ITB8832 Mathematics for Computer Science Lecture 3 – 18 September 2023

Chapter Three

Equivalence and Validity

The Algebra of Propositions

The SAT problem

Predicate Formulas

Contents

1 Equivalence and Validity

2 The Algebra of Propositions

- 3 The SAT problem
- 4 Predicate Logic

Next section

1 Equivalence and Validity

2 The Algebra of Propositions

3 The SAT problem

4 Predicate Logic

Contrapositives

Definition

The *contrapositive* of the formula P implies Q is the formula not(Q) implies not(P).

Contrapositives are equivalent to each other.

Ρ	Q	P implies Q	not(Q)	implies	not(P)
Т	Т	Т	F	Т	F
Т	F	F	Т	F	F
F	Т	Т	F	Т	Т
F	F	Т	Т	Т	Т

Contrapositives

Definition

The *contrapositive* of the formula P implies Q is the formula not(Q) implies not(P).

Contrapositives are equivalent to each other. For example,

If I am hungry, then I am grumpy

is equivalent to

If I am not grumpy, then I am not hungry

Definition

The *converse* of the formula P implies Q is the formula Q implies P.

Converses are not equivalent to each other!

Ρ	Q	P implies Q	Q implies P
Т	Т	Т	Т
Т	F	F	Т
F	Т	Т	F
F	F	Т	Т

Definition

The converse of the formula P implies Q is the formula Q implies P.

Converses *are not* equivalent to each other! For example,

If I am hungry, then I am grumpy

is not equivalent to

If I am grumpy, then I am hungry

Definition

The *converse* of the formula P implies Q is the formula Q implies P.

Converses *are not* equivalent to each other! However, *conjunction of converses is equivalent to* iff.

Р	Q	P implies Q	and	Q implies P	P iff Q
Т	Т	Т	Т	Т	Т
Т	F	F	F	Т	F
F	Т	Т	F	F	F
F	F	Т	Т	Т	Т

Definition

The converse of the formula P implies Q is the formula Q implies P.

Converses *are not* equivalent to each other! However, *conjunction of converses is equivalent to* iff. For example,

If I am hungry, then I am grumpy, and if I am grumpy, then I am hungry

is equivalent to

I am grumpy if and only if I am hungry

Validity

Definition

A propositional formula is *valid* if it is true for *every* assignment of truth values to its variables.

Validity

Definition

A propositional formula is *valid* if it is true for *every* assignment of truth values to its variables.

Examples:

- not(P and not(P))
- *P* or not(*P*)
- P iff not(not(P))
- P implies (Q implies P)
- $(P \longrightarrow (Q \longrightarrow R)) \longrightarrow ((P \longrightarrow Q) \longrightarrow (P \longrightarrow R))$

law of non-contradiction law of excluded middle double negation weakening conditional modus ponens

Definition

A propositional formula is *valid* if it is true for *every* assignment of truth values to its variables.

Examples:

- not(P and not(P))
- *P* or not(*P*)
- P iff not(not(P))
- P implies (Q implies P)

$$(P \longrightarrow (Q \longrightarrow R)) \longrightarrow ((P \longrightarrow Q) \longrightarrow (P \longrightarrow R))$$

Non-example:

P, where P is any propositional variable.

law of non-contradiction law of excluded middle double negation weakening conditional modus ponens

Satisfiability

Definition

A propositional formula is *satisfiable* if it is true for *some* assignment of truth values to its variables.

We say that such assignment *satisfies* the formula.

Satisfiability

Definition

A propositional formula is *satisfiable* if it is true for *some* assignment of truth values to its variables.

We say that such assignment *satisfies* the formula.

Examples:

- P, where P is a propositional variable. That is: every atomic formula is satisfiable.
- $P \otimes Q$, where P and Q are variables and \otimes is any of the binary connectives and , or , implies , iff , and xor .

Satisfiability

Definition

A propositional formula is *satisfiable* if it is true for *some* assignment of truth values to its variables.

We say that such assignment *satisfies* the formula.

Examples:

- P, where P is a propositional variable. That is: every atomic formula is satisfiable.
- $P \otimes Q$, where P and Q are variables and \otimes is any of the binary connectives and , or , implies , iff , and xor .

