

(
1

n4

)
.

e
lnn
n = 1+

lnn

n
+

(lnn)2

2n2
+O

((
lnn

n

)3)
.

e1−1/n =
5

2
− 2

n
+

1

2n2
+O

((
1− 1

n

)3)
.

This holds because ez = ∑k>0
zk

k!
has in�nite convergence radius.



Another application of power series

Theorem

Let G(z) = ∑k>0 gkz
k have convergence radius R > 0. If either:

f (n)≺ 1, or

R = ∞ and f (n) = O(1),

then for every m > 1, if h(n) = O(f (n)) then:

G(h(n)) = ∑
06k<m

gk (h(n))k +O((f (n))m)

Proof for R < ∞ and f ≺ 1:

Let h(n) = O(f (n)). Choose C > 0 such that |h(n)|6 C · |f (n)| for every n > 0.

Fix δ ∈ (0,R). Then Km = Cm ·∑k>m |gk |δ k−m < ∞.

Choose n0 such that |f (n)|< δ/C for every n > n0: for such n, |h(n)|< δ .

Then for n > n0:∣∣∣∣∣ ∑
k>m

gk (h(n))k

∣∣∣∣∣< |h(n)|m · ∑
k>m

|gk | ·δ k−m 6 Km · |f (n)|m .



Another application of power series

Theorem

Let G(z) = ∑k>0 gkz
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Proof for R = ∞ and f (n) = O(1):

Let h(n) = O(f (n)). Choose C > 0 such that |h(n)|6 C · |f (n)| for every n > 0.

Fix δ > 0 such that |f (n)|6 δ/C for every n. Then |h(n)|6 δ for every n too.

As R = ∞, Km = Cm ·∑k>m |gk |δ k−m < ∞.
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Bootstrapping

To get an asymptotics for the solution of a recurrence:

1 �rst, take a rough estimate;

2 next, substitute the estimate into the recurrence.

This is an example of �pulling oneself up by one's bootstraps�.



Example: Estimating a growth rate

Problem

Find an asymptotic estimate for gn = [zn]G(z) where G(z) = e∑k>1
zk

k2 .



Example: Estimating a growth rate

Problem

Find an asymptotic estimate for gn = [zn]G(z) where G(z) = e∑k>1
zk

k2 .

Step 1: Look for a simple asymptotics

As we have an exponential, it might be a good idea to di�erentiate by series, and see
if a more manageable formula appears:

∑
n>1

ngnz
n−1 = G(z) · ∑

k>1

zk−1

k
= ∑

n>1
∑

06k<n

gk
n−k

zn−1

which gives us the recurrence:

ngn =
n−1

∑
k=0

gk
n−k

∀n > 1 .



Example: Estimating a growth rate

Problem

Find an asymptotic estimate for gn = [zn]G(z) where G(z) = e∑k>1
zk

k2 .

Step 1: Look for a simple asymptotics

A numerical computation of the �rst values gives:

n 0 1 2 3 4 5 6

gn 1 1 3

4

19

36

107

288

641

2400

51103

259200

It looks like all the terms are positive and not larger than 1: which can easily be
proved by induction. Then: gn = O(1).



Example: Estimating a growth rate

Problem

Find an asymptotic estimate for gn = [zn]G(z) where G(z) = e∑k>1
zk

k2 .

Step 2: Plug in the asymptotics

If we replace the gk on the right-hand side with O(1), we �nd:

ngn =
n−1

∑
k=0

O(1)

n−k
=

n

∑
k=1

O(1)

k
= Hn ·O(1) = O(logn) .

Then: gn = O

(
logn

n

)
.



Example: Estimating a growth rate

Problem

Find an asymptotic estimate for gn = [zn]G(z) where G(z) = e∑k>1
zk

k2 .

Step 2: Plug in the asymptotics again

If we replace the gk on the right-hand side with O(log(k)/k) and put the �rst
summand out of the sum, we �nd:

ngn =
1

n
+

n−1

∑
k=1

1

n−k
O

(
logk

k

)
=

1

n
+

n−1

∑
k=1

O(logk)

k(n−k)
=

1

n
+

2

n
Hn−1O(logn) ,

because
1

k(n−k)
=

1

n

(
1

k
+

1

n−k

)
and k = O(n). Then gn = O

((
logn

n

)2)
.



Example: Estimating a growth rate

Problem

Find an asymptotic estimate for gn = [zn]G(z) where G(z) = e∑k>1
zk

k2 .

