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Problems from Section 4.1

Problem 4.3.

(a) Verify that the propositional formula (P and Q) or (P and Q) is
equivalent to P .

(b) Prove that
A = (A−B) ∪ (A ∩B)

for all sets A, B, by showing

x ∈ A iff x ∈ (A−B) ∪ (A ∩B)

for all elements x using the equivalence of part (a) in a chain of iff ’s.

Problem 4.5.

Prove De Morgan’s Law for set equality

A ∩B = A ∪B (1)

by showing with a chain of iff ’s that x ∈ the left-hand side of (1) iff x ∈
the right-hand side. You may assume the propositional version (3.14) of De
Morgan’s Law.
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Problem 4.6.

Let A and B be sets.

(a) Prove that
pow(A ∩B) = pow(A) ∩ pow(B) .

(b) Prove that
pow(A) ∪ pow(B) ⊆ pow(A ∪B) ,

with equality holding iff one of A or B is a subset of the other.

Problem 4.7.

The game of Subset Take-Away is played between two players with the fol-
lowing rules:

1. The initial position is a finite nonempty set.

2. Taking turns, the players take away subsets of the initial set.

3. It is not permitted to take away the entire initial set as the first move.

4. Once a subset has been taken away, no subset which contains it can be
taken away anymore.

In particular: no subset can be taken more than once.

5. A player who cannot take away a nonempty subset on his or her turn,
loses the game.

Prove that the second player has a winning strategy in the following cases:

1. A has one element.

2. A has two elements.

3. A has three elements.

Note that the book claims that it is is unsolved whether the second player has
a winning strategy for any initial position. However, this has been disproved
in 2017: if the initial set has 7 elements, then the first player has a winning
strategy. See arXiv:1702.03018, which however uses a terminology different
from that of the textbook.
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Problems for Section 4.2

Problem 4.14.

Prove that for any sets A, B, C and D, if the Cartesian products A×B and
C×D are disjoint, then either A and C are disjoint or B and D are disjoint.

Problem 4.15.

(a) Give a simple example where the following result fails, and briefly explain
why:

False Theorem. For sets A, B, C and D, let

L ::= (A ∪B)× (C ∪D) ,

R ::= (A× C) ∪ (B ×D) .

Then L = R.

(b) Identify the mistake in the following proof of the False Theorem.
Bogus proof. Since L and R are both sets of pairs, it is sufficient to prove
that (x, y) ∈ L←→ (x, y) ∈ R for all x, y. The proof will be a chain of iff
implications:

(x, y) ∈ R iff (x, y) ∈ (A× C) ∪ (B ×D)

iff (x, y) ∈ A× C or (x, y) ∈ B ×D

iff (x ∈ A and y ∈ C) or (x ∈ B and y ∈ D)

iff (x ∈ A or x ∈ B) and (y ∈ C or y ∈ D)

iff (x ∈ A ∪B) and (y ∈ C ∪D)

iff (x, y) ∈ L .

□

Problem 4.16.

The inverse R−1 of a binary relation R from A to B is the relation from B
to A defined by:

bR−1A iff aRb
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In other words, you get the diagram for R−1 from R by “reversing the arrows”
in the diagram describing R. Now many of the relational properties of R
correspond to different properties of R−1 . For example, R is total iff R−1 is
a surjection.

Fill in the remaining entries in this table:

R is iff R−1 is
total a surjection
a function
a surjection
an injection
a bijection

Hint: Explain what’s going on in terms of “arrows” from A to B in the
diagram for R.

Problem 4.17.

Describe a total injective function—that is, a relation which has the [= 1 out ]
and [≤ 1 in ] properties—from R→ R that is not a bijection.

Problem 4.22

(a) Prove that if A surj B and B surj C, then A surj C.

(b) Explain why A surj B if and only if B inj A.

(c) Conclude from (a) and (b) that if A inj B and B inj C, then A inj C.