Non-example:

A and not(A), where A is any formula.

Validity, satisfiability, and equivalence

Let P and Q be formulas.

Theorem

P is valid if and only if not(P) is unsatisfiable. P is satisfiable if and only if not(P) is not valid.

Theorem

P and Q are equivalent if and only if P iff Q is valid.

Next section

1 Equivalence and Validity

2 The Algebra of Propositions

3 The SAT problem

4 Predicate Logic

Let $\phi ::= A$ and (B or C). Consider its truth table:

Α	В	С	ϕ
Т	Т	Т	Т
Т	Т	F	Т
Т	F	Т	Т
Т	F	F	F
F	Т	Т	F
F	Т	F	F
F	F	Т	F
F	F	F	F

The assignments of (A, B, C) which make ϕ true are (T, T, T), (T, T, F), and (T, F, T). These are the same assignments that make the following formula true:

(A and B and C) or (A and B and \overline{C}) or (A and \overline{B} and C)

Formulas in disjunctive normal form

Definition

- A *literal* is a symbol of the form A or \overline{A} where A is a propositional variable.
- An and -clause is a conjunction of literals where each variable appears at most once, either as itself or as its negation.
- A formula ψ in *n* variables P_1, \ldots, P_n is in *disjunctive normal form (DNF)* if it is written as a disjunction of and -clauses.
- If every variable appears in every conjunction (either as itself or its negation) the DNF is said to be *full*.

For example, this formula is in DNF:

```
(A and B and C) or (A and B and \overline{C}) or (A and \overline{B} and C)
```

and so is this one:

```
(A \text{ and } B) \text{ or } (A \text{ and } \overline{B} \text{ and } C)
```

but these ones are not:

A and (B or C); A and B and C and A; not(A and B and C)

Disjunctive normal form(s) of a formula

Definition

A *disjunctive normal form* of a formula ϕ is a formula ψ in DNF which is equivalent to ϕ .

For example,

```
(A \text{ and } B \text{ and } C) or (A \text{ and } B \text{ and } \overline{C}) or (A \text{ and } \overline{B} \text{ and } C)
```

is a disjunctive normal form of

A and (B or C)

Existence of the DNF

Theorem

Every *satisfiable* propositional formula has a DNF.

Theorem

Every *satisfiable* propositional formula has a DNF.

Proof:

- Let P_1, \ldots, P_n be the variables of the formula ϕ .
- Construct the truth table of ϕ .
- For each row where φ has value T, construct a conjunction (A₁ and ... and A_n) where:

•
$$A_i = P_i$$
 if $P_i = T$ on the row;

- $A_i = not(P_i)$ if $P_i = F$ on the row.
- The disjunction of all these conjunctions is a DNF for ϕ .

The procedure in the previous slide constructs a DNF from the rows of the truth table where the formula is true.

- This presumes that there is at least one such row.
- But what if there is none?¹

A possible way out is to use the following convention:

The DNF of an unsatisfiable formula is empty.

This is a patch rather than a fix, because we did not define propositional formulas so that they could be empty.

¹Remarkably, the textbook says nothing about this.

Conjunctive normal forms

"Dually" to DNF, we have:

Definition

- An or -clause is a disjunction of literals where each variable appears at most once, either as itself or as its negation.
- A formula ψ in *n* variables P_1, \ldots, P_n is in *conjunctive normal form (CNF)* if it is written as a conjunction of or -clauses.
- If every variable appears in every conjunction (either as itself or its negation) the CNF is said to be *full*.
- A *conjunctive normal form* of a formula ϕ is a formula ψ in CNF which is equivalent to ϕ .

Theorem

Every *non-valid* propositional formula has a CNF.

Exercise: Modify the algorithm to derive the full DNF of a satisfiable formula to obtain an algorithm that derives the full CNF of a non-valid formula.

George Boole (1815-1864) defined a set of rules for manipulating propositional formula, which are now known as *Boolean algebra*.

- These rules are given as equivalence between propositional formulas constructed via the connectives \land , \lor , and \neg .
- The reason is that ∧, ∨, and ¬ form a basis of connectives: Every propositional formula is equivalent to a formula where the only connectives are ∧, ∨, and ¬. (For example: a DNF if it is satisfiable, or a CNF if it is not valid.)