Step 3: Manipulate the estimate obtained

We now rewrite our original recurrence by �pulling out the largest part�:

ngn =
n−1

∑
k=0

gk
n

+
n−1

∑
k=0

gk

(
1

n−k
− 1

n

)
=

1

n ∑
k>0

gk −
1

n ∑
k>n

gk +
1

n

n−1

∑
k=0

kgk
n−k

.



Example: Estimating a growth rate

Problem

Find an asymptotic estimate for gn = [zn]G(z) where G(z) = e∑k>1
zk

k2 .

Step 3: Manipulate the estimate obtained

We now rewrite our original recurrence by �pulling out the largest part�:

ngn =
n−1

∑
k=0

gk
n

+
n−1

∑
k=0

gk

(
1

n−k
− 1

n

)
=

1

n ∑
k>0

gk −
1

n ∑
k>n

gk +
1

n

n−1

∑
k=0

kgk
n−k

.

As ∑k>1
zk

k2
converges at z = 1, the �rst sum is �simply� G(1) = e∑k>1 1/k

2

= eπ2/6.

For the second sum, we observe that:

∑
k>n

log2 k

k2
< ∑

m>1
∑

nm<k6nm+1

log2 nm+1

k(k−1)
< ∑

m>1

(m+1)2 log2 n

nm
= O

(
log2 n

n

)
,

so ∑k>n gk = ∑k>nO

(
log2 k

k2

)
= O

(
∑k>n

log2 k

k2

)
= O

(
O

(
log2 n

n

))
= O

(
log2 n

n

)
.



Example: Estimating a growth rate

Problem

Find an asymptotic estimate for gn = [zn]G(z) where G(z) = e∑k>1
zk

k2 .

Step 3: Manipulate the estimate obtained

We now rewrite our original recurrence by �pulling out the largest part�:

ngn =
n−1

∑
k=0

gk
n

+
n−1

∑
k=0

gk

(
1

n−k
− 1

n

)
=

1

n ∑
k>0

gk −
1

n ∑
k>n

gk +
1

n

n−1

∑
k=0

kgk
n−k

.

For the third and last sum, we again plug in the asymptotics:

∑
06k<n

kgk
n−k

= ∑
0<k<n

k

n−k
O

((
logk

k

)2)
= O

(
∑

0<k<n

log2 k

k(n−k)

)

= O

(
∑

0<k<n

1

n

(
1

k
+

1

n−k

)
log2 n

)

= O

(
Hn−1

log2 n

n

)
= O

(
log3 n

n

)
We can take out the big-O because all summands are nonnegative.



Example: Estimating a growth rate

Problem

Find an asymptotic estimate for gn = [zn]G(z) where G(z) = e∑k>1
zk

k2 .

Step 3: Manipulate the estimate obtained

We now rewrite our original recurrence by �pulling out the largest part�:

ngn =
n−1

∑
k=0

gk
n

+
n−1

∑
k=0

gk

(
1

n−k
− 1

n

)
=

1

n ∑
k>0

gk −
1

n ∑
k>n

gk +
1

n

n−1

∑
k=0

kgk
n−k

.

We conclude:

gn =
eπ2/6

n2
+O

(
1

n2
O

(
log2 n

n

))
+O

(
1

n2
O

(
log3 n

n

))
=

eπ2/6

n2
+O

((
logn

n

)3)
.
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Trading tails: The trick

Suppose we must approximate a function of the form:

f (n) = ∑
k

ak (n) .

1 For each n, split the ks between a dominant set Dn and a tail set Tn.

2 Find asymptotic estimates ak (n) = bk (n) +O(ck (n)) which hold for k ∈Dn.

3 Make sure that the following three sums are all �small�:

Sa(n) = ∑
k∈Tn

ak (n) ; Sb(n) = ∑
k∈Tn

bk (n) ; Sc (n) = ∑
k∈Dn

|ck (n)| .

Then the following estimate holds:

f (n) = ∑
k

bk (n) +O(Sa(n)) +O(Sb(n)) +O(Sc (n)) .



Trading tails: The rationale

Suppose we performed the three steps in the previous slide. Then:

For k in the dominant set, we have the estimate:

∑
k∈Dn

ak (n) = ∑
k∈Dn

(bk (n) +O(ck (n)))

=

(
∑

k∈Dn

bk (n)

)
+O(Sc (n))

Note that, to pass the big-O outside the summation, we needed the absolute
values of the ck (n).

