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The Law of Non-Contradiction

Law of Non-Contradiction

It is impossible that something and its negation

are both true at the same time.

In formula:

not(P and not(P))

This could be the most important principle of logic.



The Law of the Excluded Middle

Law of the Excluded Middle

Given anything and its negation, one of the two is true.

In formula:

P or not(P)

This is another fundamental principle of classical logic.

However, there are other logics where the Law of the Excluded Middle is not
valid.

This happens, for example, in intuitionistic logic, where a proof of P is a
witness that P is true.

In this context, a witness of �P impliesQ� is a �black box� that transforms any
witness of P, however chosen, into some witness of Q: that is, a function from
P to Q.

Then not(P) is de�ned as P implies⊥, where ⊥ (read �bottom�) is a proposition
that has no witnesses.

It is always possible to construct a witness of not(not(P)) from a witness of P.

But in general, it is not possible to construct a witness of P starting from a
witness of not(not(P)).



Proof by Contradiction

Suppose we have a proposition P, of which we don't know whether it is true or false.

1 Assume the contrary, that is, suppose P is false.

2 Taking not(P) as a hypothesis, construct a proof of not(Q), where Q is a
proposition which we know to be true.

3 Since it is impossible to prove a false statement by starting from true

hypotheses and reasoning correctly , P cannot be false:
By the law of excluded middle, it must be true.



Example: The square root of 2 is irrational

Claim√
2 is irrational.



Example: The square root of 2 is irrational

Claim√
2 is irrational.

Step 1: Assume the contrary.

Suppose integers m and n exist such that
√
2=

m

n
.



Example: The square root of 2 is irrational

Claim√
2 is irrational.

Step 2: Construct a proof of a false statement.

We may suppose that m,n are positive and have no common positive factors
except 1.

By squaring and multiplying by n2 we get m2 = 2n2.

As m2 is even, so must be m.

Let m= 2k. Then 4k2 = 2n2, hence 2k2 = n2.

As n2 is even, so must be n.

So m and n are two integers, without common positive factors except 1, both

even. . .



Example: The square root of 2 is irrational

Claim√
2 is irrational.

Step 3: Conclude that the original proposition is true.

We have proved that if the square root of 2 is rational, then there are two
relatively prime integers which are both even.

But two relatively prime integers cannot be both even.

Therefore, the square root of 2 cannot be rational: it must be irrational.



Proof by Contradiction vs Proof by Negation

Suppose we have a proposition P, of which we don't know whether it is true or false.

1 Suppose P is true.

2 Taking P as a hypothesis, construct a proof of not(Q), where Q is a predicate
which we know to be true.

3 Since it is impossible to prove a false statement by starting from true
hypotheses and reasoning correctly, P cannot be true: it must be false.



Proof by Contradiction vs Proof by Negation

Suppose we have a proposition P, of which we don't know whether it is true or false.

1 Suppose P is true.

2 Taking P as a hypothesis, construct a proof of not(Q), where Q is a predicate
which we know to be true.

3 Since it is impossible to prove a false statement by starting from true
hypotheses and reasoning correctly, P cannot be true: it must be false.

Is this the same kind of argument as proof by contradiction?



Proof by Contradiction vs Proof by Negation

Suppose we have a proposition P, of which we don't know whether it is true or false.

1 Suppose P is true.

2 Taking P as a hypothesis, construct a proof of not(Q), where Q is a predicate
which we know to be true.

3 Since it is impossible to prove a false statement by starting from true
hypotheses and reasoning correctly, P cannot be true: it must be false.

Is this the same kind of argument as proof by contradiction?

Yes and no:

An argument by contradiction has the form:

If not(P), then contradiction; thus, P.

This new argument, however, has the form:

If P, then contradiction; thus, not(P).

This is more appropriately called a proof by negation.

We could apply proof by negation to not(P), but we would get:

If not(P), then contradiction; thus, not(not(P)).

To conclude with P, we still need �if not(not(P)), then P�: which is (another
form of) the law of the excluded middle!
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The Well Ordering Principle

Every nonempty set

of nonnegative integers

has a smallest element.
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Revisiting an old example

We saw a proof of the following:

Theorem√
2 is irrational.

At one point, the proof went:

We may suppose m,n ≥ 1 and gcd(m,n) = 1.



Revisiting an old example

We saw a proof of the following:

Theorem√
2 is irrational.