The first axiom is the *law of double negation*:

$$\neg(\neg A) \longleftrightarrow A$$

The following formulas are all valid:

$A \wedge B$	\longleftrightarrow	$B \wedge A$	commutativity
$(A \wedge B) \wedge C$	\longleftrightarrow	$A \wedge (B \wedge C)$	associativity
$A \wedge A$	\longleftrightarrow	A	idempotence
$A \wedge T$	\longleftrightarrow	Α	identity
$A \wedge F$	\longleftrightarrow	F	zero
$A \wedge \overline{A}$	\longleftrightarrow	F	noncontradiction
$A \wedge (B \vee C)$	\longleftrightarrow	$(A \land B) \lor (A \land C)$	distributivity
$A \wedge (B \vee A)$	\longleftrightarrow	A	absorption
$\neg (A \land B)$	\longleftrightarrow	$\overline{A} \lor \overline{B}$	de Morgan's law

The following formulas are all valid:

$A \lor B$	\longleftrightarrow	$B \lor A$	commutativity
$(A \lor B) \lor C$	\longleftrightarrow	$A \lor (B \lor C)$	associativity
$A \lor A$	\longleftrightarrow	A	idempotence
$A \lor F$	\longleftrightarrow	Α	identity
$A \lor T$	\longleftrightarrow	Т	unit
$A \lor \overline{A}$	\longleftrightarrow	Т	excluded middle
		$(A \lor B) \land (A \lor C)$	distributivity
$A \lor (B \land A)$	\longleftrightarrow	A	absorption
$\neg (A \lor B)$	\longleftrightarrow	$\overline{A} \wedge \overline{B}$	de Morgan's law

A strategy for DNF

Let ϕ be an arbitrary propositional formula.

- 1 Apply *de Morgan's laws* until \neg is only applied to single variables.
- Apply distributivity to obtain a disjunction of conjunctions.
- 3 Apply *idempotence* to remove multiple instances of variables within conjunctions.
- 4 Apply associativity to remove unnecessary parentheses.
- 5 Complete each conjunction so that, for each variable P, exactly one between Pand \overline{P} appears in it. To do this, exploit that $A \leftrightarrow A \land (B \lor \overline{B})$ is a valid formula, following from $A \land T \leftrightarrow A$ and $B \lor \overline{B} \leftrightarrow T$.
- 6 Simplify the formula by using distributivity, commutativity, and absorption.

Completeness of propositional calculus

Theorem

Two propositional formulas *are* equivalent *if and only if* they *can be proved* to be equivalent via the axioms of Boolean algebra.

Proof: (sketch)

- Simple: As all the axioms of Boolean algebra are equivalences, so must be any
 proposition proved starting from them.
- Complicated: The axioms of Boolean algebra allow conversion to disjunctive normal form, and two formulas are equivalent iff they have the same DNF (up to commutativity).

Next section

1 Equivalence and Validity

2 The Algebra of Propositions

3 The SAT problem

4 Predicate Logic

The Satisfiability problem

The Satisfiability problem, denoted as SAT, is:

Given an arbitrary Boolean formula ϕ , determine if ϕ is satisfiable. The Satisfiability problem, denoted as SAT, is:

Given an arbitrary Boolean formula ϕ , determine if ϕ is satisfiable.

How difficult can this be?

Conceptually: not much

- **1** Put ϕ in disjunctive normal form.
- 2 Use truth tables to determine if ϕ is true for some assignment of variables.

The Satisfiability problem

The Satisfiability problem, denoted as SAT, is:

Given an arbitrary Boolean formula ϕ , determine if ϕ is satisfiable.

How difficult can this be?

Conceptually: not much

1 Put ϕ in disjunctive normal form.

2 Use truth tables to determine if ϕ is true for some assignment of variables.

Computationally: A LOT

- Suppose φ depends on n Boolean variables.
- If ϕ is not satisfiable, we need to test *each one of the* 2^n *truth assignments* to prove so.
- For n = 50 variables, with a computer capable of 1 million such tests per second, this takes more than thirty-five years.