For k in the tail set, we have the estimate:

∑
k∈Tn

ak (n) = ∑
k∈Tn

(bk (n) +ak (n)−bk (n))

=

(
∑

k∈Tn

bk (n)

)
+O(Sa(n)) +O(Sb(n))

We did not need the absolute values of ak (n) and bk (n), because they did
appear explicitly in the summation, not inside a big-O.



Trading tails: Example

Find an asymptotic estimate for the following sequence:

Ln = ∑
k>0

ln(n+2k )

k!

We immediately observe that, if k is �small� and n is �large�, then:

ln(n+2k ) = ln

(
n ·
(
1+

2k

n

))
= lnn+

2k

n
− 22k

2n2
+O

(
23k

n3

)
and we can surely use this approximation within the convergence radius of the Taylor
series of ln(1+ z) at the origin of the complex plane.
Such convergence radius is 1, so we require 2k < n, that is, k < blgnc.



Trading tails: Example

Find an asymptotic estimate for the following sequence:

Ln = ∑
k>0

ln(n+2k )

k!

Step 1 For every n > 1 we set:

Dn = [0 : blgnc−1] and Tn = N\Dn = {blgnc ,blgnc+1, . . .}

Step 2 For k ∈Dn we write ak (n) = bk (n) +O(ck (n)) where:

ak (n) =
ln(n+2k )

k!
;

bk (n) =
1

k!

(
lnn+

2k

n
− 4k

2n2

)
;

ck (n) =
8k

n3 ·k!
.



Trading tails: Example

Find an asymptotic estimate for the following sequence:

Ln = ∑
k>0

ln(n+2k )

k!

Step 3c The estimate for Sc (n) is immediate:

∑
06k<blgnc

8k

n3 ·k!
6

1

n3
· ∑
k>0

8k

k!
=

e8

n3
= O

(
1

n3

)
.



Trading tails: Example

Find an asymptotic estimate for the following sequence:

Ln = ∑
k>0

ln(n+2k )

k!

Step 3b To estimate Sb(n) we can replace
2k

n
− 4k

2n2
with 2k +4k and �nd:

∣∣∣∣∣ ∑
k>blgnc

bk (n)

∣∣∣∣∣ < ∑
k>blgnc

lnn+2k +4k

k!

<
lnn+2blgnc+4blgnc

blgnc!
· ∑
k>0

4k

k!
.

The last sum is e4, while the fraction is O
(

n2

blgnc!

)
because of the

summand 4blgnc = n2. But blgnc! grows faster than any power of n,
so Sb(n) is really very small for large n.



Trading tails: Example

Find an asymptotic estimate for the following sequence:

Ln = ∑
k>0

ln(n+2k )

k!

Step 3a The estimate for Sa(n) is easy to compute: for n > 2 and k > 1,

∑
k>blgnc

ln(n+2k )

k!
6 ∑

k>blgnc

ln(n ·2k )

k!
< ∑

k>blgnc

k + lnn

k!
= O

(
1

blgnc!

)

because ln2k < lnek = k.



Trading tails: Example

Find an asymptotic estimate for the following sequence:

Ln = ∑
k>0

ln(n+2k )

k!

We can now summarize:

Ln = ∑
k>0

1

k!

(
lnn+

2k

n
− 4k

2n2

)
+O

(
1

blgnc!

)
+O

(
n2

blgnc!

)
+O

(
1

n3

)

= e lnn+
e2

n
− e4

2n2
+O

(
1

n3

)
.
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Euler's summation formula

Theorem

If f (x) is di�erentiable m times in an open interval which contains [a : b], then:

∑
a6k<b

f (k) =
∫ b

a
f (x)dx +

m

∑
k=1

Bk

k!

(
f (k−1)(b)− f (k−1)(a)

)
+Rm ,

where Bk is the kth Bernoulli number and where:

Rm = (−1)m+1

∫ b

a

Bm({x})
m!

f (m)(x)dx ,

where, in turn, Bm(x) = ∑k

(m
k

)
Bkx

m−k is the mth Bernoulli polynomial.



