ITT9132 Concrete Mathematics

Silvio Capobianco

Department of Software Science, School of Information Technology
Tallinn University of Technology
2019/2020 Spring semester

Original slides 2010-2014 Jaan Penjam; modified 2016-2020 Silvio Capobianco

CONtinuous + disCRETE MATHEMATICS

The book

http://www-cs-faculty.stanford.edu/~uno/gkp.html

Concrete Mathematics is ...

- the controlled manipulation of mathematical formulas
- using a collection of techniques for solving problems

Goals of the book:

- to introduce the mathematics that supports advanced computer programming and the analysis of algorithms
- to provide a solid and relevant base of mathematical skills the skills needed
- to solve complex problems
- to evaluate horrendous sums
- to discover subtle patterns in data

Our additional goals

- to get acquainted with well-known and popular literature in CS and Math
- to develop mathematical skills, formulating complex problems mathematically
- to practice presentation of results (solutions of mathematical problems)

Contents of the Book

Chapters:
1 Recurrent Problems
2 Sums
3 Integer Functions
4 Number Theory
5 Binomial Coefficients
6 Special Numbers
7 Generating Functions
8 Discrete Probability
9 Asymptotics

Recurrent problems

Recurrence equations

A sequence of complex numbers $\left\langle a_{n}\right\rangle=\left\langle a_{0}, a_{1}, a_{2}, \ldots\right\rangle$ is called recurrent, if for $n \geq 1$ its generic term a_{n} satisfies a recurrence equation

$$
a_{n}=f_{n}\left(a_{n-1}, \ldots, a_{0}\right),
$$

where $f_{n}: \mathbb{C}^{n} \rightarrow \mathbb{C}$ for every $n \geq 1$.
If there exists $f: \mathbb{N} \times \mathbb{C}^{k} \rightarrow \mathbb{C}$ such that:

$$
f_{n}=f\left(n ; a_{n-1}, \ldots, a_{n-k}\right) \text { for every } n \geq k,
$$

the number k is called the order of the recurrence equation.
recurrent (<Latin recurrere - to run back) tagasipöörduv, taastuv / to run back.

Two examples of recurrence equations

A recurrence equation of order 2

$$
\begin{aligned}
& a_{0}=0 ; a_{1}=1 ; \\
& a_{n}=a_{n-1}+a_{n-2} \text { for every } n \geq 2
\end{aligned}
$$

This recurrence defines the Fibonacci numbers.

A recurrence equation without a well-defined order

$$
\begin{aligned}
& a_{0}=1 \\
& a_{n}=a_{0} a_{n-1}+a_{1} a_{n-2}+\ldots+a_{n-1} a_{0} \text { for every } n \geq 1
\end{aligned}
$$

This recurrence defines the Catalan numbers.

Motivation: why solve recursions?

- Computing by closed form is effective:

$$
P_{n}=\sqrt{2 \pi n}\left(\frac{n}{e}\right)^{n} \cdot\left[1+\frac{1}{12 n}+\frac{1}{228 n^{2}}+\frac{139}{51840 n^{3}}+O\left(\frac{1}{n^{4}}\right)\right]
$$

Motivation: why solve recursions?

- Computing by closed form is effective:

$$
P_{n}=\sqrt{2 \pi n}\left(\frac{n}{e}\right)^{n} \cdot\left[1+\frac{1}{12 n}+\frac{1}{228 n^{2}}+\frac{139}{51840 n^{3}}+O\left(\frac{1}{n^{4}}\right)\right]
$$

- Closed form allows to analyze a function using "classical" techniques.

Motivation: why solve recursions?

- Computing by closed form is effective:

$$
P_{n}=\sqrt{2 \pi n}\left(\frac{n}{e}\right)^{n} \cdot\left[1+\frac{1}{12 n}+\frac{1}{228 n^{2}}+\frac{139}{51840 n^{3}}+O\left(\frac{1}{n^{4}}\right)\right]
$$

- Closed form allows to analyze a function using "classical" techniques. For example: the behavior of the logistic map depends on r :

Recurrence equation:

$$
x_{n+1}=r x_{n}\left(1-x_{n}\right)
$$

Solution for $r=4$:

$$
x_{n+1}=\sin ^{2}\left(2^{n} \theta \pi\right)
$$

with $\theta=\frac{1}{\pi} \arcsin \left(\sqrt{x_{0}}\right)$

ad hoc techniques: Guess and Confirm

Equation $f(n)=\left(n^{2}-1+f(n-1)\right) / 2$, initial condition: $f(0)=2$

- Let's compute some values:

n	0	1	2	3	4	5	6
$f(n)$	2	1	2	5	10	17	26

Guess: $f(n)=(n-1)^{2}+1$.

