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Problems for Section 1.8

Problem 1.17.

Prove that log4 6 is irrational.

Problem 1.18.

Prove by contradiction that
√
3 +

√
2 is irrational.

Hint: (
√
3 +

√
2)(

√
3−

√
2).

Problem 1.22.

A familiar proof that
3
√
72 is irrational depends on the fact that a certain

equation among those below is unsatisfiable by integers a, b > 0. (Note that
more than one is unsatisfiable, but only one of them is relevant.) Indicate the
equation that would appear in the proof, and explain why it is unsatisfiable.
(Do not assume that

3
√
72 is irrational.)

1. a2 = 72 + b2.

2. a3 = 72 + b3.

3. a2 = 72b2.

4. a3 = 72b3.

5. a3 = 73b3.

6. (ab)3 = 72.
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Problems from Section 2.2

Problem 2.2 (with some small changes).

The Fibonacci numbers F (0), F (1), F (2), . . . are defined as follows:

F (n) =


0 if n = 0 ,

1 if n = 1 ,

F (n− 1) + F (n− 2) if n > 1 ,

Exactly which sentence(s) in the following bogus proof contain logical
errors? Explain.

Theorem (Bogus theorem). Every Fibonacci number is even.

Bogus proof. Let all the variables n,m, k mentioned below take value in
the nonnegative integers.

1. Let EF (n) mean that F (n) is even.

2. Let C be the set of counterexamples to the assertion that EF (n) holds
for all n ∈ N, namely,

C ::= {n ∈ N |not(EF (n))} .

3. Assume C is nonempty. By WOP, it has a minimum m.

4. Then m > 0, since F (0) = 0 is an even number.

5. Since m is a minimum counterexample, F (k) is even for all k < m.

6. In particular, F (m− 1) and F (m− 2) are both even.

7. But F (m) = F (m− 1) + F (m− 2), and the right-hand side is even.

8. That is, EF (m) is true, and m is not a true counterexample.

9. Then C is empty, and F (n) is even for all n ∈ N.

Problem 2.4.

Use the Well Ordering Principle to prove that

n∑
k=0

k2 =
n(n+ 1)(2n+ 1)

6
(1)

for all nonnegative integers n.
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Problem 2.5

Use the Well Ordering Principle to prove that there is no solution over the
positive integers to the equation:

4a3 + 2b3 = c3 .

Problems for Section 2.4

Problem 2.21(a)-(c),(e).

Indicate which of the following sets of numbers have a minimum element and
which are well ordered. For those that are not well ordered, give an example
of a subset with no minimum element.

(a) The integers ≥ −
√
2.

(b) The rational numbers ≥
√
2.

(c) The set of the rational numbers of the form
1

n
, where n is a positive

integer.

(e) The set F of fractions of the form
n

n+ 1
for n ∈ N.

Problem 2.23.

Prove that a set R of real numbers is well ordered iff there is no infinite
decreasing sequence of numbers in R. In other words: R is well ordered if
and only if there is no set of numbers ri ∈ R such that

r0 > r1 > r2 > . . . (2)

Hint: A set is well ordered if and only if all its subsets are well ordered.
Also, if m ∈ S is not the minimum of S, then there is some x ∈ S such that
x < m.

Problems for Section 3.1

Problem 3.2.

Your class has a textbook and a final exam. Let P , Q, and R be the following
propositions:
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� P ::= “You get an A on the final exam.”

� Q ::= “You do every exercise in the book.”

� R ::= “You get an A in the class.”

Translate following assertions into propositional formulas using P , Q, R, and
the propositional connectives and , not(), implies .

(a) You get an A in the class, but you do not do every exercise in the book.

(b) You get an A on the final exam, you do every exercise in the book, and
you get an A in the class.

(c) To get an A in the class, it is necessary for you to get an A on the final.

(d) You get an A on the final, but you don’t do every exercise in this book;
nevertheless, you get an A in this class.

Problem 3.5.

Sloppy Sam is trying to prove a certain proposition P . He defines two related
propositions Q and R, and then proceeds to prove three implications:

P implies Q , Q implies R , R implies P .

He then reasons as follows:

If Q is true, then since I proved Q implies R, I can conclude that R is
true. Now, since I proved R implies P , I can conclude that P is true.
Similarly, if R is true, then P is true and so Q is true. Likewise, if P
is true, then so are Q and R. So any way you look at it, all three of P ,
Q and R are true.

(a) Exhibit truth tables for

(P implies Q) and (Q implies R) and (R implies P ) (3)

and for
P and Q and R . (4)

Use these tables to find a truth assignment for P , Q, R so that (3) is T
and (4) is F.

(b) You show these truth tables to Sloppy Sam and he says “OK, I’m wrong
that P , Q and R all have to be true, but I still don’t see the mistake in
my reasoning. Can you help me understand my mistake?” How would
you explain to Sammy where the flaw lies in his reasoning?
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Solutions

Problem 1.17.

By contradiction, assume log4 6 = m/n for suitable positive integers m, n.
Then 6n = 4n log4 6 = 4m, and as n > 0, the left-hand side is divisible by 3,
which the right-hand side is not: contradiction.

