ITT9132 - Concrete Mathematics Midterm Test - Recovery

Silvio Capobianco

12 April 2019

1. Take note of the code near your full name: it will be used to display the results.
2. Write your solution on the page of the corresponding exercise, explaining your reasoning.
3. You may use any formula seen in classroom or appearing in the selfevaluation tests.
4. You may use the additional paper to draft your answers. However, only what is written in the exercises' pages will be evaluated.
5. Partially completed exercises may receive a fraction of the total score.
6. Only handwritten notes are allowed.
7. Electronic devices, including mobile phones must be turned off. Using a pocket or tabletop calculator is allowed as the only exception.
8. It is forbidden to leave the room without having returned the assignment.

Exercise 1 (10 points)

Solve the recurrence:

$$
\begin{aligned}
T_{0} & =2 \\
2 T_{n} & =5 T_{n-1}+\frac{5^{n}}{n \cdot 2^{n-1}} \quad \forall n \geqslant 1 .
\end{aligned}
$$

Solution. The form of the recurrence suggests using a summation factor. If we rewrite:

$$
\begin{aligned}
T_{0} & =2 ; \\
a_{n} T_{n} & =b_{n} T_{n-1}+c_{n} \quad \forall n \geqslant 1
\end{aligned}
$$

we see that it is:

$$
a_{0}=1 ; \quad a_{n}=2 \forall n \geqslant 1 ; \quad b_{n}=5 ; \quad c_{n}=\frac{5^{n}}{n \cdot 2^{n-1}}
$$

A summation factor s_{n} such that $s_{n} b_{n}=s_{n-1} a_{n-1}$ is then computed as follows:

$$
s_{0}=1 ; \quad s_{1}=\frac{a_{0}}{b_{1}}=\frac{1}{5} ; \quad s_{n}=s_{n-1} \frac{a_{n-1}}{b_{n}}=\frac{2^{n-1}}{5^{n}} \forall n \geqslant 2 .
$$

Then the original recurrence is equivalent to:

$$
\begin{aligned}
T_{0} & =2 ; \\
s_{n} a_{n} T_{n} & =s_{n} b_{n} T_{n-1}+s_{n} c_{n} \\
& =s_{n-1} a_{n-1} T_{n-1}+s_{n} c_{n} \quad \forall n \geqslant 1
\end{aligned}
$$

which, by putting $U_{n}=s_{n} a_{n} T_{n}=\left(\frac{2}{5}\right)^{n}$, becomes:

$$
\begin{aligned}
U_{0} & =2 ; \\
U_{n} & =U_{n-1}+\frac{1}{n} \quad \forall n \geqslant 1
\end{aligned}
$$

which clearly has the solution:

$$
U_{n}=2+\sum_{k=1}^{n} \frac{1}{n}=2+H_{n}
$$

The solution of our original recurrence is thus:

$$
T_{n}=\left(\frac{5}{2}\right)^{n} U_{n}=\left(\frac{5}{2}\right)^{n}\left(2+H_{n}\right)
$$

Exercise 2 (6 points)

Prove that $n^{11}-n^{7}-n^{5}+n$ is divisible by 70 for every integer $n \geqslant 0$.
Solution. We have $70=2 \cdot 5 \cdot 7$ so $n^{11}-n^{7}-n^{5}+n$ is divisible by 70 if and only if it is divisible by 2,5 and 7 . But:

$$
\begin{aligned}
n^{11}-n^{7}-n^{5}+n & =n\left(n^{10}-n^{6}-n^{4}+1\right) \\
& =n\left(n^{6}\left(n^{4}-1\right)-\left(n^{4}-1\right)\right) \\
& =n\left(n^{4}-1\right)\left(n^{6}-1\right) \\
& =n(n-1)(n+1)\left(n^{2}+1\right)\left(n^{6}-1\right),
\end{aligned}
$$

which is divisible by 2, 5 and 7 because of Fermat's little theorem.