Definition

Given two functions $f, g: \mathbb{N} \to [0, +\infty)$ we say that f(n) is big Oh of g(n), and write f(n) = O(g(n)), if there exist $n_0 \in \mathbb{N}$ and C > 0 such that

 $f(n) \leq C \cdot g(n)$ for every $n \geq n_0$.

- If T(n) is the maximum time required to solve SAT for a given formula, then $T(n) = O(2^n)$.
- Problems only solvable in exponential or larger time are considered to be intractable.

Polynomial time algorithms

Definition

An algorithm runs in *polynomial time* T(n) in the size *n* of its input if $T(n) = O(n^k)$ for some $k \ge 1$.

The class of polynomial-time algorithms has some "good" features:

- Polynomials "do not grow too fast".
- A composition of polynomials is still a polynomial: If p(x) and q(x) are polynomials, then so is p(q(x)), what you obtain if you replace every occurrence of x with q(x) in the expression of p(x) and simplify.
- Hence, a composition of polynomial time algorithms is still a polynomial time algorithm.

P versus NP

Definition: P

The class P is the class of the decision problems that have a *solution algorithm* which runs in polynomial time in the size of the input.

That is: problem X is in class P if and only if there are a polynomial p(t) and an algorithm A running in time O(p(n)) for inputs of size n which, however given in input an instance I of X, produces in output the YES/NO answer to I.

Definition: NP

The class NP is the class of the decision problems that have a *verification algorithm* which runs in polynomial time in the size of the input.

That is: problem X is in class NP if and only if there are a polynomial p(t) and an algorithm A running in time O(p(n)) for inputs of size n which, however given in input an instance I of X and a potential witness w that the answer to I is YES, determines if w is really so.

Definition: P

The class P is the class of the decision problems that have a *solution algorithm* which runs in polynomial time in the size of the input.

Definition: NP

The class NP is the class of the decision problems that have a *verification algorithm* which runs in polynomial time in the size of the input.

The following happens:

2 For every problem X in NP there exists an algorithm that turns any instance I of X and potential witness w of I into an instance J of SAT and a potential witness z of J, in time polynomial in the size of I and w, and so that the answer to I is YES if and only if the answer to J is YES.

Consequently:

If
$$SAT \in P$$
 then $P = NP$.

The good:

- We can efficiently *design circuits*.
- We get efficient algorithms for *scheduling*.
- We can efficiently *distribute resources*.

The good:

- We can efficiently *design circuits*.
- We get efficient algorithms for *scheduling*.
- We can efficiently *distribute resources*.

The bad:

Modern cryptography becomes *insecure*.

There is currently a big interest in algorithms that, *under certain conditions*, solve SAT in polynomial time.

There is currently a big interest in algorithms that, *under certain conditions,* solve SAT in polynomial time.

Question

Doesn't this presume that $SAT \in P$?

There is currently a big interest in algorithms that, *under certain conditions*, solve SAT in polynomial time.

Question

Doesn't this presume that $SAT \in P$?

Answer: no, because

- even if *the problem as a whole* is not efficiently solvable,
- it might still be that *some well defined subclasses of cases* are.

Next section

1 Equivalence and Validity

2 The Algebra of Propositions

3 The SAT problem

4 Predicate Logic

Consider a predicate of the form: $x^2 \ge 0$.

- This is always true if x is a *real* number.
- But if x is a *complex* number, it might be false:

For example,
$$i^2 = -1 < 0$$
.

Worse still,
$$\left(\frac{1}{2} + i\frac{\sqrt{3}}{2}\right)^2 = -\frac{1}{2} + i\frac{\sqrt{3}}{2}$$
 is not even a real number, and cannot

be said to be "smaller" or "larger" than zero.

How can we specify *when* a predicate is true?

Let P(x) be a predicate depending on a variable x which takes values in a set S (the *type* of the variable).

Definition

The formula:

 $\forall x \in S . P(x)$

is true if and only if P(x) is true for every $x \in S$.

The formula can be read as follows:

- For every x in S, P(x).
- P(x) is true for every x in S.