Problem 1.19.

We follow the hint and perform the multiplication:

(
√
3 +

√
2)(

√
3−

√
2) = 3− 2 = 1 .

This means that
√
3 −

√
2 is the multiplicative inverse of

√
3 +

√
2. By

contradiction, assume
√
3 +

√
2 = m/n is rational. Then

√
3−

√
2 = n/m is

rational too, and so is their difference 2
√
2. But then, so is

√
2: contradiction.

If, instead of the difference 2
√
2, we consider the sum 2

√
3, we reach

a similar contradiction. Indeed, an argument similar to our proof of the
irrationality of

√
2 leads us to the conclusion that

√
3 is irrational.

Problem 1.22.

1. a2 = 72 + b2 is satisfiable in the positive integers, so it won’t help us
prove that

3
√
72 is irrational because a certain equation is unsatisfiable

in the positive integers! Specifically, (7, 24, 25) is a Pythagorean triple,
that is, a triple of positive integers (k,m, n) such that k2 + m2 = n2.
We could then put a = 25 and b = 24.

And even if it had been unsatisfiable, it involves a sum instead of a
ratio or a product, so it cannot help in our case.

2. a3 = 72+ b3 is unsatisfiable. However, it gives us no information about
the existance of two positive integers a, b such that 72 = a3/b3, so this
is not the equation we are looking for.

To see why the equality is unsatisfiable, observe that it is equivalent to
a3 − b3 = 72. But a3 − b3 = (a − b)(a2 + ab + b2) = 7 · 7 with a and b
both positive integers is only possible if a− b = 1 and a2+ab+ b2 = 72,
because if a and b are positive integers, then:

a2 + ab+ b2 > a2 + b2 ≥ a+ b > a− b .
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Then a = b+ 1 and:

a2 + ab+ b2 = b2 + 2b+ 1 + b2 + b+ b2 = 3b2 + 3b+ 1 ;

but 3b2 + 3b + 1 = 72 is equivalent to b2 + b − 16 = 0, which has no
integer solutions.

3. a2 = 72b2 is satisfiable by choosing b > 0 arbitrarily and a = 7b.

4. a3 = 72b3 is the equation we are looking for: it means that there are no

two positive integers such that
a3

b3
= 72, that is,

a

b
=

3
√
72. The reason

why this equation has no positive integer solution is that the exponent
of 7 in the prime factorization of the left-hand side of a3 = 72b3 is a
multiple of 3, but the one of the right-hand side isn’t.

5. a3 = 73b3 is satisfiable by choosing b > 0 arbitrarily and a = 7b.

6. (ab)3 = 72 is unsatisfiable for the same reason why a3 = 72b3 is unsat-
isfiable. However, a and b appear in a product instead of a ratio, so
this is not the equation we are looking for.

Problem 2.2 (with some small changes).

The problem is with point 6. Until now, we only know that m is positive: it
could well be 1. (It is so indeed, but that’s not the point.) But if m = 1,
then m − 2 = −1 is not a natural number; and we have only defined the
Fibonacci numbers as a function on the naturals, not on all integers! For
what we know, F (−1) might not exist.1

Problem 2.4.

Let C be the set of counterexamples to (1), namely,

C ::=

{
n ∈ N

∣∣∣∣∣
n∑

k=0

k2 ̸= n(n+ 1)(2n+ 1)

6

}
.

If C is nonempty, then it has a minimum elementm. Suchmmust be positive,
because for n = 0 both sides of (1) are zero. Since m is the minumum of

1As a curiosity: it is possible to define the Fibonacci numbers on negative integers, and
it turns out that it must be F (−1) = 1. More in general, if n is a positive integer, then
F (−n) = (−1)n−1F (n).
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C, m − 1, which is still a natural number as m is positive, does satisfy (1).
Then:

m−1∑
k=0

k2 =
(m− 1)m(2(m− 1) + 1)

6
.

But then,

m∑
k=0

k2 =
m−1∑
k=0

k2 +m2

=
(m− 1)m(2(m− 1) + 1)

6
+m2

=
(m2 −m)(2m− 1) + 6m2

6

=
2m3 − 3m2 +m+ 6m2

6

=
2m3 + 3m2 +m

6

=
m(2m2 + 3m+ 1)

6

=
m(m+ 1)(2m+ 1)

6
:

that is, m does satisfy (1) after all. The contradiction stems from our hy-
pothesis that C be nonempty: hence, C is empty, and (1) holds for every
nonnegative integer m.

Problem 2.5

Let c0 be the smallest positive integer such that positive integers a0 and b0
exist such that 4a30+2b30 = c30. We observe that c0 > 1, because the left-hand
side must be even: indeed, c0 itself must be even, so it must be c0 = 2c1 for
some positive integer c1. We then have:

4a30 + 2b30 = 8c31 ,

which, dividing by 2, yields:

2a30 + b30 = 4c31 .