- Assuming that the guess holds for $n=k$, we prove that it holds for $n=k+1$

$=\left(k^{2}+2 k+(k-1)^{2}+1\right) / 2$
$=\left(k^{2}+2 k+k^{2}-2 k+1+1\right) / 2$
$=\left(2 k^{2}+2\right) / 2=k^{2}+1$

ad hoc techniques: Guess and Confirm

Equation $f(n)=\left(n^{2}-1+f(n-1)\right) / 2$, initial condition: $f(0)=2$

- Let's compute some values:

n	0	1	2	3	4	5	6
$f(n)$	2	1	2	5	10	17	26

Guess: $f(n)=(n-1)^{2}+1$.

- Assuming that the guess holds for $n=k$, we prove that it holds for $n=k+1$:

$$
\begin{aligned}
f(k+1) & =\left((k+1)^{2}-1+f(k)\right) / 2 \\
& =\left(k^{2}+2 k+(k-1)^{2}+1\right) / 2 \\
& =\left(k^{2}+2 k+k^{2}-2 k+1+1\right) / 2 \\
& =\left(2 k^{2}+2\right) / 2=k^{2}+1
\end{aligned}
$$

Next section

1 Recurrent Problems
2 Sums
3 Integer Functions
4 .. iunber -ieory
5 Binomial Coefficients

7 Generating Functions
8 niscreten abat....
9 Asymptotics

1. Recurrent Problems

1 The Tower of Hanoi
2 Lines in the Plane
3 The Josephus Problem

Regions of the plane defined by lines

$Q_{0}=1$

$$
Q_{2}=4
$$

Regions of the plane defined by lines

Actually ...

㻆言

Regions of the plane defined by lines

Actually ...

㻆言

Regions of the plane defined by lines

Actually ...

Generally $Q_{n}=Q_{n-1}+n$.

n	0	1	2	3	4	5	6	7	8	9	\cdots
Q_{n}	1	2	4	7	11	16	22	29	37	46	\cdots

Regions of the plane defined by lines

$T_{0}=1$

$$
T_{2}=7
$$

$$
\begin{aligned}
& T_{3}=? \\
& T_{n}=?
\end{aligned}
$$

$$
T_{1}=2
$$

Regions of the plane defined by lines

$$
\begin{aligned}
& T_{2}=Q_{4}-2 \cdot 2=11-4=7 \\
& T_{3}=Q_{6}-2 \cdot 3=22-6=16 \\
& T_{4}=Q_{8}-2 \cdot 4=37-8=29 \\
& T_{5}=Q_{10}-2 \cdot 5=56-10=46 \\
& T_{n}=Q_{2 n}-2 n
\end{aligned}
$$

Regions of the plane defined by lines

$$
\begin{aligned}
& T_{2}=Q_{4}-2 \cdot 2=11-4=7 \\
& T_{3}=Q_{6}-2 \cdot 3=22-6=16 \\
& T_{4}=Q_{8}-2 \cdot 4=37-8=29 \\
& T_{5}=Q_{10}-2 \cdot 5=56-10=46 \\
& T_{n}=Q_{2 n}-2 n
\end{aligned}
$$

n	0	1	2	3	4	5	6	7	8	9	\cdots
Q_{n}	1	2	4	7	11	16	22	29	37	46	\cdots
T_{n}	1	2	7	16	29	46	67	92	121	156	\cdots

Next section

1 Recurrent Problems
2 Sums
3 Integer Functions
4 Number Theory
5 ninonial Coefricients
6 Special Numbers
7 Generating Functions
8 Discrete Probability
9 Asymptotics

2. Sums

1 Notation
2 Sums and Recurrences
3 Manipulation of Sums
4 Multiple Sums
5 General Methods
6 Finite and Infinite Calculus
7 Infinite Sums

Sums as solutions of recurrences

The simplest recurrences have the form:

$$
\begin{aligned}
& a_{0}=c_{0} \\
& a_{n}=a_{n-1}+c_{n} \text { for every } n \geq 1
\end{aligned}
$$

The solution to the above is clearly:

$$
a_{n}=\sum_{k=0}^{n} c_{k}
$$

Problem: find a closed form for the sum!

