
ITB8832 Mathematics for Computer Science
Lecture 3 � 18 September 2023

Chapter Three

Equivalence and Validity

The Algebra of Propositions

The SAT problem

Predicate Formulas



Contents

1 Equivalence and Validity

2 The Algebra of Propositions

3 The SAT problem

4 Predicate Logic



Next section

1 Equivalence and Validity

2 The Algebra of Propositions

3 The SAT problem

4 Predicate Logic



Contrapositives

De�nition

The contrapositive of the formula P impliesQ is the formula not(Q) implies not(P).

Contrapositives are equivalent to each other.

P Q P impliesQ not(Q) implies not(P)
T T T F T F
T F F T F F
F T T F T T
F F T T T T



Contrapositives

De�nition

The contrapositive of the formula P impliesQ is the formula not(Q) implies not(P).

Contrapositives are equivalent to each other.
For example,

If I am hungry, then I am grumpy

is equivalent to

If I am not grumpy, then I am not hungry



Converses

De�nition

The converse of the formula P impliesQ is the formula Q implies P.

Converses are not equivalent to each other!

P Q P impliesQ Q implies P
T T T T
T F F T
F T T F
F F T T



Converses

De�nition

The converse of the formula P impliesQ is the formula Q implies P.

Converses are not equivalent to each other!
For example,

If I am hungry, then I am grumpy

is not equivalent to

If I am grumpy, then I am hungry



Converses

De�nition

The converse of the formula P impliesQ is the formula Q implies P.

Converses are not equivalent to each other!
However, conjunction of converses is equivalent to i� .

P Q P impliesQ and Q implies P P i� Q
T T T T T T
T F F F T F
F T T F F F
F F T T T T



Converses

De�nition

The converse of the formula P impliesQ is the formula Q implies P.

Converses are not equivalent to each other!
However, conjunction of converses is equivalent to i� .
For example,

If I am hungry, then I am grumpy, and if I am grumpy, then I am hungry

is equivalent to

I am grumpy if and only if I am hungry



Validity

De�nition

A propositional formula is valid if it is true for every assignment of truth values to its
variables.



Validity

De�nition

A propositional formula is valid if it is true for every assignment of truth values to its
variables.

Examples:

not(P and not(P)) law of non-contradiction

P or not(P) law of excluded middle

P i� not(not(P)) double negation

P implies (Q implies P) weakening

(P −→ (Q −→ R))−→ ((P −→Q)−→ (P −→ R)) conditional modus ponens



Validity

De�nition

A propositional formula is valid if it is true for every assignment of truth values to its
variables.

Examples:

not(P and not(P)) law of non-contradiction

P or not(P) law of excluded middle

P i� not(not(P)) double negation

P implies (Q implies P) weakening

(P −→ (Q −→ R))−→ ((P −→Q)−→ (P −→ R)) conditional modus ponens

Non-example:

P, where P is any propositional variable.



Satis�ability

De�nition

A propositional formula is satis�able if it is true for some assignment of truth values
to its variables.
We say that such assignment satis�es the formula.



Satis�ability

De�nition

A propositional formula is satis�able if it is true for some assignment of truth values
to its variables.
We say that such assignment satis�es the formula.

Examples:

P, where P is a propositional variable.
That is: every atomic formula is satis�able.

P⊗Q, where P and Q are variables and ⊗ is any of the binary connectives
and , or , implies , i� , and xor .



Satis�ability

De�nition

A propositional formula is satis�able if it is true for some assignment of truth values
to its variables.
We say that such assignment satis�es the formula.

Examples:

P, where P is a propositional variable.
That is: every atomic formula is satis�able.

P⊗Q, where P and Q are variables and ⊗ is any of the binary connectives
and , or , implies , i� , and xor .

Non-example:

A and not(A), where A is any formula.



Validity, satis�ability, and equivalence

Let P and Q be formulas.

Theorem

P is valid if and only if not(P) is unsatis�able.
P is satis�able if and only if not(P) is not valid.

Theorem

P and Q are equivalent if and only if P i� Q is valid.



Next section

1 Equivalence and Validity

2 The Algebra of Propositions

3 The SAT problem

4 Predicate Logic



Disjunctive normal forms: An example

Let φ ::= A and (B or C). Consider its truth table:

A B C φ

T T T T
T T F T
T F T T
T F F F
F T T F
F T F F
F F T F
F F F F

The assignments of (A,B,C) which make φ true are (T,T,T), (T,T,F), and (T,F,T).
These are the same assignments that make the following formula true:

(A and B and C) or (A and B and C) or (A and B and C)



Formulas in disjunctive normal form

De�nition

A literal is a symbol of the form A or A where A is a propositional variable.