For example, the following formulas are true:

 $\forall x \in \mathbb{R} \, : \, x^2 \ge 0$; $\forall n \in \mathbb{N} \, : \text{ if } n \text{ is prime then } \sqrt{n} \text{ is irrational}$

but the following ones are false:

 $\forall x \in \mathbb{C} \, x^2 \ge 0$; $\forall n \in \mathbb{N} \, \sqrt{n}$ is irrational

Let P(x) be a predicate depending on a variable x which takes values in a set S (the *type* of the variable).

Definition

The formula:

$$\exists x \in S . P(x)$$

is true if and only if P(x) is true for at least one $x \in S$.

The formula can be read as follows:

- There exists x in S such that P(x).
- P(x) is true for some x in S.

For example, the following formulas are true:

$$\exists x \in \mathbb{R} . 5x^2 = 7; \ \exists n \in \mathbb{N} . n^2 = 16$$

but the following ones are false:

$$\exists x \in \mathbb{R} . 5x^2 = -7; \ \exists n \in \mathbb{N} . n^2 = 17$$

Quantifiers have a *stronger* binding than propositional connectives:

 $\forall x . P(x) \text{ implies } Q \text{ stands for } (\forall x . P(x)) \text{ implies } Q.$

However, some textbooks (including ours) seem to also use the following convention:

A quantifier using a variable x binds as many instances of x as possible before encountering another quantifier.

Example from the textbook (page 67, formula (3.27))

- Textbook: $\exists x . \forall y . P(x, y)$ implies $\forall x . \exists y . P(x, y)$.
- Meaning: $(\exists x . \forall y . P(x, y))$ implies $(\forall x . \exists y . P(x, y))$.

Again: When in doubt, use parentheses.

Let solve(x) be a predicate meaning that you solve exercise x. Let pass be a proposition meaning that you pass the test.

You can pass the test by solving only one exercise

 $(\exists x \in \text{Exercises.solve}(x)) \longrightarrow \text{pass}$

You can pass the test by solving one specific exercise

 $\exists x \in \text{Exercises.} (\text{solve}(x) \longrightarrow \text{pass})$

You need to solve every single exercise to pass the test

pass $\longrightarrow \forall x \in \text{Exercises.solve}(x)$

Many mathematical statements involve more than one quantifier:

Goldbach's Conjecture

Every even integer larger than 2 is a sum of two primes.

If we define S as the set of the even integers larger than 2, Goldbach's conjecture can be expressed by the formula:

 $\forall n \in S \, \exists p \in \text{Primes} \, \exists q \in \text{Primes} \, p + q = n$

As p and q vary in the same set Primes, we can also use the more compact writing:

 $\forall n \in S \, \exists p, q \in \text{Primes} \, p + q = n$

Everyone has a dream

Let dreams(p,d) mean that person p has dream d.

Every single person has some dream

 $\forall p \in \text{Persons} . \exists d \in \text{Dreams} . dreams(p, d)$

There is a single dream everyone has

 $\exists d \in \text{Dreams} \, . \, \forall p \in \text{Persons} \, . \, \text{dreams}(p, d)$

When the operator $not(\cdot)$ is applied to a predicate starting with a quantifier, the following happen:

 $not(\forall x. P(x))$ is equivalent to $\exists x. not(P(x))$

 $not(\exists x. P(x))$ is equivalent to $\forall x. not(P(x))$

Intuitively, a predicate formula is valid if it is evaluated as true:

- no matter what the *domain* of the discourse is,
- no matter what the type of the variables are, and
- no matter what *interpretation* of its predicates is given.

This is *much harder* to formalize, and to verify, than validity of propositional formulas.

A valid predicate formula

Theorem

The following predicate formula is valid:

$$(\exists x . \forall y . P(x, y))$$
 implies $(\forall y . \exists x . P(x, y))$

Proof:

If x varies in D and y varies in H, the formula becomes:

$$(\exists x \in D. \forall y \in H. P(x, y)) \text{ implies } (\forall y \in H. \exists x \in D. P(x, y))$$

- Suppose $\exists x \in D . \forall y \in H . P(x, y)$ is true: We want to show that $\forall y \in H . \exists x \in D . P(x, y)$ is also true.
- Take $x_0 \in D$ such that $\forall y \in H \cdot P(x_0, y)$ is true.
- If we are given $y \in H$, we can always find $x \in D$ such that P(x, y) is true, simply by putting $x = x_0$.
- Then $\forall y \in H$. $\exists x \in D$. P(x, y) is true, as we wanted.
- As the argument does not depend on the domain, types, and interpretation, the argument always works, and the predicate formula is valid.