Finite calculus

A way of "working on sums like they were integrals":

- Finite difference instead of derivative:

$$
\Delta f(x)=f(x-1)-f(x) \text { for every } x
$$

- A new family of elementary functions which solve specific difference equations (instead of "differential"):
- Falling factorials in place of powers.
- Harmonic numbers in place of logarithm.

■ "Summation by parts".
■ Stolz-Cesàro lemma in place of l'Hôpital's rule.

Infinite sums

On the one hand:
Example 1
Let

$$
S=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}+\cdots .
$$

Then

$$
2 S=2+1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\cdots=2+S,
$$

and

$$
S=2
$$

Infinite sums

but on the other hand:
Example 2
Let

$$
T=1+2+4+8+16+32+64+\ldots
$$

Then

$$
2 T=2+4+8+16+32+64+128 \ldots=T-1
$$

and

$$
T=-1
$$

Next section

1 Recurrent Problems
2 Suns
3 Integer Functions
4 Number Theory
5 Binomial Coefficients
6 special ni mithens
7 Generating Functions
8 miscreie m obation
9 Asymptotics
层合

3. Integer Functions

1 Floors and Ceilings
2 Floor/Ceiling Applications
3 Floor/Ceiling Recurrences
4 'mod': The Binary Operation
5 Floor/Ceiling Sums

Some important functions with integer values

The Iverson brackets which "translate booleans into integers, with a twist":

1 [True] $=1$ and $[$ False $]=0$.
2 If a is infinite or undefined, then $a \cdot[$ False $]=0$.
The ceiling of a real number:

$$
\lceil x\rceil=\min \{n \in \mathbb{Z} \mid x \leq n\}
$$

and its "dual", the floor:

$$
\lfloor x\rfloor=\max \{n \in \mathbb{Z} \mid n \leq x\}
$$

Next section

1 Recurrent Problems
2 Suns
3 Integer Functions
4 Number Theory
5 Binomial Coefficients
6 Special Numbers
7 Generating Functions
8 Discrete Probability
9 Asympiotics

4. Number Theory

1 Divisibility
2 Factorial Factors
3 Relative Primality
4 'mod': The Congruence Relation
5 Independent Residues
6 Additional Applications
7 Phi and Mu

Next section

1 Recurrent Problems
2 Suns
3 Integer Functions
4 .. 4 in -ineory
5 Binomial Coefficients
6 Special Numbers
7 Generating Functions
8 niscreten ato....
9 Asymptotics

5. Binomial Coefficients

1 Basic Identities
2 Basic Practice
3 Tricks of the Trade
4 Generating Functions
5 Hypergeometric Functions
6 Hypergeometric Transformations
7 Partial Hypergeometric Sums
8 Mechanical Summation

Next section

1 Recurrent Problems
2 Suns
3 Integer Functions
4 .. iunber -ieory
5 Binomial Coefficients
6 Special Numbers
7 Generating Functions
8 Discrete Probability
9 Asympiotics
㨦言

6. Special Numbers

1 Stirling Numbers
2 Eulerian Numbers
3 Harmonic Numbers
4 Harmonic Summation
5 Bernoulli Numbers
6 Fibonacci Numbers
7 Continuants

Next section

1 Recurrent Problems
2 Sums
3 Integer Functions
4 Number Theory
5 Binomial Coefficients
6 Special Numbers
7 Generating Functions
8 Discrete Probability
9 Asymptotics

层合

7. Generating Functions

1 Domino Theory and Change
2 Basic Maneuvers
3 Solving Recurrences
4 Special Generating Functions
5 Convolutions
6 Exponential Generating Functions
7 Dirichlet Generating Functions

Solving recurrences with generating functions

Given a sequence $\left\langle g_{n}\right\rangle$ that satisfies a given recurrence, we seek a closed form for g_{n} which expresses it as a function of n, but not of g_{0}, \ldots, g_{n-1}.

