
Mathematics for Computer Science
Exercise session 3: 18 September 2024

Silvio Capobianco

Last update: 19 September 2024

Problems from Section 3.1

Problem 3.3.

When the mathematician says to his student, “If a function is not continu-
ous, then it is not differentiable,”, then letting D stand for “differentiable”
and C for “continuous”, the only proper translation of the mathematician’s
statement would be

not(C) implies not(D) ,

or equivalently,
D implies C .

But when a mother says to her son, “If you don’t do your homework, then
you can’t watch TV”, then letting T stand for “can watch TV” and H for “do
your homework”, a reasonable translation of the mother’s statement would
be

not(H) iff not(T ) ,

or equivalently,
H iff T .

Explain why it is reasonable to translate these two IF-THEN statements in
different ways into propositional formulas.

Exercises for Section 3.3

Problem 3.11.

Indicate whether each of the following propositional formulas is valid (V),
satisfiable but not valid (S), or not satisfiable (N). For the satisfiable ones,

1



indicate a satisfying truth assignment.

M implies Q

M implies (P or Q)

M implies (M and (P implies M))

(P or Q) implies Q

(P or Q) implies (P and Q)

(P or Q) implies (M and (P implies M))

(P xor Q) implies Q

(P xor Q) implies (P or Q)

(P xor Q) implies (M and (P implies M))

Problem 3.15.

The formula

not(A implies B) and A and C
implies

D and E and F and G and H and I and J and K and L and M

turns out to be valid.

(a) Explain why verifying the validity of this formula by truth table would
be very hard for one person to do with pencil and paper (no computers).

(b) Verify that the formula is valid, reasoning by cases according to the truth
value of A.

Problem 3.17.

This problem examines whether the following specifications are satisfiable:

1. If the file system is not locked, then

(a) new messages will be queued.

(b) new messages will be sent to the messages buffer.

(c) the system is functioning normally,

and conversely, if the system is functioning normally, then the file sys-
tem is not locked.

2



2. If new messages are not queued, then they will be sent to the messages
buffer.

3. New messages will not be sent to the message buffer.

(a) Begin by translating the five specifications into propositional formulas
using four propositional variables:

L ::= file system locked,

Q ::= new messages are queued,

B ::= new messages are sent to the message buffer,

N ::= system functioning normally.

(b) Demonstrate that this set of specifications is satisfiable by describing a
single truth assignment for the variables L, Q, B, N and verifying that
under this assignment, all the specifications are true.

(c) Argue that the assignment determined in part (b) is the only one that
does the job.

Problems for Section 3.4

Problem 3.18.

A half dozen different operators may appear in propositional formulas, but
just and , or , and not are enough to do the job. That is because each
of the operators is equivalent to a simple formula using only these three
operators. For example, A implies B is equivalent to not(A) or B. So all
occurences of implies in a formula can be replaced using just not and or .

(a) Write formulas using only and , or , not() that are equivalent to
A iff B and A xor B. Conclude that every propositional formula is
equivalent to an and - or -not formula.

(b) Explain why you don’t even need and .

(c) Explain how to get by with the single operator nand where A nand B
is equivalent by definition to not(A and B).

3



Problems for Section 3.6

Problem 3.26.

For each of the following propositions:

1. ∀x .∃y . 2x− y = 0

2. ∀x .∃y . x− 2y = 0

3. ∀x . (x < 10 implies (∀y . (y < x implies y < 9)))

4. ∀x .∃y . (y > x ∧ ∃z . y + z = 100)

determine which propositions are true when the variables range over:

(a) the nonnegative integers,

(b) the integers,

(c) the real numbers.

Problem 3.33 (modified).

(a) Verify that the propositional formula

(P implies Q) or (Q implies P ) (1)

is valid.

(b) The valid formula of part (a) leads to sound proof method: to prove that
an implication is true, just prove that its converse is false.1

But wait a minute! The implication

If an integer is prime, then it is negative

is completely false. So we could conclude that its converse

If an integer is negative, then it is prime

should be true, but in fact the converse is also completely false.