Counter-models

Definition

Let $\phi(x_1,...,x_n)$ be a predicative formula depending on the *n* variables x_i . A *counter-model* for ϕ is a choice of:

- a domain D,
- types S_i for the variables x_i, and
- interpretations in D for the predicates occurring in ϕ

that make ϕ false.

Definition

Let $\phi(x_1,...,x_n)$ be a predicative formula depending on the *n* variables x_i . A *counter-model* for ϕ is a choice of:

- a domain D,
- types S_i for the variables x_i, and
- interpretations in D for the predicates occurring in ϕ

that make ϕ false.

Counter-models are at least as important as models, if not more:

- Counter-models allow to disprove implications.
- Let P and Q be predicate formulas.
- Suppose that you want to prove that the predicate *P* implies *Q* is not valid.
- You can do so by choosing a domain, types for the variables, and interpretations which make P true and Q false.

The following predicate formula is obtained from the one of two slides ago, swapping antecedent with consequent:

$$(\forall y . \exists x . P(x, y)) \text{ implies } (\exists x . \forall y . P(x, y))$$

The following is a counter-model for the formula above:

- Domain: the natural numbers.
- Type of the variables: natural numbers.
- Interpretation of P(x,y): x > y.

In this counter-model, the formula means:

"if for every natural number there is a larger natural number, then there is a natural number which is larger than every natural number"

which is clearly false.

Consider the predicate formula:

 $\forall v, x, y, z. (T(v, x) \land T(v, y) \land T(v, z) \longrightarrow E(x, y) \lor E(x, z) \lor E(y, z))$

Consider the predicate formula:

 $\forall v, x, y, z. (T(v, x) \land T(v, y) \land T(v, z) \longrightarrow E(x, y) \lor E(x, z) \lor E(y, z))$

We construct a counter-model as follows:

- As our domain, we choose Euclidean plane geometry.
- As types for variables, we make v be a straight line, and x, y, z be points.
- As interpretation for the predicates, we read T(v,x) as "the straight line v goes through point x", and E(x,y) as "points x and y are equal".

Consider the predicate formula:

 $\forall v, x, y, z. (T(v, x) \land T(v, y) \land T(v, z) \longrightarrow E(x, y) \lor E(x, z) \lor E(y, z))$

We construct a counter-model as follows:

- As our domain, we choose Euclidean plane geometry.
- As types for variables, we make v be a straight line, and x, y, z be points.
- As interpretation for the predicates, we read T(v,x) as "the straight line v goes through point x", and E(x,y) as "points x and y are equal".

Then the formula above is interpreted as:

"if a line of the Euclidean plane goes through three points, then two of those three points coincide"

which is false.

Consider again the predicate formula:

 $\forall v, x, y, z. (T(v, x) \land T(v, y) \land T(v, z) \longrightarrow E(x, y) \lor E(x, z) \lor E(y, z))$

Consider again the predicate formula:

 $\forall v, x, y, z. (T(v, x) \land T(v, y) \land T(v, z) \longrightarrow E(x, y) \lor E(x, z) \lor E(y, z))$

We construct a model as follows:

- Domain a *cube*.
- Variable types: v is an edge, and x, y, z are vertices.
- Interpretation: we read T(v,x) as "the edge v has terminal vertex x", and E(x,y) as "vertices x and y are equal".

Consider again the predicate formula:

$$\forall v, x, y, z . (T(v, x) \land T(v, y) \land T(v, z) \longrightarrow E(x, y) \lor E(x, z) \lor E(y, z))$$

We construct a model as follows:

- Domain a *cube*.
- Variable types: v is an edge, and x, y, z are vertices.
- Interpretation: we read T(v,x) as "the edge v has terminal vertex x", and E(x,y) as "vertices x and y are equal".

Then the formula above is interpreted as:

"if an edge of a cube has three terminal vertices, then two of those three terminal vertices coincide"

which is true.