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Problems for Section 1.8

Problem 1.17.

Prove that log4 6 is irrational.

Problem 1.18.

Prove by contradiction that
√
3 +

√
2 is irrational.

Hint: (
√
3 +

√
2)(

√
3−

√
2).

Problem 1.22.

A familiar proof that
3
√
72 is irrational depends on the fact that a certain

equation among those below is unsatisfiable by integers a, b > 0. (Note that
more than one is unsatisfiable, but only one of them is relevant.) solutions
with both a and b positive integers. Indicate the equation that would appear
in the proof, and explain why it is unsatisfiable. (Do not assume that

3
√
72

is irrational.)

1. a2 = 72 + b2.

2. a3 = 72 + b3.

3. a2 = 72b2.

4. a3 = 72b3.

5. a3 = 73b3.

6. (ab)3 = 72.
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Problems from Section 2.2

Problem 2.2 (with some small changes).

The Fibonacci numbers F (0), F (1), F (2), . . . are defined as follows:

F (n) =


0 if n = 0 ,
1 if n = 1 ,
F (n− 1) + F (n− 2) if n > 1 ,

Exactly which sentence(s) in the following bogus proof contain logical
errors? Explain.

Theorem (Bogus theorem). Every Fibonacci number is even.

Bogus proof. Let all the variables n,m, k mentioned below be nonnegative
integer valued.

1. Let EF (n) mean that F (n) is even.

2. Let C be the set of counterexamples to the assertion that EF (n) holds
for all n ∈ N, namely,

C ::= {n ∈ N | not(EF (n))} .

3. Assume C is nonempty. By WOP, it has a minimum m.

4. Then m > 0, since F (0) = 0 is an even number.

5. Since m is a minimum counterexample, F (k) is even for all k < m.

6. In particular, F (m− 1) and F (m− 2) are both even.

7. But F (m) = F (m− 1) + F (m− 2), and the right-hand side is even.

8. That is, EF (m) is true, and m is not a true counterexample.

9. Then C is empty, and F (n) is even for all n ∈ N.

Problem 2.4.

Use the Well Ordering Principle to prove that

n∑
k=0

k2 =
n(n+ 1)(2n+ 1)

6
(1)

for all nonnegative integers n.
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Problem 2.5

Use the Well Ordering Principle to prove that there is no solution over the
positive integers to the equation:

4a3 + 2b3 = c3 .

Problems for Section 2.4

Problem 2.23.

Prove that a set R of real numbers is well ordered iff there is no infinite
decreasing sequence of numbers in R. In other words: R there is no set of
numbers ri ∈ R such that

r0 > r1 > r2 > . . . (2)

Problems for Section 3.1

Problem 3.2.

Your class has a textbook and a final exam. Let P , Q, and R be the following
propositions:

� P ::= “You get an A on the final exam.”

� Q ::= “You do every exercise in the book.”

� R ::= “You get an A in the class.”

Translate following assertions into propositional formulas using P , Q, R, and
the propositional connectives and , not(), implies .

(a) You get an A in the class, but you do not do every exercise in the book.

(b) You get an A on the final exam, you do every exercise in the book, and
you get an A in the class.

(c) To get an A in the class, it is necessary for you to get an A on the final.

(d) You get an A on the final, but you don’t do every exercise in this book;
nevertheless, you get an A in this class.
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Problem 3.5.

Sloppy Sam is trying to prove a certain proposition P . He defines two related
propositions Q and R, and then proceeds to prove three implications:

P implies Q , Q implies R , R implies P .

He then reasons as follows:

If Q is true, then since I proved Q implies R, I can conclude that R is
true. Now, since I proved R implies P , I can conclude that P is true.
Similarly, if R is true, then P is true and so Q is true. Likewise, if P
is true, then so are Q and R. So any way you look at it, all three of P ,
Q and R are true.

(a) Exhibit truth tables for

(P implies Q) and (Q implies R) and (R implies P ) (3)

and for
P and Q and R . (4)

Use these tables to find a truth assignment for P , Q, R so that (3) is
T and (4) is F.

(b) You show these truth tables to Sloppy Sam and he says “OK, I’m wrong
that P , Q and R all have to be true, but I still don’t see the mistake in
my reasoning. Can you help me understand my mistake?” How would
you explain to Sammy where the flaw lies in his reasoning?
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Solutions

Problem 1.17.

By contradiction, assume log4 6 = m/n for suitable positive integers m, n.
As we saw during the lecture, we may suppose also that m and n are positive
and relatively prime. Then 6n = 4n log4 6 = 4m, which is impossible, because
6n is divisible by 3, and 4m is not.