Euler's summation formula: A special case

If f (x) = xm−1 with m positive integer, then Euler's summation formula becomes:

∑
a6k<b

xm−1 =
bm−am

m
+

m

∑
k=1

Bk

k!
(m−1)k−1(bm−k −am−k ) +0

=
1

m

m

∑
k=0

Bk
m(m−1)k−1

k!
(bm−k −am−k ) because B0 = 1

=
1

m

m

∑
k=0

(
m

k

)
(bm−k −am−k )



Euler's summation formula: The rationale

Let ∑, ∆,
∫
and D be the operators of summation, di�erence, integration, and

di�erentiation, respectively.

Suppose that f is smooth: that is, it has derivatives of any order.

Taylor's formula tells us that: f (x + ε) = f (x) + f ′(x)ε +
f ′′(x)

2
ε2 + . . .

For ε = 1, and writing Dk f in place of f (k), this becomes:

∆f (x) = ∑
k>1

Dk f (x)

k!
= (eD −1)f (x) ,

with what looks like a little abuse of notation . . .

Now, if ∆ = eD −1, then its inverse ∑ must be:

∑ =
1

eD −1
=

1

D
· D

eD −1
=

1

D
·

(
1+ ∑

k>1

Bk

k!
Dk

)
=
∫

+ ∑
k>1

Bk

k!
Dk−1 ,

which is Euler's summation formula with an in�nite sum and no remainder.



Euler's summation formula: the proof

We give the proof by induction on m > 1 with a = 0 and b = 1.
We only need this case, because if a6 c 6 b, then:

∑a6k<b f (k) = ∑a6k<c f (k) + ∑c6k<b f (k);∫ b
a f (x)dx =

∫ c
a f (x)dx +

∫ b
c f (x)dx , and similar for

∫ b
a

Bm({x})
m! f (m)(x)dx ;

f (k−1)(b)− f (k−1)(a) = (f (k−1)(c)− f (k−1)(a)) + (f (k−1)(b)− f (k−1)(c)) for
every k from 1 to m; and

if a 6= 0 we can replace f (x) with g(x) = f (x +a).

So what we need to prove is:

f (0) =
∫

1

0

f (x)dx +
m

∑
k=1

Bk

k!

(
f (k−1)(1)− f (k−1)(0)

)
− (−1)m

∫
1

0

Bm(x)

m!
f (m)(x)dx

for every function f di�erentiable m times in (s,t) for some s < 0 and t > 1.



Euler's summation formula: the proof

We give the proof by induction on m > 1 with a = 0 and b = 1.

Base case: m = 1. Then B1 =−1/2, B1(x) = x−1/2, and the formula becomes:

f (0) =
∫

1

0

f (x)dx− 1

2
(f (1)− f (0)) +

∫
1

0

(
x− 1

2

)
f ′(x)dx ,

or equivalently,

f (0) + f (1)

2
=
∫

1

0

f (x)dx +
∫

1

0

(
x− 1

2

)
f ′(x)dx ,

But the right-hand side is precisely:

∫
1

0

(
f (x) +xf ′(x)

)
dx− 1

2

∫
1

0

f ′(x)dx = xf (x)|1
0
− 1

2
(f (1)− f (0))

= f (1)− 1

2
f (1) +

1

2
f (0)

=
f (0) + f (1)

2
.

Q.E.D.



Euler's summation formula: the proof

We give the proof by induction on m > 1 with a = 0 and b = 1.

Induction: Suppose the thesis is true for m−1> 1. Proving it for m is

equivalent to proving that Rm = Rm−1−
Bm

m!
(f (m−1)(1)− f (m−1)(0)),

that is:

(−1)mBm

(
f (m−1)(1)− f (m−1)(0)

)
= m

∫
1

0

Bm−1(x)f (m−1)(x)dx

+
∫

1

0

Bm(x)f (m)(x)dx



Euler's summation formula: the proof

We give the proof by induction on m > 1 with a = 0 and b = 1.

Induction: Suppose the thesis is true for m−1> 1. Proving it for m is

equivalent to proving that Rm = Rm−1−
Bm

m!
(f (m−1)(1)− f (m−1)(0)),

that is:

(−1)mBm

(
f (m−1)(1)− f (m−1)(0)

)
= m

∫
1

0

Bm−1(x)f (m−1)(x)dx

+
∫

1

0

Bm(x)f (m)(x)dx

Now, if Bm(x) = ∑k

(m
k

)
Bkx

m−k (which is the case) then:

d

dx
Bm(x) = ∑

k

(
m

k

)
(m−k)Bkx

m−1−k

= ∑
k

mk (m−k)

k!
Bkx

m−1−k

= ∑
k

m(m−1)k

k!
Bkx

m−1−k

= m∑
k

(
m−1
k

)
Bkx

m−1−k = mBm−1(x) .