An and -clause is a conjunction of literals where each variable appears at most
once, either as itself or as its negation.

A formula ψ in n variables P1, . . . ,Pn is in disjunctive normal form (DNF) if it is
written as a disjunction of and -clauses.

If every variable appears in every conjunction (either as itself or its negation) the
DNF is said to be full .

For example, this formula is in DNF:

(A and B and C) or (A and B and C) or (A and B and C)

and so is this one:
(A and B) or (A and B and C)

but these ones are not:

A and (B or C) ; A and B and C and A ; not(A and B and C)



Disjunctive normal form(s) of a formula

De�nition

A disjunctive normal form of a formula φ is a formula ψ in DNF which is equivalent to
φ .

For example,

(A and B and C) or (A and B and C) or (A and B and C)

is a disjunctive normal form of
A and (B or C)



Existence of the DNF

Theorem

Every satis�able propositional formula has a DNF.



Existence of the DNF

Theorem

Every satis�able propositional formula has a DNF.

Proof:

Let P1, . . . ,Pn be the variables of the formula φ .

Construct the truth table of φ .

For each row where φ has value T, construct a conjunction (A1 and . . . and An)

where:

Ai = Pi if Pi = T on the row;

Ai = not(Pi ) if Pi = F on the row.

The disjunction of all these conjunctions is a DNF for φ .



Satis�ability and DNF

The procedure in the previous slide constructs a DNF from the rows of the truth table
where the formula is true.

This presumes that there is at least one such row.

But what if there is none?1

A possible way out is to use the following convention:

The DNF of an unsatis�able formula is empty.

This is a patch rather than a �x, because we did not de�ne propositional formulas so
that they could be empty.

1Remarkably, the textbook says nothing about this.



Conjunctive normal forms

�Dually� to DNF, we have:

De�nition

An or -clause is a disjunction of literals where each variable appears at most
once, either as itself or as its negation.

A formula ψ in n variables P1, . . . ,Pn is in conjunctive normal form (CNF) if it is
written as a conjunction of or -clauses.

If every variable appears in every conjunction (either as itself or its negation) the
CNF is said to be full .

A conjunctive normal form of a formula φ is a formula ψ in CNF which is
equivalent to φ .

Theorem

Every non-valid propositional formula has a CNF.

Exercise: Modify the algorithm to derive the full DNF of a satis�able formula to
obtain an algorithm that derives the full CNF of a non-valid formula.



An algebra for propositional calculus

George Boole (1815-1864) de�ned a set of rules for manipulating propositional
formula, which are now known as Boolean algebra.

These rules are given as equivalence between propositional formulas constructed
via the connectives ∧, ∨, and ¬.
The reason is that ∧, ∨, and ¬ form a basis of connectives:
Every propositional formula is equivalent to a formula where the only
connectives are ∧, ∨, and ¬.
(For example: a DNF if it is satis�able, or a CNF if it is not valid.)

The �rst axiom is the law of double negation:

¬(¬A)←→ A



An algebra for the propositional calculus: and

The following formulas are all valid:

A∧B ←→ B ∧A commutativity
(A∧B)∧C ←→ A∧ (B ∧C) associativity

A∧A ←→ A idempotence
A∧T ←→ A identity
A∧F ←→ F zero
A∧A ←→ F noncontradiction

A∧ (B ∨C) ←→ (A∧B)∨ (A∧C) distributivity
A∧ (B ∨A) ←→ A absorption
¬(A∧B) ←→ A∨B de Morgan’s law



An algebra for the propositional calculus: or

The following formulas are all valid:

A∨B ←→ B ∨A commutativity
(A∨B)∨C ←→ A∨ (B ∨C) associativity

A∨A ←→ A idempotence
A∨F ←→ A identity
A∨T ←→ T unit
A∨A ←→ T excluded middle

A∨ (B ∧C) ←→ (A∨B)∧ (A∨C) distributivity
A∨ (B ∧A) ←→ A absorption
¬(A∨B) ←→ A∧B de Morgan’s law



A strategy for DNF

Let φ be an arbitrary propositional formula.

1 Apply de Morgan's laws until ¬ is only applied to single variables.

2 Apply distributivity to obtain a disjunction of conjunctions.

3 Apply idempotence to remove multiple instances of variables within
conjunctions.

4 Apply associativity to remove unnecessary parentheses.

5 Complete each conjunction so that, for each variable P, exactly one between P
and P appears in it.
To do this, exploit that A←→ A∧ (B ∨B) is a valid formula, following from
A∧T←→ A and B ∨B ←→ T.