At one point, the proof went:

We may suppose m,n ≥ 1 and gcd(m,n) = 1.

Question: why could we suppose so?



Revisiting an old example

We saw a proof of the following:

Theorem√
2 is irrational.

At one point, the proof went:

We may suppose m,n ≥ 1 and gcd(m,n) = 1.

Question: why could we suppose so?

Answer: because of the well ordering principle!



Every fraction can be written in lowest terms.

Suppose that there exist positive integers m,n such that the fraction
m

n
cannot be

written in lowest terms, that is, so that the numerator and denominator have no prime
factors in common.
(A prime number is an integer p > 1 which is only divisible by 1 and itself.)

Let C be the set of those positive integers that are numerators of fractions
which cannot be written in lowest terms.



Every fraction can be written in lowest terms.

Suppose that there exist positive integers m,n such that the fraction
m

n
cannot be

written in lowest terms, that is, so that the numerator and denominator have no prime
factors in common.
(A prime number is an integer p > 1 which is only divisible by 1 and itself.)

Let C be the set of those positive integers that are numerators of fractions
which cannot be written in lowest terms.

Then C is nonempty, because it contains m.

Let m0 be the smallest element of C .

Correspondingly, let n0 be such that
m0

n0
cannot be written in lowest terms.

Then m0 and n0 must have a common prime factor p:

Otherwise,
m0

n0
would be a writing in lower terms.



Every fraction can be written in lowest terms.

Suppose that there exist positive integers m,n such that the fraction
m

n
cannot be

written in lowest terms, that is, so that the numerator and denominator have no prime
factors in common.
(A prime number is an integer p > 1 which is only divisible by 1 and itself.)

Let C be the set of those positive integers that are numerators of fractions
which cannot be written in lowest terms.

We have established the following:

If m0 is the smallest element of C ,

and
m0

n0
cannot be written in lowest terms,

then m0 and n0 have a common prime factor p.

But
m0/p

n0/p
=

m0

n0
, so

m0

p
must also belong to C .

But this is impossible, because
m0

p
<m0, and m0 is the smallest element of C .



Notation for sets

Let P(x) be a predicate whose truth value depends on the value of variable x .

If an object x is in a set S, we write: x ∈ S.

We denote by:
{x ∈ S | P(x)}

the set of all and only those elements x of S for which P(x) is true.

We read: �the set of the x in S such that P(x)�.
We may omit S if irrelevant or clear from the context.

Assume now that the sets S and T are clear from the context.
If E(x) is an expression dependent on a parameter x such that, for each value of
x ∈ S, the expression E(x) describes some object in the set T , we can use the
shorthand:

{E(x) | P(x)} ::= {y ∈ T | there exists x ∈ S such that P(x) and y = E(x)}

We read: �the set of the E(x) such that P(x)�.

The empty set which has no elements at all is denoted by /0.

The set of natural numbers (that is, nonnegative integers) is denoted by N.



A template for well ordering proofs

Let P(n) be a predicate which depends on a variable n taking values in N.
We want to prove that P(n) is true for every n ∈ N.

1 Let C be the set of the counterexamples:

C = {c ∈ N | P(c) is false}

2 By contradiction, assume that C is nonempty.

3 By the Well Ordering Principle, C has a smallest element c0:
This c0 is the smallest counterexample.

4 Derive a contradiction. Some ways to do so:

Show that P(c0) is true: that is, c0 is not a counterexample.
Show that C has an element c1 smaller than c0:
that is, c0 is not the smallest counterexample.
Use c0 to construct a proof of not(Q) where Q is a proposition which is
known to be true.

5 Conclude that C is empty, hence P(n) is true for every n ∈ N.



Notation for sums

Let a ∈ N be �xed and, for an integer n ≥ a and all integers k such that a≤ k ≤ n, let
xk be a number.

The sum, for k from a to n, of the xk is the number
n

∑
k=a

xk de�ned as follows:

If n= a, then
a

∑
k=a

xk = xa.

If n > a, then
n

∑
k=a

xk =

(
n−1

∑
k=a

xk

)
+xn.

This is our �rst example of a recursive de�nition, where a base case is given, and
every next object can be obtained from the previous one by applying a constructor .



Example: The sum of the �rst n positive integers

Theorem 2.2.1.

For every positive integer n,
n

∑
k=1

k = 1+2+3+ · · ·+n=
n(n+1)

2
.