Exercise 3 (10 points)

Express

$$
\sum_{k=1}^{n-1} k^{-3} H_{k}
$$

as a function of n, and use it to compute

$$
\sum_{k \geqslant 1} k^{-3} H_{k} .
$$

Hint: $\lim _{n \rightarrow \infty} H_{n} / n=0$.
Solution. As $\sum_{k=1}^{n-1} k{ }^{-3} H_{k}=\sum_{1}^{n} x \underline{-3} H_{x} \delta x$, it seems natural to use discrete calculus and summation by parts. Let $u(x)=H_{x}$ and $\Delta v(x)=x-3$, so that $\Delta u(x)=x \underline{-1}$ and $v(x)=-\frac{1}{2} x \underline{-2}:$ then,

$$
\begin{aligned}
\sum_{1}^{n} x^{-3} H_{x} \delta x & =\sum_{1}^{n} u(x) \Delta v(x) \delta x \\
& =\left.u(x) v(x)\right|_{1} ^{n}-\sum_{1}^{n} E v(x) \Delta u(x) \delta x \\
& =-\left.\frac{1}{2} x \underline{-}^{-2} H_{x}\right|_{1} ^{n}+\frac{1}{2} \sum_{1}^{n}(x+1)^{-2} x^{\frac{1}{2}} \delta x \\
& =-\frac{1}{2} \cdot \frac{1}{(n+1)(n+2)} \cdot H_{n}+\frac{1}{2} \cdot \frac{1}{2 \cdot 3}+\frac{1}{2} \sum_{1}^{n} x^{-3} \delta x \\
& =\frac{1}{12}-\frac{H_{n}}{1(n+1)(n+2)}-\left.\frac{1}{4} x^{-2}\right|_{1} ^{n} \\
& =\frac{1}{12}-\frac{H_{n}}{1(n+1)(n+2)}-\frac{1}{4(n+1)(n+2)}+\frac{1}{4 \cdot 2 \cdot 3} \\
& =\left(\frac{1}{2}+\frac{1}{24}\right)-\frac{1}{2(n+1)(n+2)}\left(H_{n}+\frac{1}{2}\right) \\
& =\frac{1}{8}-\frac{2 H_{n}+1}{4(n+1)(n+2)}
\end{aligned}
$$

The hint says that the second summand on the last line vanishes for $n \rightarrow \infty$.

Then:

$$
\begin{aligned}
\sum_{k \geqslant 1} k^{-3} H_{k} & =\lim _{n \rightarrow \infty} \sum_{k=1}^{n-1} k^{-3} H_{k} \\
& =\lim _{n \rightarrow \infty}\left(\frac{1}{8}-\frac{2 H_{n}+1}{4(n+1)(n+2)}\right) \\
& =\frac{1}{8}
\end{aligned}
$$

Exercise 4 (4 points total)

Let x be a real number and k a nonnegative integer. Prove that:

1. (2 points) If $x>0$ then $\lfloor k x\rfloor \geqslant k\lfloor x\rfloor$.
2. (2 points) If $x<0$ then $\lceil k x\rceil \leqslant k\lceil x\rceil$. Hint: Use point 1 .

Solution. First, let $x>0$. Write $x=\lfloor x\rfloor+\{x\}$: then,

$$
\begin{aligned}
\lfloor k x\rfloor= & \lfloor k\lfloor x\rfloor+k\{x\}\rfloor \\
= & k\lfloor x\rfloor+\lfloor k\{x\}\rfloor \\
& \text { because } k\lfloor x\rfloor \text { is an integer } \\
\geqslant & k\lfloor x\rfloor,
\end{aligned}
$$

because the second summand is nonnegative by the choice of k and the definition of $\{x\}$.

Now, suppose $x<0$. Then:

$$
\begin{aligned}
\lceil k x\rceil= & -\lfloor-k x\rfloor \\
= & -\lfloor k \cdot(-x)\rfloor \\
\leqslant & -k\lfloor-x\rfloor \\
& \text { by point } 1 \text { and because of the minus sign } \\
= & k\lceil x\rceil .
\end{aligned}
$$

As a last minute note: there is actually no need of the hypothesis on the sign of x, because $\{x\}$ is nonnegative.