(d) According to Definition 4.5.2, A inj B requires a total injective relation.
Explain why A inj B iff there is a total injective function from A to B.

Problems for Section 4.5

Problem 4.39

Let A = {a0, a1, . . . , an−1} be a set of size n, and B = {b0, b1, . . . , bm−1} a
set of size m. Prove that |A×B| = mn by defining a simple bijection from
A×B to the nonnegative integers from 0 to mn− 1.
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Solutions

Problem 4.3.

(a) By using distributivity:

(P and Q) or (P and Q) iff P and (Q or Q)

iff P and T

iff P .

(b) Let P ::= x ∈ A and Q ::= x ∈ B: then,

x ∈ A iff (x ∈ A and not(x ∈ B)) or (x ∈ A and x ∈ B)

iff (x ∈ A−B) or (x ∈ A ∩B)

iff x ∈ (A−B) ∪ (A ∩B) .

Problem 4.5.

Let D be the domain. As A = D −A and so on, our discussion should start
with:

x ∈ A ∩B iff x ∈ D and not(x ∈ A ∩B)

However, as D is the domain, everything which is an element of some set is
also an element of D, so the part “x ∈ D” gives no new information. We can
then simplify the discussion a little bit by omitting “x ∈ D”:

x ∈ A ∩B iff not(x ∈ A ∩B)

iff not(x ∈ A and x ∈ B)

iff (not(x ∈ A) or not(x ∈ B))

iff not(x ∈ A) or not(x ∈ B))

iff x ∈ A or x ∈ B

iff x ∈ (A ∪B) .

Note how the third and fourth iff ’s exploit De Morgan’s Law and distribu-
tivity, respectively.
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Problem 4.6.

(a) Let S be a set. We must prove:

S ⊆ A ∩B iff S ⊆ A and S ⊆ B (2)

We can better do this1 by proving the equivalence as a double implica-
tion:

(S ⊆ A∩B −→ S ⊆ A∧S ⊆ B)∧(S ⊆ A∧S ⊆ B −→ S ⊆ A∩B) (3)

Suppose the left-hand side of (2) holds. Let x be an arbitrary element:
if x ∈ S, then x ∈ A ∩ B, so both x ∈ A and x ∈ B by definition
of intersection. We have thus proved that, if S ⊆ A ∩ B, then S ⊆
A and S ⊆ B: that is, pow(A ∩B) ⊆ pow(A) ∩ pow(B).

Suppose now that the right-hand side of (2) holds. Recall that such
intersection is never empty, because the empty set is a subset of every
set, thus an element of every power set. Let S ⊆ A and S ⊆ B: if S is
empty, then S ⊆ A∩B for sure; if S is not empty, then every element of
S belongs to both A and B, thus to A∩B, and this shows S ⊆ A ∩B.
We have thus proved that, if S ⊆ A and S ⊆ B, then S ⊆ A∩B: that
is, pow(A)∩ pow(B) ⊆ pow(A ∩B). Double inclusion means equality.

(b) Let S be a set. We must prove:

S ⊆ A or S ⊆ B implies S ⊆ A ∪B (4)

But this is easy to see: if S ⊆ A, then for every x ∈ S it is also x ∈ A,
thus x ∈ A ∪B as well, and as x is arbitrary, S ⊆ A ∪ B. Similarly, if
S ⊆ B, then S ⊆ A ∪B.

Now, if for some x ∈ A it is x ̸∈ B, then any subset of A∪B which has
x as an element cannot be a subset of B. It might still be, however,
that every element of B is also an element of A: in this case, A∪B = A
and S ⊆ B implies S ⊆ A, so:

pow(A) ∪ pow(B) = pow(A) = pow(A ∪B) .