Euler's summation formula: the proof

We give the proof by induction on m > 1 with a = 0 and b = 1.

Induction: Suppose the thesis is true for m−1> 1. Proving it for m is

equivalent to proving that Rm = Rm−1−
Bm

m!
(f (m−1)(1)− f (m−1)(0)),

that is:

(−1)mBm

(
f (m−1)(1)− f (m−1)(0)

)
= m

∫
1

0

Bm−1(x)f (m−1)(x)dx

+
∫

1

0

Bm(x)f (m)(x)dx

But since
d

dx
Bm(x) = mBm−1(x), the right-hand side is:

∫
1

0

((
d

dx
Bm(x)

)
f (m−1)(x) +Bm(x)

d

dx
f (m−1)(x)

)
dx

=
∫

1

0

(
d

dx
Bm(x)f (m−1)(x)

)
dx

= Bm(1)f (m−1)(1)−Bm(0)f (m−1)(0)



Euler's summation formula: the proof

We give the proof by induction on m > 1 with a = 0 and b = 1.

Induction: Suppose the thesis is true for m−1> 1. Proving it for m is

equivalent to proving that Rm = Rm−1−
Bm

m!
(f (m−1)(1)− f (m−1)(0)),

that is:

(−1)mBm

(
f (m−1)(1)− f (m−1)(0)

)
=Bm(1)f (m−1)(1)−Bm(0)f (m−1)(0)

But the above can be rewritten:

g(1)f (m−1)(1)−g(0)f (m−1)(0) = 0 with g(x) = Bm(x)− (−1)mBm

and this must hold for every f di�erentiable m times: the only
possibility is that g(0) = g(1) = 0, that is,

Bm(0) = Bm(1) = (−1)mBm

and this must hold whatever m > 2 is.



Euler's summation formula: the proof

We give the proof by induction on m > 1 with a = 0 and b = 1.

Induction: Suppose the thesis is true for m−1> 1. Proving it for m is
equivalent to proving that

Bm(0) = Bm(1) = (−1)mBm , m > 2 .

But Bm(0) = Bm(1) for m > 2 follows directly from the de�ning
equation of Bernoulli numbers:

∑
k

(
m

k

)
Bk = Bm + [m = 1] for every m > 1

and the (−1)m sign is not a problem, because for odd m > 1 it is
Bm = 0. Q.E.D.



Euler's summation formula and asymptotics: Idea

As B ′m(x) = mBm−1(x) for every m > 0, from our discussion follows that:

∫
1

0

Bm(x)dx =
Bm+1(1)−Bm+1(0)

(m+1)!
= 0 for every m > 1 .

Then the remainder Rm is the integral of the product of an mth derivative with a
function of average zero, everything divided by a factorial:

Rm =
(−1)m+1

m!

∫ b

a
Bm({x})f (m)(x)dx =

(−1)m+1

m! ∑
a6k<b

∫
1

0

Bm(x)f (m)(x +k)dx

Such a quantity has good chances to be small, even if the Bm grow very large.

Actually, as ∑m>0
Bm

m!
zm =

z

ez −1
and the right-hand side is di�erentiable in the entire

complex plane, the left-hand side has in�nite convergence radius, so Bm/m! vanishes
faster than exponentially.



Behavior of Bm(x) for x ∈ [0,1]

We have observed that B ′m(x) = mBm−1(x) for every m > 1. If x ∈ [0,1] then:

B1(x) = x−1/2 is negative in (0,1/2) and positive in (1/2,1), and
B1(1−x) =−B1(x).

Then B2(x) is decreasing in (0,1/2) and increasing in (1/2,1), and by
comparing derivatives, B2(1−x) = B2(x). Also, B2(0) = B2 = 1/6> 0.

By comparing derivatives, B3(1−x) =−B3(x). As B3(0) = B3 = 0 and
B ′
3
(x) = 3B2(x) > 0 near 0, B3(x) is positive in (0,1/2) and negative in (1/2,1).

Then B4(x) is increasing in (0,1/2) and decreasing in (1/2,1), and by
comparing derivatives, B4(1−x) = B4(x). Also, B4(0) = B4 =−1/30< 0.

By comparing derivatives, B5(1−x) =−B5(x). As B5(0) = B5 = 0 and
B ′
5
(x) = 5B4(x) < 0 near 0, B5(x) is negative in (0,1/2) and positive in (1/2,1).