So something has gone wrong here. Explain what.

1This problem was stimulated by the discussion of the fallacy in J. Beam, A Powerful
Method of Non-Proof, The College Mathematics Journal 48(1), 52–54.

4



This page intentionally left blank.

5



This page too.

6



Solutions

Problem 3.3.

When the mathematician talks to his student, there is no hidden assumption.
A function can be discontinuous; or it can be continuous but not differen-
tiable; or it can be differentiable, hence continuous. Implication goes only
one way.

But where the mother talks to the son, there is a hidden assumption!
Both the mother and the son know that the son will watch TV after he has
done his homework. Implication still goes one way, but this time, there are
two implications.

Problem 3.11.

One by one, in the order given:

S. M implies Q is true as soon as M is false, but is false if M is true and
Q is false.

S. M implies (P or Q) is true as soon as M is false, but is false if M , P
and Q are all true.

V. M implies (M and (P implies M)) is valid. If M is false, then
M implies (M and (P implies M)) is true; if M is true, then so is
P implies M , and so is M and (P implies M).

S. (P or Q) implies Q is true if Q is true, but false if P is true and Q is
false.

S. (P or Q) implies (P or Q) is true if P and Q are both false, but false
if they are both true.

S. (P or Q) implies (M and (P implies M)) is true if P and Q are
both false, but false if they are both true and M is false.

S. (P xor Q) implies Q is true if P and Q are both true, but false if P
is true and Q is false.

V. (P xor Q) implies (P or Q) is valid. If P and Q are both true or
both false, then the implication from false is true; if one is true and the
other is false, then one of P and Q is true, and the implication to true
is true.

7



S. (P xor Q) implies (M and (P implies M)) is true if P and Q are
both false, but false if P is true and Q and M are both false.

Problem 3.15.

(a) The formula depends on thirteen propositional variables. A truth table
for it would have 213 = 8192 rows.

(b) As the formula is an implication, it is sufficient to prove that the premise

not(A implies B) and A and C

is always false. We do so by reasoning by cases on the truth value of A.

• Case 1: A is true. Then A implies B is true: correspondingly,
not(A implies B) is false, and so is not(A implies B) and A and C.

• Case 2: A is false. Then not(A implies B) and A and C is clearly
false.

Problem 3.17.

(a) Let us rewrite the three specifications as three Boolean formulas α, β
and γ:

(a) α ::= (not(L) implies (Q and B and N)) and (N implies not(L)).

(b) β ::= not(Q) implies B.

(c) γ ::= not(B).

(b) We must find a truth assignment to L, Q, B and N that makes each of
α, β and γ take value T. We immediately observe that γ = T if and
only if B = F. In this case, for β to be T it must be not(Q) = F, hence
Q = T.

Now, to have α = T, we must have both

not(L) implies (Q and B and N) = T

and
N implies not(L) = T .

But the conjunction in the right-hand side of the implication in the first
formula is false, because so is B: we must then have not(L) = F, that
is, L = T. Then the second formula can only be T if N = F.

We then have that the specification is verified if, and only if:

8



(a) the system is locked,

(b) new messages are queued,

(c) new messages are not sent to the message buffer, and

(d) the system does not function normally.

(c) Note that the text of the exercise as reported in the book is imprecise.
With that formulation, α becomes:

not(L) implies (Q and B and (N and (N implies not(L))))

But this formula is not equivalent to

(not(L) implies (Q and B and N)) and (N implies not(L)) ,

because the former is satisfied with L = Q = T and B = F regardless of
the value of N .

The assignment from part c is the only one that does the job because we
have constructed it starting from the only hypothesis that the formula
be satisfied, our first choice was forced, and each one of the other choice
we made were forced given the previous ones.

Problem 3.18(a)-(b).

