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The book
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GRAHAM » - KNUTH - o= “PATASHNIK

SECOND EDITION.
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Concrete Mathematics is ...

m the controlled manipulation of mathematical formulas

m using a collection of techniques for solving problems

Goals of the book:
m to introduce the mathematics that supports advanced
computer programming and the analysis of algorithms

m to provide a solid and relevant base of mathematical skills -
the skills needed
m to solve complex problems
m to evaluate horrendous sums
m to discover subtle patterns in data
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Our additional goals

m to get acquainted with well-known and popular literature in CS
and Math

m to develop mathematical skills, formulating complex problems
mathematically

m to practice presentation of results (solutions of mathematical
problems)
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Contents of the Book

Chapters:
Recurrent Problems
Sums
Integer Functions
Number Theory
Binomial Coefficients
[@ Special Numbers
Generating Functions
B Discrete Probability
El Asymptotics
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Recurrent problems

Recurrence equations

A sequence of complex numbers (a,) = (ag,a1,az,...) is called recurrent, if for n >1
its generic term a, satisfies a recurrence equation

an = fn(an—ly--wao)a

where f, : C" — C for every n>1.
If there exists f : N x CX — C such that:

fo="f(nan-1,...,a,—x) forevery n> k,

the number k is called the order of the recurrence equation.

recurrent (<Latin recurrere — to run back) tagasip6érduv, taastuv / to run back.
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Two examples of recurrence equations

A recurrence equation of order 2

ag 0;a1=1;
an = ap-1+ap foreveryn>2

This recurrence defines the Fibonacci numbers.

A recurrence equation without a well-defined order

aps = 1;
an = apan-1+aian—o2+...+ap_1a9 forevery n>1

This recurrence defines the Catalan numbers. TAL
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Motivation: why solve recursions?

m Computing by closed form is effective:

Pnzﬁ(g)"~[1+i+ LR . +o<l>]

12n  228n2  51840n3 n*
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Motivation: why solve recursions?

m Computing by closed form is effective:

Pnzﬁ(g)"~[1+i+ LR +o<l>]

12n  228n2  51840n3 n*

m Closed form allows to analyze a function using “classical” techniques.
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Motivation: why solve recursions?

m Computing by closed form is effective:

N 1 1 139 1
Pn=v2mn (Z) ’ [1 " 120 " 228 " 51840m (F)]

m Closed form allows to analyze a function using “classical” techniques.

For example: the behavior of the logistic map depends on r:
1.4

Recurrence equation: i
08 o
Xnt1 = Xn (1 —Xp) .
08 4 S
Solution for r = 4: o
04
Xp1 = sin? (2"6) o )
. 1 . |
with 6 = Earcsm(\/xT)) 0.0 T T T T T T T T



ad hoc techniques: Guess and Confirm

Equation f(n) = (n?> =1+ f(n—1))/2, initial condition: f(0) =2

m Let's compute some values:

Guess: f(n)=(n—1)2+1.
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ad hoc techniques: Guess and Confirm

Equation f(n) = (n?> =1+ f(n—1))/2, initial condition: f(0) =2

m Let's compute some values:

Guess: f(n)=(n—1)2+1.
m Assuming that the guess holds for n = k, we prove that it holds for n = k+1:

f(k+1) = ((k+1)2=14+f(k))/2

(
(K2 42k 4+ (k—1)2+1)/2
(
(

K2 +2k+ K2 —2k+1+1)/2
2k24+2)/2 =K% +1

QED.
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Next section

Recurrent Problems
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1. Recurrent Problems

The Tower of Hanoi
Lines in the Plane
The Josephus Problem
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Regions of the plane defined by lines

Q=1 Q=2

In general: Q,=2"7

Q=4

TAL
TECH



Regions of the plane defined by lines

Actually ...

Va

Vi V3

Va

Q=4
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Regions of the plane defined by lines

Actually ...

QB=Q+3=7
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Regions of the plane defined by lines

Actually ...

QB=Q+3=7

Generally @, = Q,_1+n.

n|o]1]2]3]4]5
Q|1]2]4]7|11]16]22
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Regions of the plane defined by lines

To=1 T =2
T3 =?
T,=?
To=17
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Regions of the plane defined by lines

T, = Q-22=11-4=7
T3 = @Q—2-3=22—-6=16
T4 = 03—24:37—8:29
_______ Ts = (ip—2-5=56—-10=146
i T, = Q2n_2n
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Regions of the plane defined by lines

T, = Q-22=11-4=7
T3 = @Q—2-3=22—-6=16
T4 = 03—24:37—8:29
_______ Ts = (ip—2-5=56—-10=146
i T, = Q2n_2n

T, |1]2|7]|16|29 |46 |67 92| 121 | 156

TAL
TECH



Next section

Sums
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Notation

Sums and Recurrences

Manipulation of Sums
Multiple Sums

General Methods

@A Finite and Infinite Calculus
Infinite Sums
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Sums as solutions of recurrences

The simplest recurrences have the form:

a = 0,
an = ap-1+c, foreveryn>1.