That is: if B ⊆ A, then the inclusion at (b) is an equality. The same
holds, with the roles of A and B swapped, if A ⊆ B. However, if
neither A ⊆ B nor B ⊆ A, then there exist x ∈ A and y ∈ A such that
x ̸∈ B and y ̸∈ A: in this case, {x, y} is a subset of A ∪ B, but not a
subset of A nor of B, and the inclusion is strict.

1The classroom discussion depends on a passage which is not immediate to justify.
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Problem 4.7.

1. If the initial set has only one element, then the first player can take no
subset at all, and loses the game.

2. If the initial set {a, b} has two elements, then the first player can only
take away a subset with one element. Then the second player can take
away the other subset with one element, and win the game.

3. If the initial set {a, b, c} has three elements, then the first player can
take away either a subset with one element, or a subset with two ele-
ments.

In the first case, let’s say that the first player takes away {a}. This
eliminates the moves {a, b} and {a, c}, so any other move must be a
subset of {b, c}. If the second player chooses {b, c}, they reduce the
original game to a game starting from a set with two elements, where
they are still the second player, so they have a winning strategy.

In the second case, let’s say that the first player takes away {a, b}. If
the second player takes away {c}, they make the moves {b, c} and {a, c}
impossible, so any further move must be a subset of {a, b}. Again the
second player has reduced the original game to a game starting from a
set with two elements, for which they have a winning strategy.

Problem 4.14.

We prove the contrapositive: if A ∩ C ̸= ∅ and also B ∩ D ̸= ∅, then
(A×B) ∩ (C ×D) ̸= ∅.

Assume A ∩C ̸= ∅ and also B ∩D ̸= ∅. Take x ∈ A ∩C and y ∈ B ∩D:
then the pair (x, y) belongs to both A×B and C ×D.

Problem 4.15.

(a) IfA = {1}, B = {2}, C = {3},D = {4}, then L = {(1, 3), (1, 4), (2, 3), (2, 4)}
but R = {(1, 3), (2, 4)}.
Here is a more dramatic counterexample. If A and D are empty, but
B and C are not, then L is not empty and R is. There is no such thing
as a pair without a first element, or without a second element.
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The problem here is that the choices for the left and right component
are independent in L, but not in R. In L, if we have chosen the first
component from A, then we still have the option of choosing the second
component from either C or D: but in R, we are forced to choose it
from C.

(b) The problem is in the fourth passage, which looks like an application
of the distributivity law for disjunction, but is not: it is a swap of
and with or and vice versa, which is not allowed by the rules of
Boolean algebra, plus a swap between the right-hand side in the first
parentheses and the left-hand side ofthe other parentheses. What we
can conclude from

(x ∈ A and y ∈ C) or (x ∈ B and y ∈ D)

is not (x ∈ A or x ∈ B) and (y ∈ C or y ∈ D), but, for example,

(x ∈ A or (x ∈ B and y ∈ D)) and (y ∈ C or (x ∈ B and y ∈ D)) ,

which we can further split into:

(x ∈ A or x ∈ B)
and (x ∈ A or y ∈ D)
and (y ∈ C or x ∈ B)
and (y ∈ C or y ∈ D)

This formula is not the one on the fourth line of the bogus proof! And
while the first and fourth clause are harmless, the second and third are
not: if x ∈ A but x ̸∈ B, then it must be y ∈ C; similarly, if y ∈ C but
y ̸∈ D, then it must be x ∈ A. The set (A∪B)× (C ∪D) has no such
constraints.

Problem 4.16.

We preliminarily observe that (R−1)−1 = R, as:

a (R−1)−1 b iff bR−1 a iff aR b

Then we can immediately fill:
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R is iff R−1 is
total a surjection
a function
a surjection total
an injection
a bijection

To fill the rest of the table, we observe that the relation diagram of R−1 is
obtained from that of R by first reflecting it along a vertical line which cuts
the arrows in half, then reversing the direction of each arrow. This leads to
the following important observation:

R has the ⋆n in property if and only if R−1 has the ⋆n out property

where ⋆ is either ≤, ≥, or =. As the inverse of the inverse relation is the
original relation, the observation above also holds with the roles of R and
R−1 swapped.