6 Simplify the formula by using distributivity, commutativity, and absorption.



Completeness of propositional calculus

Theorem

Two propositional formulas are equivalent if and only if they can be proved to be
equivalent via the axioms of Boolean algebra.

Proof: (sketch)

Simple: As all the axioms of Boolean algebra are equivalences, so must be any
proposition proved starting from them.

Complicated: The axioms of Boolean algebra allow conversion to disjunctive
normal form, and two formulas are equivalent i� they have the same DNF (up
to commutativity).



Next section

1 Equivalence and Validity

2 The Algebra of Propositions

3 The SAT problem

4 Predicate Logic



The Satis�ability problem

The Satis�ability problem, denoted as SAT, is:

Given an arbitrary Boolean formula φ ,
determine if φ is satis�able.



The Satis�ability problem

The Satis�ability problem, denoted as SAT, is:

Given an arbitrary Boolean formula φ ,
determine if φ is satis�able.

How di�cult can this be?

Conceptually: not much

1 Put φ in disjunctive normal form.

2 Use truth tables to determine if φ is true for some assignment of variables.



The Satis�ability problem

The Satis�ability problem, denoted as SAT, is:

Given an arbitrary Boolean formula φ ,
determine if φ is satis�able.

How di�cult can this be?

Conceptually: not much

1 Put φ in disjunctive normal form.

2 Use truth tables to determine if φ is true for some assignment of variables.

Computationally: A LOT

Suppose φ depends on n Boolean variables.

If φ is not satis�able, we need to test each one of the 2n truth assignments to
prove so.

For n= 50 variables, with a computer capable of 1 million such tests per
second, this takes more than thirty-�ve years.



Big Oh notation

De�nition

Given two functions f ,g : N→ [0,+∞) we say that f (n) is big Oh of g(n), and write
f (n) =O(g(n)), if there exist n0 ∈ N and C > 0 such that

f (n)≤ C ·g(n) for every n ≥ n0 .

If T (n) is the maximum time required to solve SAT for a given formula, then
T (n) =O(2n).

Problems only solvable in exponential or larger time are considered to be
intractable.



Polynomial time algorithms

De�nition

An algorithm runs in polynomial time T (n) in the size n of its input if T (n) =O(nk )
for some k ≥ 1.

The class of polynomial-time algorithms has some �good� features:

Polynomials �do not grow too fast�.

A composition of polynomials is still a polynomial:
If p(x) and q(x) are polynomials, then so is p(q(x)), what you obtain if you
replace every occurrence of x with q(x) in the expression of p(x) and simplify.

Hence, a composition of polynomial time algorithms is still a polynomial time
algorithm.



P versus NP

De�nition: P
The class P is the class of the decision problems that have a solution algorithm which
runs in polynomial time in the size of the input.

That is: problem X is in class P if and only if there are a polynomial p(t) and an
algorithm A running in time O(p(n)) for inputs of size n which, however given in input
an instance I of X , produces in output the YES/NO answer to I .

De�nition: NP
The class NP is the class of the decision problems that have a veri�cation algorithm
which runs in polynomial time in the size of the input.

That is: problem X is in class NP if and only if there are a polynomial p(t) and an
algorithm A running in time O(p(n)) for inputs of size n which, however given in input
an instance I of X and a potential witness w that the answer to I is YES, determines
if w is really so.



P versus NP

De�nition: P
The class P is the class of the decision problems that have a solution algorithm which
runs in polynomial time in the size of the input.

De�nition: NP
The class NP is the class of the decision problems that have a veri�cation algorithm
which runs in polynomial time in the size of the input.

The following happens:

1 SAT belongs to NP.

2 For every problem X in NP there exists an algorithm that turns any instance I of
X and potential witness w of I into an instance J of SAT and a potential
witness z of J, in time polynomial in the size of I and w , and so that the answer
to I is YES if and only if the answer to J is YES.

Consequently:

If SAT ∈ P then P = NP.



What if P = NP?

The good:

We can e�ciently design circuits.

We get e�cient algorithms for scheduling .

We can e�ciently distribute resources.



What if P = NP?

The good:

We can e�ciently design circuits.

We get e�cient algorithms for scheduling .

We can e�ciently distribute resources.

The bad:

Modern cryptography becomes insecure.



SAT solvers

There is currently a big interest in algorithms that, under certain

conditions, solve SAT in polynomial time.



SAT solvers

There is currently a big interest in algorithms that, under certain

conditions, solve SAT in polynomial time.

Question

Doesn't this presume that SAT ∈ P?



SAT solvers

There is currently a big interest in algorithms that, under certain

conditions, solve SAT in polynomial time.