The solution to the above is clearly:

Problem: find a closed form for the sum!
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Finite calculus

A way of “working on sums like they were integrals”:

m Finite difference instead of derivative:
Af(x)=f(x—1)—f(x) forevery x

m A new family of elementary functions which solve specific
difference equations (instead of “differential”):

m Falling factorials in place of powers.
m Harmonic numbers in place of logarithm.

m “Summation by parts”.

m Stolz-Cesaro lemma in place of I'Hépital’s rule.
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Infinite sums

On the one hand:

Example 1

Let
S—14i4tiy 1t 1
TTT27478 716 "32 64 "128 "
Then 1 1 1 1 1 1
25=2+414 4+t gttt =2+5
and

5=2
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Infinite sums

...but on the other hand:

Example 2

Let
T=1+24+4+48+16+32+64+...
Then
2T =2+4+8+16+324+64+128...=T—1
and

T=-1




Next section

Integer Functions
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3. Integer Functions

Floors and Ceilings
Floor/Ceiling Applications
Floor/Ceiling Recurrences
'mod’: The Binary Operation
Floor/Ceiling Sums
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Some important functions with integer values

The lverson brackets which “translate booleans into integers, with a
twist™:

[True] =1 and [False] = 0.

If ais infinite or undefined, then a- [False] = 0.

The ceiling of a real number:
[x] =min{n€Z|x < n}
and its “dual”, the floor:

|x] =max{n€Z|n<x}
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Next section

Number Theory
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4. Number Theory

Divisibility

Factorial Factors

Relative Primality

'mod’: The Congruence Relation
Independent Residues

[@ Additional Applications

Phi and Mu
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Next section

Binomial Coefficients
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5. Binomial Coefficients

Basic Identities

Basic Practice

Tricks of the Trade

Generating Functions
Hypergeometric Functions

[@ Hypergeometric Transformations
Partial Hypergeometric Sums

E Mechanical Summation
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Next section

@ Special Numbers
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6. Special Numbers

Stirling Numbers
Eulerian Numbers
Harmonic Numbers
Harmonic Summation
Bernoulli Numbers
@A Fibonacci Numbers
Continuants

TAL
TECH



Next section

Generating Functions
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7. Generating Functions

Domino Theory and Change
Basic Maneuvers

Solving Recurrences

@ Special Generating Functions
Convolutions

[@ Exponential Generating Functions

Dirichlet Generating Functions

TAL
TECH



Solving recurrences with generating functions

Given a sequence (gn) that satisfies a given recurrence, we seek a closed form for g,
which expresses it as a function of n, but not of go,...,gnh—1-

The method of generating functions

Write down a single equation that expresses g, in terms of other elements of the
sequence. This equation should be valid for all integers n, assuming that
g1=g2=...=0.

Multiply both sides of the equation by z” and sum over all n.

This gives, on the left-hand side, the series Y, g,z", which is the generating
function G(z). The right-hand side should be manipulated so that it becomes
some other expression involving G(z).

Solve the resulting equation, getting a closed form for G(z).

[~ Q!

Expand G(z) into a power series and read off the coefficient of z": thanks to the
properties of analytic functions in the complex plane, this is a closed form for gj,.
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Example: Fibonacci numbers

Single equation holding for every n € Z:
8n=8n-1+8n—2+ (if n=1then 1 else 0)
Multiply by z" and obtain an equation for G(z) =Y ,gnz":
G(z)=zG(z)+2%2G(z)+ z

Solve with respect to G(2):

= 1 1 1 1+v5 . 1-+/5
G(Z):m:ﬁ(wfﬁ) T T T

Derive an expression for g, which only depends on n:

1 N ~n
= _ >
gn= 75 (q) [0} ) for every n > 0
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Next section

B Discrete Probability
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8. Discrete Probability

Definitions

Mean and Variance

Probability Generating Functions
Flipping Coins

Hashing
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Next section

El Asymptotics
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9. Asymptotics

A Hierarchy

Big- O Notation

Big-O Manipulation

Two Asymptotic Tricks
Euler’'s Summation Formula

@A Final Summations
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Pedagogical dilemma: what to teach?

Chapters:
Recurrent Problems
Sums
Integer Functions
Number Theory
Binomial Coefficients
B Special Numbers
Generating Functions
B Discrete Probability
Bl Asymptotics
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Last edition’s program

Week 1: Introduction

Weeks 2 and 3: Recurrent Problems

Weeks 3, 4 and 5: Sums

Week 5: Integer Functions

(Week 6: Winter School in Computer Science)
Weeks 7 and 8: Number Theory

Weeks 9 and 10: Binomial Coefficients

Weeks 11 and 12: Special Numbers

Weeks 13 and 14: Generating Functions
Weeks 15 and 16: Asymptotics
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Grading

Based on 100 points, distributed as follows:
m Two classroom presentations: 10 points each.
m A midterm test: 30 points.

m The final exam: 50 points.

The final grade G is computed from the total score S as follows:
m 91 or more: 5.

81 to 90: 4.

71 to 80: 3.

61 to 70: 2.

51 to 60: 1.

50 or less: 0.
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Grading

Based on 100 points, distributed as follows:
m Two classroom presentations: 10 points each.
m A midterm test: 30 points.

m The final exam: 50 points.

The prerequisites to be admitted to the final exam are:

Attendance to more than half of lectures and exercises.
(8 lectures and 8 exercise sessions in the next 15 weeks)

At least one classroom presentation.
At least 15 points at the midterm test.
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Contact

Instructor: Silvio Capobianco
Address: Room B421, Tehnopol building, Akadeemia tee 21/1
Office hours: Thursdays from 15:00 to 17:00

Email: silvio@cs.ioc.ee
silvio.capobianco@taltech.ee

Web page: (temporary)

http://www.cs.ioc.ee/ silvio/2020/ITT9132/
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