Important note: As 4 is not prime, we cannot conclude that, since 6 is
not an integer power of 4, then log4 6 is irrational. For example, 8 is not an

integer power of 4, but log4 8 =
log2 8

log2 4
=

3

2
is rational.

Problem 1.19.

We follow the hint and perform the multiplication:

(
√
3 +

√
2)(

√
3−

√
2) = 3− 2 = 1 .

This means that
√
3 −

√
2 is the multiplicative inverse of

√
3 +

√
2. By

contradiction, assume
√
3 +

√
2 = m/n is rational. Then

√
3−

√
2 = n/m is

rational too, and so is their difference 2
√
2. But then, so is

√
2: contradiction.

If, instead of the difference 2
√
2, we consider the sum 2

√
3, we reach

a similar contradiction. Indeed, an argument similar to our proof of the
irrationality of

√
2 leads us to the conclusion that

√
3 is irrational.

Problem 1.22.

1. a2 = 72 + b2 is satisfiable in the positive integers, so it won’t help us
prove that

3
√
72 is irrational because a certain equation is unsatisfiable

in the positive integers! Specifically, (7, 24, 25) is a Pythagorean triple,
that is, a triple of positive integers (k,m, n) such that k2 + m2 = n2.
We could then put a = 25 and b = 24.

And even if it had been unsatisfiable, it involves a sum instead of a
ratio or a product, so it cannot help in our case.

2. a3 = 72+ b3 is unsatisfiable. However, it gives us no information about
the existance of two positive integers a, b such that 72 = a3/b3, so this
is not the equation we are looking for.

To see why the equality is unsatisfiable, observe that it is equivalent to
a3 − b3 = 72. But a3 − b3 = (a − b)(a2 + ab + b2) = 7 · 7 with a and b
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both positive integers is only possible if a− b = 1 and a2+ab+ b2 = 72,
because if a and b are both positive, then:

a2 + ab+ b2 > a2 + b2 ≥ a+ b > a− b .

Then a = b+ 1 and:

a2 + ab+ b2 = b2 + 2b+ 1 + b2 + b+ b2 = 3b2 + 3b+ 1 ;

but 3b2+3b+1 = 72 is equivalent to b(b+1) = 16, which has no integer
solutions.

3. a2 = 72b2 is satisfiable by choosing b > 0 arbitrarily and a = 7b.

4. a3 = 72b3 is the equation we are looking for: it means that there are
no two positive integers such that

3
√
72 = a/b. The reason why this

equation has no positive integer solution is that the exponent of 7 in
the prime factorization of the left-hand side is a multiple of 3, but the
one of the right-hand side isn’t.

5. a3 = 73b3 is satisfiable by choosing b > 0 arbitrarily and a = 7b.

6. (ab)3 = 72 is unsatisfiable for the same reason why a3 = 72b3 is unsat-
isfiable. However, a and b appear in a product instead of a ratio, so
this is not the equation we are looking for.

Problem 2.2 (with some small changes).

The problem is with point 6. Until now, we only know that m is positive: it
could well be 1. (It is so indeed, but that’s not the point.) But if m = 1,
then m − 2 = −1 is not a natural number; and we have only defined the
Fibonacci numbers as a function on the naturals, not on all integers! For
what we know, F (−1) might not exist.1

Problem 2.4.

First, a note on notation. Let a be an integer, and for each integer k ≥ a let
xk be a complex number. Then for n ≥ a integer the sum, for k from a to
n, of xk is defined as follows:

a∑
k=a

xk = xa ;
n∑

k=a

xk =

(
n−1∑
k=a

xk

)
+ xn for every n > a .

1As a curiosity: it is possible to define the Fibonacci numbers on negative integers, and
it turns out that it must be F (−1) = 1. More in general, if n is a positive integer, then
F (−n) = (−1)n−1F (n).
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This is an example of a recursive definition, where the current value is con-
structed from the previous ones. We will see more of these in later chapters.

Let C be the set of counterexamples to (1), namely,

C ::=

{
n ∈ N |

n∑
k=0

k2 ̸= n(n+ 1)(2n+ 1)

6

}
.

If C is nonempty, then it has a minimum elementm: suchmmust be positive,
because for n = 0 both sides of (1) are zero. Since m is the minumum of C,
m− 1, which is still a natural number as m is positive, does satisfy (1): we
then have

m−1∑
k=0

k2 =
(m− 1)m(2(m− 1) + 1)

6
.