Proof:

Let C =

{
c ∈ N | c > 0 and 1+2+ · · ·+c ̸= c(c+1)

2

}
.

If C is nonempty, then it has a smallest element c0.

We observe that c0 cannot be 1, because 1=
1 ·2
2

.

Then c0−1 is still a positive integer, and as it is smaller than c0,

1+2+ · · ·+(c0−1) =
(c0−1)c0

2
.

But then,

1+2+ · · ·+c0 =
(c0−1)c0

2
+c0 =

c2
0
−c0+2c0

2
=

c0(c0+1)

2
:

contradiction.
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The Prime Factorization Theorem

Theorem 2.3.1.

Every integer n ≥ 2 can be factored as a product of primes.



The Prime Factorization Theorem

Theorem 2.3.1.

Every integer n ≥ 2 can be factored as a product of primes.

Proof: by the Well Ordering Principle.

Let C be the set of counterexamples to Theorem 2.3.1, that is, the integers
n ≥ 2 which cannot be factored as a product of primes.

By contradiction, assume that C is nonempty.

By the Well Ordering Principle, C has a smallest element c0.

c0 cannot be prime, because a product of one prime is still a product of primes.

Then c0 has a positive divisor a such that 1< a< c0.

But then, b = c0/a is also such that 1< b < c0.



The Prime Factorization Theorem

Theorem 2.3.1.

Every integer n ≥ 2 can be factored as a product of primes.

Proof: by the Well Ordering Principle.

Let C be the set of counterexamples to Theorem 2.3.1, that is, the integers
n ≥ 2 which cannot be factored as a product of primes.

By contradiction, assume that C is nonempty.

Then the smallest element c0 of C satis�es c0 = a ·b where 1< a< c0 and
1< b < c0.

But as a and b are smaller than c0, and c0 is the smallest counterexample, a
and b can be written as products of primes!

So let a= p1p2 · · ·pm and b = q1q2 · · ·qn be writings of a and b as products of
primes.

Then ab = p1p2 · · ·pmq1q2 · · ·qn is a writing of c0 as a product of primes!



The Prime Factorization Theorem

Theorem 2.3.1.

Every integer n ≥ 2 can be factored as a product of primes.

Proof: by the Well Ordering Principle.

We can summarize our �ndings as follows:

If there are any counterexamples to Theorem 2.3.1,
then the smallest such counterexample is not a counterexample.

This is impossible, so there was no counterexample in the �rst place, and
Theorem 2.3.1 is true.
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Well ordered sets

De�nition

A set S of numbers is well ordered if every nonempty subset of S
has a minimum element.



Well ordered sets

De�nition

A set S of numbers is well ordered if every nonempty subset of S
has a minimum element.

The Well Ordering Principle can then be restated as follows:

The set of nonnegative integers is well ordered.

Are there other well ordered sets? Indeed:

Every nonempty subset of a well ordered set is well ordered.



A small, but useful, generalization

Denote by Z the set of the integer numbers.1

Theorem 2.4.1.

For every n ∈ N, the set {k ∈ Z | k ≥−n} is well ordered.

1The letter is a zed because the German word for �number� is �Zahl�.



A small, but useful, generalization

Denote by Z the set of the integer numbers.1

Theorem 2.4.1.

For every n ∈ N, the set {k ∈ Z | k ≥−n} is well ordered.

We give an argument which does not depend on the speci�c value of n, hence holds
for every n.

Let S be a nonempty set of integers, none of which is smaller than −n.

Then every integer of the form k+n with k ∈ S is nonnegative.

Let T = {k+n | k ∈ S} ⊆ N.
By the Well Ordering Principle, T has a minimum m.

Then s0 =m−n is the minimum of S .

1The letter is a zed because the German word for �number� is �Zahl�.



Two quick corollaries

De�nition 2.4.2.

A lower bound (resp., upper bound) for a set S of real numbers is a real number b
such that b ≤ s (resp., b ≥ s) for every s ∈ S.

Corollary 2.4.3.

Any nonempty set of integers (that is, subset of Z) with a lower bound is well ordered.

Proof:

If b is a lower bound for S , then so is its �oor:

⌊b⌋=max{k ∈ Z | k ≤ b} .

For example, ⌊π⌋= 3, and ⌊−π⌋=−4.
Then S is also a nonempty subset of {k ∈ Z | k ≥ ⌊b⌋}, which is well ordered by
Theorem 2.4.2.