And so on . . .



Behavior of Bm(x) at x = 1/2

From the previous slide we deduce that for x ∈ [0,1], |B2m(x)| is maximum at either
x = 0 or x = 1/2.

Lemma

For every m > 0, Bm(1/2) =
(
21−m−1

)
Bm.



Behavior of Bm(x) at x = 1/2

From the previous slide we deduce that for x ∈ [0,1], |B2m(x)| is maximum at either
x = 0 or x = 1/2.

Lemma

For every m > 0, Bm(1/2) =
(
21−m−1

)
Bm.

Proof Bm(x) = ∑k

(m
k

)
Bkx

m−k is the mth term of the binomial convolution
of 〈Bm〉 and 〈xm〉. Then:

∑
m>0

Bm(x)

m!
zm =

zexz

ez −1
,

which for x = 1/2 becomes:

∑
m>0

Bm(1/2)

m!
zm =

zez/2

ez −1

= 2
(z/2)(ez/2 +1)

ez −1
− z

ez −1

= 2 ∑
m>0

Bm

m!

( z
2

)m
− ∑

m>0

Bm

m!
zm

= ∑
m>0

(21−m−1)Bm

m!
zm



Behavior of Bm(x) at x = 1/2

From the previous slide we deduce that for x ∈ [0,1], |B2m(x)| is maximum at either
x = 0 or x = 1/2.

Lemma

For every m > 0, Bm(1/2) =
(
21−m−1

)
Bm.

As |21−m−1|< 1, we conclude:

Corollary

For every x ∈ [0,1] and integer m > 1, |B2m(x)|6 |B2m|= (−1)m−1B2m.



Euler's summation formula and asymptotics: Estimates

Let us write Euler's summation formula again:

∑
a6k<b

f (k) =
∫ b

a
f (x)dx+

m

∑
k=1

Bk

k!

(
f (k−1)(b)− f (k−1)(a)

)
+

(−1)m+1

m!

∫ b

a
Bm({x})f (m)(x)dx .

Since Bm = 0 for m > 1 odd and B1 =− 1

2
, we can only consider m even and rewrite:

∑
a6k<b

f (k) =
∫ b

a
f (x)dx− f (b)− f (a)

2
+

m

∑
k=1

B2k

(2k)!

(
f (2k−1)(b)− f (2k−1)(a)

)
− 1

(2m)!

∫ b

a
B2m({x})f (2m)(x)dx .

But for x ∈ [0,1] it is |B2m(x)|6 |B2m|, and as
(2π)2m

2

|B2m|
(2m)!

= ∑k>1
1

k2m
(cf. Ch. 6)

∑
a6k<b

f (k) =
∫ b

a
f (x)dx− f (b)− f (a)

2
+

m

∑
k=1

B2k

(2k)!

(
f (2k−1)(b)− f (2k−1)(a)

)
+O

(
(2π)−2m

)∫ b

a
|f (2m)(x)|dx .



Euler's summation formula and asymptotics: More estimates

If f (2m) is nonnegative in [a,b], then:

|R2m|6
|B2m|
(2m)!

∫ b

a
f (2m)(x)dx =

|B2m|
(2m)!

(
f (2m−1)(b)− f (2m−1)(a)

)
But as B2m+1 = 0 for m > 1, it is R2m = R2m+1, so the �rst discarded term when we
approximate to the 2mth order instead of the (2m+2)nd must be R2m−R2m+2.

Lemma

If f (2m+2)(x) > 0 for every x ∈ [a,b], then (−1)mR2m > 0.

Proof for a = 0 and b = 1: (general case follows easily)

R2m = R2m+1 = 1

(2m+1)!

∫
1

0
B2m+1(x)f (2m+1)(x)dx .

As f (2m+2) > 0, f (2m+1) is nondecreasing, and since B2m+1 is symmetric around
x = 1/2, the second half of the sinusoid counts more than the �rst.

For m even, B2m+1 is negative in (0,1/2) and positive in (1/2,1); for m odd,
B2m+1 is positive in (0,1/2) and negative in (1/2,1). The thesis follows.