Question

Doesn't this presume that SAT ∈ P?

Answer: no, because

even if the problem as a whole is not e�ciently solvable,

it might still be that some well de�ned subclasses of cases are.



Next section

1 Equivalence and Validity

2 The Algebra of Propositions

3 The SAT problem

4 Predicate Logic



Truth for predicates

Consider a predicate of the form: x2 ≥ 0.

This is always true if x is a real number.

But if x is a complex number, it might be false:

For example, i2 =−1< 0.

Worse still,

(
1

2
+ i

√
3

2

)2

=−1
2
+ i

√
3

2
is not even a real number, and cannot

be said to be �smaller� or �larger� than zero.

How can we specify when a predicate is true?



Universal quanti�er

Let P(x) be a predicate depending on a variable x which takes values in a set S (the
type of the variable).

De�nition

The formula:
∀x ∈ S .P(x)

is true if and only if P(x) is true for every x ∈ S .

The formula can be read as follows:

For every x in S , P(x).

P(x) is true for every x in S.

For example, the following formulas are true:

∀x ∈ R .x2 ≥ 0 ; ∀n ∈ N . if n is prime then
√
n is irrational

but the following ones are false:

∀x ∈ C .x2 ≥ 0 ; ∀n ∈ N .
√
n is irrational



Existential quanti�er

Let P(x) be a predicate depending on a variable x which takes values in a set S (the
type of the variable).

De�nition

The formula:
∃x ∈ S .P(x)

is true if and only if P(x) is true for at least one x ∈ S.

The formula can be read as follows:

There exists x in S such that P(x).

P(x) is true for some x in S .

For example, the following formulas are true:

∃x ∈ R .5x2 = 7 ; ∃n ∈ N .n2 = 16

but the following ones are false:

∃x ∈ R .5x2 =−7 ; ∃n ∈ N .n2 = 17



Precedence of quanti�ers

Quanti�ers have a stronger binding than propositional connectives:

∀x .P(x) impliesQ stands for (∀x .P(x)) impliesQ.

However, some textbooks (including ours) seem to also use the following convention:

A quanti�er using a variable x binds as many instances of x as possible before
encountering another quanti�er.

Example from the textbook (page 67, formula (3.27))

Textbook: ∃x .∀y .P(x ,y) implies ∀x .∃y .P(x ,y).

Meaning: (∃x .∀y .P(x ,y)) implies (∀x .∃y .P(x ,y)).

Again: When in doubt, use parentheses.



If you can solve any exercise, then you will pass the test

Let solve(x) be a predicate meaning that you solve exercise x .
Let pass be a proposition meaning that you pass the test.

You can pass the test by solving only one exercise

(∃x ∈ Exercises .solve(x))−→ pass

You can pass the test by solving one speci�c exercise

∃x ∈ Exercises .(solve(x)−→ pass)

You need to solve every single exercise to pass the test

pass−→ ∀x ∈ Exercises .solve(x)



Mixing quanti�ers

Many mathematical statements involve more than one quanti�er:

Goldbach's Conjecture

Every even integer larger than 2 is a sum of two primes.

If we de�ne S as the set of the even integers larger than 2, Goldbach's conjecture can
be expressed by the formula:

∀n ∈ S .∃p ∈ Primes .∃q ∈ Primes .p+q = n

As p and q vary in the same set Primes, we can also use the more compact writing:

∀n ∈ S .∃p,q ∈ Primes .p+q = n



Everyone has a dream

Let dreams(p,d) mean that person p has dream d .

Every single person has some dream

∀p ∈ Persons .∃d ∈ Dreams .dreams(p,d)

There is a single dream everyone has

∃d ∈ Dreams .∀p ∈ Persons .dreams(p,d)



De Morgan's laws for quanti�ers

When the operator not(·) is applied to a predicate starting with a quanti�er, the
following happen:

not(∀x .P(x)) is equivalent to ∃x .not(P(x))

not(∃x .P(x)) is equivalent to ∀x .not(P(x))



Validity for predicate formulas

Intuitively, a predicate formula is valid if it is evaluated as true:

no matter what the domain of the discourse is,

no matter what the type of the variables are, and

no matter what interpretation of its predicates is given.

This is much harder to formalize, and to verify, than validity of propositional formulas.



A valid predicate formula

Theorem

The following predicate formula is valid:

(∃x .∀y .P(x ,y)) implies (∀y .∃x .P(x ,y))

Proof:

If x varies in D and y varies in H, the formula becomes:

(∃x ∈D .∀y ∈H .P(x ,y)) implies (∀y ∈H .∃x ∈D .P(x ,y))

Suppose ∃x ∈D .∀y ∈H .P(x ,y) is true:
We want to show that ∀y ∈H .∃x ∈D .P(x ,y) is also true.