Two quick corollaries

De�nition 2.4.2.

A lower bound (resp., upper bound) for a set S of real numbers is a real number b
such that b ≤ s (resp., b ≥ s) for every s ∈ S.

Corollary 2.4.4.

Any nonempty set of integers with an upper bound has a greatest element.

Proof:

If b is an upper bound for S, then −b is a lower bound for −S = {−s | s ∈ S}.
If m is the smallest element of −S, then −m is the greatest element of S.



Another important principle

Lemma 2.4.5.

Every nonempty �nite set of real numbers is well ordered.

As every subset of a �nite set is �nite, this is equivalent to:

Every nonempty �nite set of real numbers has a smallest element.



Another important principle

Lemma 2.4.5.

Every nonempty �nite set of real numbers is well ordered.

As every subset of a �nite set is �nite, this is equivalent to:

Every nonempty �nite set of real numbers has a smallest element.

Proof:

Let C be the set of those positive integers n such that there exists a �nite set of
exactly n real numbers which has no smallest element.

By contradiction, assume C is nonempty.

Let m be the smallest element of C .

It must be m ≥ 2, because the unique element of a set with exactly one
element, is also its smallest element.



Another important principle

Lemma 2.4.5.

Every nonempty �nite set of real numbers is well ordered.

As every subset of a �nite set is �nite, this is equivalent to:

Every nonempty �nite set of real numbers has a smallest element.

Proof:

Let C be the set of those positive integers n such that there exists a �nite set of
exactly n real numbers which has no smallest element.

By contradiction, assume C is nonempty.

Let m be the smallest element of C . We observed that m ≥ 2.

Consider a set F of m real numbers which has no smallest element.

Choose an element r0 of F , and let F ′ be the set made of all the elements of F
except r0.

Then F ′ has m−1≥ 1 elements, so it has a smallest element r1.

But then, every element of F is greater than or equal to the smallest between r0
and r1: contradiction.
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The set of the fractions n/(n+1)

Let F=

{
n

n+1

∣∣∣∣n ∈ N
}
. This set is well ordered!

We will prove this fact as an exercise.

In the meantime: think why it is so.



The set of the fractions n/(n+1)

Let F=

{
n

n+1

∣∣∣∣n ∈ N
}
. This set is well ordered! But there's more!

Theorem

N+F= {n+ f | n ∈ N, f ∈ F} is well ordered.

Proof: By two applications of the Well Ordering Principle.

Let S be a nonempty subset of N+F.
Let T be the set of the nonnegative integers n such that:
There exists f ∈ F such that n+ f ∈ S .

As S is nonempty, T must be nonempty too:
Let n0 be the least element of T .

Let now U be the set of those f ∈ F such that n0+ f ∈ S.

Then U is also nonempty, and as F is well ordered, U has a least element f0.



The set of the fractions n/(n+1)

Let F=

{
n

n+1

∣∣∣∣n ∈ N
}
. This set is well ordered! But there's more!

Theorem

N+F= {n+ f | n ∈ N, f ∈ F} is well ordered.

Proof: By two applications of the Well Ordering Principle.

Let S be a nonempty subset of N+F.
We have determined that there exist a least n0 such that n0+ f ∈ S for some f ,
and a least f0 such that n0+ f0 ∈ S .

Then what could be the smallest element of S?
Well: it can only be . . .



The set of the fractions n/(n+1)

Let F=

{
n

n+1

∣∣∣∣n ∈ N
}
. This set is well ordered! But there's more!

Theorem

N+F= {n+ f | n ∈ N, f ∈ F} is well ordered.

Proof: By two applications of the Well Ordering Principle.

Let S be a nonempty subset of N+F.
We have determined that there exist a least n0 such that n0+ f ∈ S for some f ,
and a least f0 such that n0+ f0 ∈ S .

Then what could be the smallest element of S?
Well: it can only be . . . n0+ f0

Indeed, let n and f be such that n+ f ∈ S.

If n > n0, then n+ f > n0+ f0, because f0 < 1.

If n= n0, then n+ f = n0+ f ≥ n0+ f0 by our choice of f0.

The case n < n0 is impossible by our choice of n0.
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An issue with human language

Consider these statements:

1 You can have the cake, or eat it.

2 If two and two are �ve, then I am the Pope.

3 If you can solve any exercise, then you will pass the test.

4 Everyone has a dream.

What do they mean? It might not be immediately clear.