Now, the right-hand side is even, so both summands on the left-hand side
must be even. Then b0 must be even too: let b0 = 2b1 for a suitable positive
integer h. Again, we get, first, 2a30 + 8b31 = 4c31, then, dividing by 2,

a30 + 4b31 = 2c31 .
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This time, with the same logic, a0 = 2a1 for a suitable positive integer a1.
Substituting and simplifying, we find:

4a31 + 2b31 = c31 ,

which is a solution over the positive integers with c1 < c0. (Note that we
must have proved that c0 > 0; otherwise, c1 = c0/2 could have been zero as
well.) We have thus discovered that the smallest counterexample c0 was not
the smallest: then there was no c0 in the first place, and the equation does
not have a solution on the positive integers.

Problem 2.21(a)-(c),(e).

(a) This set is well ordered. We have seen during Lecture 2 that every
subset of the set of integer numbers which has a lower bound is well
ordered.

(b) This set is not well ordered. The simplest way to see that it is so, might
be to show that this set has an infinite strictly decreasing sequence, then
apply our solution to Problem 2.23 (see the self-evaluation exercises for
Week 2). Well, 2 and 3 are rational numbers both larger than

√
2. Also,

if a and b are rational numbers and a < b, then their average
a+ b

2
is also a rational number, is larger than a, and is smaller than b. We
can then construct a strictly decreasing sequence of rational numbers

larger than
√
2 by setting x0 = 3 and xn =

2 + xn−1

2
for every n ≥ 1.

(c) This set is not well ordered: no point x = 1/n can be the minimum,
because 1/(n+ 1) < 1/n if n is a positive integer.

(e) This set is well ordered, for the following reason. Rewrite:

n

n+ 1
= 1− 1

n+ 1
.

This tells us that the larger n is, the larger
n

n+ 1
is; and vice versa,

the smaller n is, the smaller
n

n+ 1
is. Then the smallest element of a

nonempty subset S of F is
n0

n0 + 1
where n0 is the smallest element of:

T =

{
n ∈ N

∣∣∣∣ n

n+ 1
∈ S

}
.
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Problem 2.23.

If a sequence such as in (2) exists, then the set of its terms does not have
a minimum. However given an element, there will be another element (for
example, the next one in the sequence) which is strictly smaller. In this case,
R has a subset which is not well ordered, so it is not well ordered.

If R is not well ordered, take a nonempty subset S of R which has no
minimum. Choose r0 ∈ S: as r0 is not the minimum of S, there exists r1 ∈ S
which is strictly smaller than r0. Similarly, as r1 is not the minimum of S,
there exists r2 ∈ S which is strictly smaller than r1. Iterating the procedure,
we obtain a sequence of elements of R such as in (2). More in detail:

1. We choose the starting element r0 ∈ S as we want.

2. For every n ∈ N, after we have chosen rn ∈ S, we choose rn+1 ∈ S so
that it is smaller than rn. This is always possible, because S has no
minimum, so in particular rn is not the minimum of S.

Note that a set of numbers can have a minimum without being well ordered.
For example, the set of nonnegative real numbers has 0 as its minimum and

contains the infinite decreasing sequence 1 >
1

2
>

1

3
> · · ·

Problem 3.2.

(a) In this case, R is verified, Q is not, and P is irrelevant: the assertion
translates as R and not(Q).

(b) Here P , Q, and R are all verified, so this assertion can be rewritten as:
P and Q and R. Recall that and is associative, so (P and Q) and R
is equivalent to P and (Q and R).

(c) Here we have a clear implication, and a causal one too! What the as-
sertion says, is that if you get an A in the class, it means that you had
gotten an A in the final. The translation into mathematical language is
then R implies P .

(d) In this case, P is true, Q is false, and R is true: the assertion translates
as P and not(Q) and R.

At the end of the exercise, observe how, in mathematical language, “but”
and “nevertheless” mean the same as “and”. The differences in the tone of
the three words are lost in translation.
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Problem 3.5.

(a) We first construct the truth table for P and Q and R, as it is almost
immediate:

P Q R P and Q and R
T T T T
T T F F
T F T F
T F F F
F T T F
F T F F
F F T F
F F F F

For the formula

S ::= (P implies Q) and (Q implies R) and (R implies P )

we proceed in two steps: first, we construct the truth values for each of
the implications; then, we compute those for their conjunction.

P Q R P implies Q Q implies R R implies P S
T T T T T T T
T T F T F T F
T F T F T T F
T F F F T T F
F T T T T F F
F T F T F T F
F F T T T F F
F F F T T T T

We then see that, if P , Q and R are all F, then (3) is T and (4) is F.

Alternatively, we can observe that if P , Q, and R are all false, then
P implies Q, Q implies R, and R implies P are all true, so S is true,
while F and F and F is clearly false.

(b) Sam is silently assuming that some of P , Q and R are true. But why
should it be so? All he has proved is that they are equivalent: either
they all all true, or all false. To check which case it is, he must find a
proof or disproof of any of the three (no matter which) which does not
depend on the others, but only on other things which he knows, not just
assumes, to be true.
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