The method of generating functions

1 Write down a single equation that expresses g_{n} in terms of other elements of the sequence. This equation should be valid for all integers n, assuming that $g_{-1}=g_{-2}=\ldots=0$.
2 Multiply both sides of the equation by z^{n} and sum over all n. This gives, on the left-hand side, the series $\sum_{n} g_{n} z^{n}$, which is the generating function $G(z)$. The right-hand side should be manipulated so that it becomes some other expression involving $G(z)$.
3 Solve the resulting equation, getting a closed form for $G(z)$.
4 Expand $G(z)$ into a power series and read off the coefficient of z^{n} : thanks to the properties of analytic functions in the complex plane, this is a closed form for g_{n}.

Example: Fibonacci numbers

1 Single equation holding for every $n \in \mathbb{Z}$:

$$
g_{n}=g_{n-1}+g_{n-2}+(\text { if } n=1 \text { then } 1 \text { else } 0)
$$

2 Multiply by z^{n} and obtain an equation for $G(z)=\sum_{n} g_{n} z^{n}$:

$$
G(z)=z G(z)+z^{2} G(z)+z
$$

3 Solve with respect to $G(z)$:

$$
G(z)=\frac{z}{1-z-z^{2}}=\frac{1}{\sqrt{5}}\left(\frac{1}{1-\phi z}-\frac{1}{1-\hat{\phi} z}\right) \text { where } \phi=\frac{1+\sqrt{5}}{2}, \hat{\phi}=\frac{1-\sqrt{5}}{2}
$$

4 Derive an expression for g_{n} which only depends on n :

$$
g_{n}=\frac{1}{\sqrt{5}}\left(\phi^{n}-\hat{\phi}^{n}\right) \text { for every } n \geq 0
$$

Next section

1 Recurrent Problems
25
3 Integer Functions
4 niunt -icory
5 Binomial Coefficients

7 Generating Functions
8 Discrete Probability
9 Asymptotics

8. Discrete Probability

1 Definitions
2 Mean and Variance
3 Probability Generating Functions
4 Flipping Coins
5 Hashing

Next section

1 Recurrent Problems
2 Suns
3 Integer Functions
4 .. iunber -ieory
5 Binomial Coefficients

7 Generating Functions
3 niscreten ator.
9 Asymptotics

9. Asymptotics

1 A Hierarchy
2 Big-O Notation
3 Big-O Manipulation
4 Two Asymptotic Tricks
5 Euler's Summation Formula
6 Final Summations

Pedagogical dilemma: what to teach?

Chapters:
1 Recurrent Problems
2 Sums
3 Integer Functions
4 Number Theory
5 Binomial Coefficients
6 Special Numbers
7 Generating Functions
8 Discrete Probability
9 Asymptotics

Last edition's program

- Week 1: Introduction

■ Weeks 2 and 3: Recurrent Problems

- Weeks 3, 4 and 5: Sums
- Week 5: Integer Functions
- (Week 6: Winter School in Computer Science)
- Weeks 7 and 8: Number Theory
- Weeks 9 and 10: Binomial Coefficients

■ Weeks 11 and 12: Special Numbers

- Weeks 13 and 14: Generating Functions
- Weeks 15 and 16: Asymptotics

Grading

Based on 100 points, distributed as follows:

- Two classroom presentations: 10 points each.
- A midterm test: 30 points.
- The final exam: 50 points.

The final grade G is computed from the total score S as follows:

- 91 or more: 5.
- 81 to 90: 4.
- 71 to 80: 3.
- 61 to 70: 2.
- 51 to 60: 1.

■ 50 or less: 0 .

Grading

Based on 100 points, distributed as follows:

- Two classroom presentations: 10 points each.
- A midterm test: 30 points.
- The final exam: 50 points.

The prerequisites to be admitted to the final exam are:
1 Attendance to more than half of lectures and exercises. (8 lectures and 8 exercise sessions in the next 15 weeks)
2 At least one classroom presentation.
3 At least 15 points at the midterm test.

Contact

Instructor: Silvio Capobianco

Address: Room B421, Tehnopol building, Akadeemia tee 21/1
Office hours: Thursdays from 15:00 to 17:00

```
Email: silvio@cs.ioc.ee
silvio.capobianco@taltech.ee
```

Web page: (temporary)
http://www.cs.ioc.ee/~silvio/2020/ITT9132/