We can now go on:

R is a function iff R has the ≤ 1 out property
iff R−1 has the ≤ 1 in property
iff R−1 is an injection

To conclude, we recall that a bijection is a total function which is both
injective and surjective: in this case, R−1 is a surjective and injective relation
which is both a function and total, so it is also a bijection. And vice versa.
The final table is thus:

R is iff R−1 is
total a surjection
a function an injection
a surjection total
an injection a function
a bijection a bijection

Problem 4.17.

The function f(x) = 2x works just fine:

1. it is total, because 2x is defined for every x ∈ R;
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2. it is injective, because it is strictly increasing, that is, if x < y then
2x < 2y;

3. it is a function, because given x ∈ R, the value 2x is unique;

4. but it is not surjective, because there is no x ∈ R such that 2x = −17.

Another example which I, as instructor, like a lot is the arctangent, defined
for x ∈ R as the unique θ ∈

(
−π

2
, π
2

)
such that tan θ = x. Note that the

range (image of the domain) of the arctangent function is bounded.

Problem 4.22

(a) Let f : A → B and g : B → C be surjective functions. A good
candidate for a surjective function from A to C is g ◦ f : let’s put it to
the test.

� g ◦f is surjective. Let z ∈ C: as g is surjective, there exists y ∈ B
such that g(y) = z. But f is surjective too, so there exists x ∈ A
such that f(x) = y. Then (g ◦ f)(x) = g(f(x)) = g(y) = z.

� g ◦ f is a function. Let x ∈ A: as f is a function, there exists
at most one y ∈ B such that f(x) = y. But g is a function, so
there exists at most one z ∈ C such that g(y) = z. Consequently,
if there is any element w of C at all such that (g ◦ f)(x) = w, it
must be w = z.

(b) By our solution of Problem 4.16, R : A→ B is a surjective function if
and only if R−1 : B → A is a total injective relation.

(c) If A inj B and B inj C, then by point (b), C surj B and B surj A too;
from point (a) then follows C surj A, from which again A inj B thanks
to point (b).

(d) Let R : A→ B be a total injective relation. Then R has the [≥ 1 out ]
and the [≤ 1 in ] properties. We can then construct a relation which
has the [= 1 out ] and [≤ 1 in ] properties—that is, a total injective
function—by choosing, for every a ∈ A, exactly one b ∈ B such that
aRb, and defining f(a) as that b. This relation has the [= 1 out ]
property by construction, and still has the [≤ 1 in ] property, because
we cannot add entering arrows by removing arrows.
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Problem 4.39

We observe that we can order the elements of A × B into a matrix with n
rows and m columns:

(a0, b0) (a0, b1) (a0, b2) . . . (a0, bm−1)
(a1, b0) (a1, b1) (a1, b2) . . . (a1, bm−1)
(a2, b0) (a2, b1) (a2, b2) . . . (a2, bm−1)

...
...

(an−1, b0) (an−1, b1) (an−1, b2) . . . (an−1, bm−1)

 (5)

But we can do the same with the natural numbers smaller than mn:
0 1 2 . . . m− 1
m m+ 1 m+ 2 . . . 2m− 1
2m 2m+ 1 2m+ 2 . . . 3m− 1
...

...
(n− 1)m (n− 1)m+ 1 (n− 1)m+ 2 . . . mn− 1

 (6)

(The last number is (n− 1)m+m− 1 = nm− 1.) Each possible pair (ai, bj)
appears exactly once in the matrix (5). Each possible natural number smaller
than mn appears exactly once in the matrix (6). Then we can obtain a
bijection between A×B and {0, . . . ,mn−1} by superimposing the matrices.
If we do so, we notice that the pair (ai, bj) corresponds to the number mi+j:
this is the bijection we were looking for.
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