(a) First, we observe that A iff B is true if and only if A and B are either
both true, or both false. The first case corresponds to A and B being
true; the second case corresponds to not(A) and not(B) being true.
Then A iff B is equivalent to:

(A and B) or (not(A) and not(B))

Next, we observe that A iff B is true if and only if either A is true
and B is false, or A is false and B is true. The first case corresponds to
A and not(B) being true; the second case corresponds to not(A) and B
being true. Then A xor B is equivalent to:

(A and not(B)) or (not(A) and B)

Alternatively, we could have observed that A xor B is equivalent to
not(A iff B).

9



(b) That we don’t even need and follows from de Morgan’s law:

not(A and B)←→ not(A) or not(B) ,

which, together with the double negation rule, gives:

A and B ←→ not(not(A) or not(B)) .

(c) Because of the previous points, it is sufficient to show that not() and
or can be reconstructed by only using nand . One part is easy:

not(A)←→ A nand A .

For the second one, we use de Morgan’s law together with double nega-
tion:

A or B ←→ not(not(A) and not(B))

←→ not(A) nand not(B)

←→ (A nand A) nand (B nand B) .

As a note, since A and T is equivalent to A, we could also have obtained
not(A) as A nand T.

Problem 3.26.

(a) If the variables are nonnegative integers:

(a) is true, because however given x, we can choose y = 2x.

(b) is false, because for x = 1 the difference 1 − 2y is odd for every
integer y, and cannot be zero.

(c) is true, because if m and n are any two integers, then m < n if and
only if m ≤ n− 1.

(d) is false, because if we choose x = 100, y > x, and z any nonnegative
integer, then y + z > 100.

(b) If the variables are integers:

(a) is true, because however given x, we can choose y = 2x.

(b) is false, because for x = 1 the difference 1 − 2y is odd for every
integer y, and cannot be zero.

(c) is true, because if m and n are any two integers, then m < n if and
only if m ≤ n− 1.

10



(d) is true, because however we choose x and y > x, we can always set
z = 100− y, which is integer if y is.

(c) If the variables are real numbers:

(a) is true, because however given x, we can choose y = 2x.

(b) is true, because however given x, we can choose y = x/2.

(c) is false, because for x = 9.75 we can take y = 9.5, which is smaller
than x but larger than 9.

(d) is true, because however we choose x and y > x, we can always set
z = 100− y.

Problem 3.33 (modified).

(c) This is easily done via truth table:

P Q (P implies Q) or (Q implies P )
T T T T T
T F F T T
F T T T F
F F T T T

Alternatively, we can reason by cases, according to P being true or false:

P = T. Then Q implies P is true, and so is (1).

P = F. Then P implies Q is true, and so is (1).

Another proof, suggested in classroom on 18 September 2024, is based
on the observation that P implies Q is equivalent to P or Q. Then (1)
is equivalent to: (we apply associativity of or to avoid parentheses)

P or Q or Q or P

which is valid.

(c) The formula which we have shown to be valid is a propositional formula:
it is true whenever P and Q have a definite truth value. This allows us
to conclude, for example, that

∀x . ((P (x) implies Q(x)) or (Q(x) implies P (x))) (2)

is valid: as soon as the value of x is chosen, so are the truth values of
P (x) and Q(x), and whatever those are, the proposition in parentheses
is true.

However,

11



If an integer is prime, then it is negative

is not a propositional formula; it is a predicate formula, which, in the
context of integer arithmetics, corresponds to:

∀x ∈ Z . (P (x) implies Q(x))

where P (x) and Q(x) are interpreted as “x is prime” and “x is negative”,
respectively.

Now, when we start from the falsity of

If an integer is prime, then it is negative

to “prove”

If an integer is negative, then it is prime

we are not applying (2), but a different formula:

(∀x . (P (x) implies Q(x))) or (∀x . (Q(x) implies P (x))) (3)

But the formula (3) is not valid in predicate logic: and it cannot be,
because we have a counter-model right in front of our eyes!

12