Next section

1 O Manipulation

2 Two Asymptotic Tricks

Trick 1: Bootstrapping

Trick 2: Trading tails

3 Euler's Summation Formula

4 Final Summations

A bell-shaped summand

Stirling's approximation



Next subsection

1 O Manipulation

2 Two Asymptotic Tricks

Trick 1: Bootstrapping

Trick 2: Trading tails

3 Euler's Summation Formula

4 Final Summations

A bell-shaped summand

Stirling's approximation



A bell-shaped approximation

Problem

Give an asymptotic approximation of:

Θn = ∑
k

e−k
2/n



A bell-shaped approximation

Problem

Give an asymptotic approximation of:

Θn = ∑
k

e−k
2/n

Let us think �rst of the behavior of the summand:

The function f (x) = e−x
2

is maximum at x = 0 with f (0) = 1; stays near 1 in
[−1,1]; and becomes very small very quickly for x →±∞.

Then fn(x) = e−x
2/n stays near 1 for |x |6

√
n, and vanishes quickly for x →±∞.

We then expect Θn to be of the form Θn ≈ C ·
√
n.



Euler's summation formula at in�nity

Since Euler's summation formula holds for every a6 b, it also holds for the limits for
a→−∞ and b→+∞ when they exist.

This is the case for fn(x) = e−x
2/n, so:

∑
k

e−k
2/n =

∫ +∞

−∞

e−x
2/n dx

+
m

∑
k=1

Bk

k!

(
lim

x→+∞
f

(k−1)
n (x)− lim

x→−∞
f

(k−1)
n (x)

)
+(−1)m+1

∫ +∞

−∞

Bm ({x})
m!

f
(m)
n (x)dx .

Now, for f (x) = e−x
2

it is f (k)(x) = Pk (x)e−x
2

for a polynomial Pm(x) of degree k.

As fn(x) = f (x/
√
n), we have f

(k)
n (x) = n−k/2f (k)(x/

√
n)→ 0 for x →±∞, hence:

∑
k

e−k
2/n =

√
πn+ (−1)m+1

∫ +∞

−∞

Bm ({x})
m!

f
(m)
n (x)dx for suitable C > 0 .



The Gaussian integral

Theorem

∫ +∞

−∞

e−x
2

dx =
√

π .



The Gaussian integral

Theorem

∫ +∞

−∞

e−x
2

dx =
√

π .

Proof: (∫ +∞

−∞

e−x
2

dx

)2
=

∫ +∞

−∞

e−(x2+y2) dx dy

=
∫

2π

θ=0

∫ +∞

ρ=0

e−ρ2
ρ dρ dθ

= 2π · 1
2

∫ +∞

0

e−t dt

with the change of variable t = ρ
2

= π ·
[
−e−t

]+∞

0
= π .

Q.E.D.



The Gaussian integral

Theorem

∫ +∞

−∞

e−x
2

dx =
√

π .

Corollary

∫ +∞

−∞

e−x
2/n dx =

√
πn .



An estimate for the error

The absolute error we make by approximating Θn with
√

πn is:

(−1)m+1

∫ +∞

−∞

Bm({x})
m!

f
(m)
n (x)dx =

(−1)m+1

nm/2

∫ +∞

−∞

Bm({x})
m!

f (m)

(
x√
n

)
dx

=
(−1)m+1

n(m−1)/2

∫ +∞

−∞

Bm(
{
t
√
n
}

)

m!
f (m)(t)dt

with the change of variable t = x/
√
n

= O
(
n(1−m)/2

)
because Bm(x) is bounded in [0,1] and

∫+∞

−∞
|f (m)(x)|dx is �nite.

But m > 1 is arbitrary, because f (x) is smooth in R: we conclude

Θn =
√

πn+O
(
n−M

)
for any M > 0 .
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Stirling's approximation

Theorem

lnn! =

(
n+

1

2

)
lnn−n+ ln

√
2π +

1

12n
− 1

360n3
+O

(
1

n5

)



Stirling's approximation

Theorem

lnn! =

(
n+

1

2

)
lnn−n+ ln

√
2π +

1

12n
− 1

360n3
+O

(
1

n5

)

Proof: (sketch; see the textbook for details)

1 Prove that there exists a constant σ such that:

lnn! =

(
n+

1

2

)
lnn−n+ σ +

1

12n
− 1

360n3
+O

(
1

n5

)
.

2 Use the formula from point 1, the trading tails technique, and the
approximation for Θn from the previous section to prove that:

∑
k

(
2n

k

)
= 22n

√
2π

eσ

(
1+O

(
n−1/2+3ε

))
for 0< ε <

1

6
.

3 Conclude that it must be σ = ln
√
2π.
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