Take x0 ∈D such that ∀y ∈H .P(x0,y) is true.

If we are given y ∈H, we can always �nd x ∈D such that P(x ,y) is true, simply
by putting x = x0.

Then ∀y ∈H .∃x ∈D .P(x ,y) is true, as we wanted.

As the argument does not depend on the domain, types, and interpretation, the
argument always works, and the predicate formula is valid.



Counter-models

De�nition

Let φ(x1, . . . ,xn) be a predicative formula depending on the n variables xi .
A counter-model for φ is a choice of:

a domain D,

types Si for the variables xi , and

interpretations in D for the predicates occurring in φ

that make φ false.



Counter-models

De�nition

Let φ(x1, . . . ,xn) be a predicative formula depending on the n variables xi .
A counter-model for φ is a choice of:

a domain D,

types Si for the variables xi , and

interpretations in D for the predicates occurring in φ

that make φ false.

Counter-models are at least as important as models, if not more:

Counter-models allow to disprove implications.

Let P and Q be predicate formulas.

Suppose that you want to prove that the predicate P impliesQ is not valid.

You can do so by choosing a domain, types for the variables, and interpretations
which make P true and Q false.



A predicate formula with a counter-model

The following predicate formula is obtained from the one of two slides ago, swapping
antecedent with consequent:

(∀y .∃x .P(x ,y)) implies (∃x .∀y .P(x ,y))

The following is a counter-model for the formula above:

Domain: the natural numbers.

Type of the variables: natural numbers.

Interpretation of P(x ,y): x > y .

In this counter-model, the formula means:

�if for every natural number there is a larger natural number,
then there is a natural number which is larger than every natural number�

which is clearly false.



A counter-model from Euclidean geometry

Consider the predicate formula:

∀v ,x ,y ,z .(T (v ,x)∧T (v ,y)∧T (v ,z)−→ E(x ,y)∨E(x ,z)∨E(y ,z))



A counter-model from Euclidean geometry

Consider the predicate formula:

∀v ,x ,y ,z .(T (v ,x)∧T (v ,y)∧T (v ,z)−→ E(x ,y)∨E(x ,z)∨E(y ,z))

We construct a counter-model as follows:

As our domain, we choose Euclidean plane geometry.

As types for variables, we make v be a straight line, and x ,y ,z be points.

As interpretation for the predicates, we read T (v ,x) as �the straight line v goes
through point x�, and E(x ,y) as �points x and y are equal�.



A counter-model from Euclidean geometry

Consider the predicate formula:

∀v ,x ,y ,z .(T (v ,x)∧T (v ,y)∧T (v ,z)−→ E(x ,y)∨E(x ,z)∨E(y ,z))

We construct a counter-model as follows:

As our domain, we choose Euclidean plane geometry.

As types for variables, we make v be a straight line, and x ,y ,z be points.

As interpretation for the predicates, we read T (v ,x) as �the straight line v goes
through point x�, and E(x ,y) as �points x and y are equal�.

Then the formula above is interpreted as:

�if a line of the Euclidean plane goes through three points,
then two of those three points coincide�

which is false.



. . . and a model too!

Consider again the predicate formula:

∀v ,x ,y ,z .(T (v ,x)∧T (v ,y)∧T (v ,z)−→ E(x ,y)∨E(x ,z)∨E(y ,z))



. . . and a model too!

Consider again the predicate formula:

∀v ,x ,y ,z .(T (v ,x)∧T (v ,y)∧T (v ,z)−→ E(x ,y)∨E(x ,z)∨E(y ,z))

We construct a model as follows:

Domain: a cube.

Variable types: v is an edge, and x ,y ,z are vertices.

Interpretation: we read T (v ,x) as �the edge v has terminal vertex x�, and
E(x ,y) as �vertices x and y are equal�.



. . . and a model too!

Consider again the predicate formula:

∀v ,x ,y ,z .(T (v ,x)∧T (v ,y)∧T (v ,z)−→ E(x ,y)∨E(x ,z)∨E(y ,z))

We construct a model as follows:

Domain: a cube.

Variable types: v is an edge, and x ,y ,z are vertices.

Interpretation: we read T (v ,x) as �the edge v has terminal vertex x�, and
E(x ,y) as �vertices x and y are equal�.

Then the formula above is interpreted as:

�if an edge of a cube has three terminal vertices,
then two of those three terminal vertices coincide�

which is true.


	Equivalence and Validity
	The Algebra of Propositions
	The SAT problem
	Predicate Logic