Which is not surprising, because:

Human language is ambiguous.

This is �ne: or we must renounce to poetry, humour, etc.

But it is inconvenient when we do mathematics . . .



An issue with human language

Consider these statements:

1 You can have the cake, or eat it.

2 If two and two are �ve, then I am the Pope.

3 If you can solve any exercise, then you will pass the test.

4 Everyone has a dream.

What do they mean? It might not be immediately clear.

Which is not surprising, because:

Human language is ambiguous.

This is �ne: or we must renounce to poetry, humour, etc.

But it is inconvenient when we do mathematics . . .



Ambiguity: inclusion and exclusion

You can have the cake, or eat it.

Can I have the cake and also eat it?

Must I renounce to eat the cake if I want to have it?



Ambiguity: false hypotheses, true consequences

If two and two are �ve, then I am the Pope.

What if I am not the Pope?

What if I am the Pope?

What if two and two are actually �ve, but I am not the Pope?



Ambiguity: �some� vs �all�

If you can solve any exercise, then you will pass the test.

Can I pass the test if I can solve only one exercise?

Do I need to be able to solve an exercise in particular?

Do I need to be able to solve every single exercise?



Ambiguity: �for every� vs �exists�

Everyone has a dream.

Does every single person have a dream of their own?

Is there a single dream that everyone has?



A non-ambiguous language for mathematics

To avoid ambiguities, mathematicians divide propositions into

atomic formulas joined together by logical connectives.

The role of atomic formulas is taken by propositional variables

which can take any of the two values T (true) and F (false).

The relation between the truth values of the variables and that of a

formula can be expressed by truth tables.
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The connective not(·)

Truth value of not(·)

If P is a proposition, then not(P) is also a proposition.

not(P) is true i� P is false.

The connective not(·) is also called negation.

Truth table for not(·)

P not(P)

T F

F T



The connective and

Truth value of P and Q

If P and Q are propositions, then P and Q is also a proposition.

P and Q is true i� both P and Q are true.

The connective and is also called conjunction.

Truth table for and

P Q P and Q

T T T

T F F

F T F

F F F



The connective or

Truth value of P or Q

If P and Q are propositions, then P or Q is also a proposition.

P or Q is true i� either P or Q is true, or both are.

The connective or is also called disjunction.

Truth table for or

P Q P or Q

T T T

T F T

F T T

F F F



The connective xor

Truth value of P xor Q

If P and Q are propositions, then P xor Q is also a proposition.

P xor Q is true i� either P or Q is true, but not both.

xor (ex-OR) is also called exclusive or , or exclusive disjunction.

Truth table for xor

P Q P xor Q

T T F

T F T

F T T

F F F



You can have the cake, or eat it

Let P be the proposition �I can have the cake�, and Q be the

proposition �I can eat the cake�.

Can I have the cake and also eat it?

This corresponds to P or Q.

Do I lose the cake if I eat it?

This corresponds to P xor Q.



The connective implies

Truth value of P implies Q

If P and Q are propositions, then P implies Q is also a proposition.

P implies Q is true i� either P is false, or Q is true.

P implies Q can be read as follows:

If P , then Q.

P is a su�cient condition for Q.

Q is a necessary condition for P .

Truth table for implies

P Q P implies Q

T T T

T F F

F T T

F F T



The connective implies

Truth value of P implies Q

If P and Q are propositions, then P implies Q is also a proposition.

P implies Q is true i� either P is false, or Q is true.

This is called the material implication:

�P implies Q� means �it is never the case that P without Q�.

Important: it is not necessary that P be a cause for Q!

Truth table for implies

P Q P implies Q

T T T

T F F

F T T

F F T



If two and two are �ve, then I am the Pope

Let P be the proposition �two and two are �ve�, and Q be the

proposition �I am the Pope�.

What if I am not the Pope?

Anyway, P implies Q has a false antecedent, so it is true.

What if I am the Pope?

Then P implies Q has a true consequent, so it is true.

What if two and two are actually �ve, but I am not the Pope?

Then P implies Q would have a true antecedent, and a false

consequent: so it would be false.



The connective i�

Truth value of P i� Q

If P and Q are propositions, then P i� Q is also a proposition.

P i� Q is true i� P and Q are either both true, or both false.

That is:

�P i� Q� means �P and Q have the same truth value�.

Truth table for i�

P Q P i� Q

T T T

T F F

F T F

F F T
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