But then,

m∑
k=0

k2 =
m−1∑
k=0

k2 +m2

=
(m− 1)m(2(m− 1) + 1)

6
+m2

=
(m2 −m)(2m− 1) + 6m2

6

=
2m3 − 3m2 +m+ 6m2

6

=
2m3 + 3m2 +m

6

=
m(2m2 + 3m+ 1)

6

=
m(m+ 1)(2m+ 1)

6
:

that is, m does satisfy (1) after all. The contradiction stems from our hy-
pothesis that C be nonempty: hence, C is empty, and (1) holds for every
nonnegative integer m.

Problem 2.5

Let c0 be the smallest positive integer such that positive integers a0 and b0
exist such that 4a30+2b30 = c30. We observe that c0 > 1, because the left-hand
side must be even: indeed, c0 itself must be even, so it must be c0 = 2c1 for
some positive integer c1. We then have:

4a30 + 2b30 = 8c31 ,

9



which, dividing by 2, yields:

2a30 + b30 = 4c31 .

Now, the right-hand side is even, so both summands on the left-hand side
must be even: this means that b0 must be even, so we write b0 = 2b1 for
a suitable positive integer h. Again, we get, first, 2a30 + 8b31 = 4c31, then,
dividing by 2,

a30 + 4b31 = 2c31 .

This time, with the same logic, a0 = 2a1 for a suitable positive integer a1:
substituting and replacing, we find. . . guess what?,

4a31 + 2b31 = c31 ,

which is a solution over the positive integers with c1 < c0. (Note that we
need to have proved that c0 > 0; otherwise, c1 = c0/2 could have been zero
as well.) We have thus discovered that the smallest counterexample c0 was
not the smallest: then there was no c0 in the first place, and the equation
does not have a solution on the positive integers.

Problem 2.23.

If a sequence such as in (2) exists, then the set of its terms does not have
a minimum: however given an element, there will be another element (for
example, the next one in the sequence) which is strictly smaller. In this case,
R has a subset which is not well ordered, so it is not well ordered.

If R is not well ordered, take a nonempty subset S of R which has no
minimum. Choose r0 ∈ S: as r0 is not the minimum of S, there exists r1 ∈ S
which is strictly smaller than r0. Similarly, as r1 is not the minimum of S,
there exists r2 ∈ S which is strictly smaller than r1. Iterating the procedure,
we obtain a sequence of elements of R such as in (2). More in detail:

1. We choose the starting element r0 ∈ S as we want.

2. For every n ∈ N, after we have chosen rn ∈ S, we choose rn+1 ∈ S so
that it is smaller than rn. This is always possible, because S has no
minimum, so in particular rn is not the minimum of S.

At the end of the exercise, note that R itself can have a minimum without

being well ordered. For example, the set

{
m

n+ 1
| m,n ∈ N

}
has 0 as its

minimum, but is not well ordered, because it contains the infinite decreasing

sequence 1 >
1

2
>

1

3
> · · ·.
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Problem 3.2.

(a) In this case, R is verified, Q is not, and P is irrelevant: the assertion
translates as R and not(Q).

(b) Here P , Q, andR are all verified, so this assertion translates as P and Q and R.
Recall that and is associative, so (P and Q) and R is equivalent to
P and (Q and R).

(c) Here we have a clear implication, and a causal one too! What the
assertion says, is that if you get an A in the class, it means that you
had gotten an A in the final: the translation in mathematical language
is then R implies P .

(d) In this case, P is true, Q is false, and R is true: the assertion translates
as P and not(Q) and R.

At the end of the exercise, observe how, in mathematical language, “but”
and “nevertheless” mean the same as “and”. The differences in the tone of
the three words are lost in translation.

Problem 3.5.

(a) We first construct the truth table for P and Q and R, as it is almost
immediate:

P Q R P and Q and R
T T T T
T T F F
T F T F
T F F F
F T T F
F T F F
F F T F
F F F F

For the formula

S ::= (P implies Q) and (Q implies R) and (R implies P )
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we proceed in two steps: first, we construct the truth values for each
of the implications; then, we compute those for their conjunction.

P Q R P implies Q Q implies R R implies P S
T T T T T T T
T T F T F T F
T F T F T T F
T F F F T T F
F T T T T F F
F T F T F T F
F F T T T F F
F F F T T T T

We then see that, if P , Q and R are all F, then (3) is T and (4) is F.

Alternatively (as we did in classroom, for reasons of time) we could
have observed that if P , Q, and R are all false, then P implies Q,
Q implies R, and R implies P are all true, so S is true, while
F and F and F is clearly false.

(b) Sam is silently assuming that some of P , Q and R are true. But why
should it be so? All he has proved is that they are equivalent: either
they all all true, or all false. To check which is the case, he must find
a proof or disproof of any of the three (no matter which) which does
not depend on the others, but only on other things which he knows,
not just assumes, to be true.
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