ITB8832 Mathematics for Computer Science Lecture 3 – 16 September 2024

Chapter Three

Propositional Logic in Computer Programs

Equivalence and Validity

The Algebra of Propositions

The SAT problem

Predicate Formulas

Contents

- 1 Propositional Logic in Computer Programs
- 2 Equivalence and Validity
- 3 The Algebra of Propositions
- 4 The SAT problem
- 5 Predicate Logic

Next section

- 1 Propositional Logic in Computer Programs
- 2 Equivalence and Validity
- 3 The Algebra of Propositions
- 4 The SAT problem
- 5 Predicate Logic

Condition checking with propositional logic

Consider a piece of Python code such as:

- Can we determine if and when your code will be run?
- Can we write the if-condition in a simpler form?

Let us consider the following propositions:

- A := x > 0
- B := y > 100

We observe that $x \le 0$ is just not(A), so:

$$x > 0$$
 or $(x \le 0 \text{ and } y > 100)$
corresponds to A or $(not(A) \text{ and } B)$

Condition checking with propositional logic

Consider a piece of Python code such as:

```
if x > 0 or (x \le 0 and y > 100):
%% your code here
```

- Can we determine if and when your code will be run?
- Can we write the if-condition in a simpler form?

Let us consider the following propositions:

- A := x > 0
- B ::= y > 100

We observe that $x \le 0$ is just not(A), so:

$$x > 0$$
 or $(x \le 0 \text{ and } y > 100)$ corresponds to A or $(not(A) \text{ and } B)$

Equivalent formulas

Definition

Let α and β be formulas in the variables P_1, \ldots, P_n . α and β are *equivalent* if every assignment of truth values to P_1, \ldots, P_n makes α and β either both true, or both false.

Equivalent formulas

Definition

Let α and β be formulas in the variables P_1, \ldots, P_n . α and β are *equivalent* if every assignment of truth values to P_1, \ldots, P_n makes α and β either both true, or both false.

Examples:

- $\alpha ::= P \text{ or } Q \text{ and } \beta ::= \text{not}(\text{not}(P) \text{ and not}(Q)).$
- $\alpha ::= P \text{ implies } (Q \text{ implies } P) \text{ and } \beta ::= R \text{ or } \mathsf{not}(R).$

Claim

A or (not(A) and B) is equivalent to A or B.

Claim

A or (not(A) and B) is equivalent to A or B.

We start with the basics of the table:

Α	В	A or	(not(A)	and B)	A or B
Т	Т				
Т	F				
F	Т				
F	F				

Claim

A or (not(A) and B) is equivalent to A or B.

We fill the rightmost column, and take a note of the values:

Α	В	A or	(not(A)	and B)	A or B
Т	Т				Т
Т	F				Т
F	Τ				Т
F	F				F

Claim

A or (not(A) and B) is equivalent to A or B.

We convert A into not(A), and take note of the values:

Α	В	A or	(not(A)	and B)	A or B
Т	Т		F		Т
Τ	F		F		Т
F	Т		Т		Т
F	F		Т		F

Claim

A or (not(A) and B) is equivalent to A or B.

We now determine the values of (not(A) and B):

Α	В	A or	(not(A)	and B)	A or B
Т	Т		F	F	Т
Τ	F		F	F	Т
F	Т		Т	Т	Т
F	F		Т	F	F

Claim

A or (not(A) and B) is equivalent to A or B.

Finally, we determine the values of A or (not(A) and B):

Α	В	A or	(not(A)	and B)	A or B
Т	Т	Т	F	F	Т
Τ	F	Т	F	F	Т
F	Τ	Т	Т	Т	Т
F	F	F	Т	F	F

Claim

A or (not(A) and B) is equivalent to A or B.

Finally, we determine the values of A or (not(A) and B):

Α	В	A or	(not(A)	and B)	A or B
Т	Т	Т	F	F	Т
Τ	F	Т	F	F	Т
F	Т	Т	Т	Т	Т
F	F	F	Т	F	F

... and we see that they always match, proving the claim.

We can then rewrite the snippet as:

Simplifying by reasoning

We can also prove the equivalence by reasoning case by case: (and making some observations in the meantime)

- A = T A formula of the form T or Q has truth value T. If A is T, so are both A or (not(A) and B) and A or B.
- A = F A formula of the form F or Q, or of the form T and Q, has the same truth value as Q.

If A is F, then not(A) and B has the same truth value of B, and so do A or (not(A) and B) and A or B.

In either case, A or (not(A) and B) and A or B take the same truth value on each assignment of A and B.

Why simplify?

- To improve readability. Conditions with a simple structure are more easily checked than complex ones.
- 2 To increase speed.
 Less complex formulas require less time to be evaluated.
- To reduce cost.
 The formula might refer to a circuit, whose realization requires materials, tools, time, and money.

Symbolic notation for logical connectives

English	Symbolic
not(P) P and Q P or Q P xor Q P implies Q P iff Q	$ \neg P, \overline{P} P \land Q P \lor Q P \oplus Q P \to Q P \to Q P \leftrightarrow Q $

Precedence

From strongest to weakest:

- $1 \text{ not}(\cdot)$
- 2 and
- 3 or
- 4 xor
- 5 implies
- 6 iff

For example,

not(A) and B or C implies D iff E xor F

is a shorthand for

 $((((not(A)) \text{ and } B) \text{ or } C) \text{ implies } D) \text{ iff } (E \times F)$

When in doubt: use parentheses.

Next section

- 1 Propositional Logic in Computer Programs
- 2 Equivalence and Validity
- 3 The Algebra of Propositions
- 4 The SAT problem
- 5 Predicate Logic

Contrapositives

Definition

The *contrapositive* of the formula P implies Q is the formula not(Q) implies not(P).

Contrapositives are equivalent to each other.

Ρ	Q	P implies Q	not(Q)	implies	not(P)
Т	Т	Т	F	Т	F
Т	F	F	T	F	F
F	Т	Т	F	Т	T
F	F	Т	Т	Т	Т

Contrapositives

Definition

The *contrapositive* of the formula P implies Q is the formula not(Q) implies not(P).

Contrapositives are equivalent to each other.

For example,

If I am hungry, then I am grumpy

is equivalent to

If I am not grumpy, then I am not hungry

Definition

The converse of the formula P implies Q is the formula Q implies P.

Converses are not equivalent to each other!

Ρ	Q	P implies Q	Q implies P
Т	Т	Τ	Т
Т	F	F	Т
F	Т	Т	F
F	F	Т	Т

Definition

The *converse* of the formula P implies Q is the formula Q implies P.

Converses *are not* equivalent to each other! For example,

If I am hungry, then I am grumpy

is not equivalent to

If I am grumpy, then I am hungry

Definition

The *converse* of the formula P implies Q is the formula Q implies P.

Converses *are not* equivalent to each other! However, *conjunction of converses is equivalent to* iff .

Ρ	Q	(P implies Q)	and	(Q implies P)	P iff Q
Т	Т	Т	Т	Т	Т
Т	F	F	F	T	F
F	Т	Т	F	F	F
F	F	Т	Т	Т	Т

Definition

The *converse* of the formula P implies Q is the formula Q implies P.

Converses *are not* equivalent to each other! However, *conjunction of converses is equivalent to* iff . For example,

If I am hungry, then I am grumpy, and if I am grumpy, then I am hungry is equivalent to

I am grumpy if and only if I am hungry

Validity

Definition

A propositional formula is *valid* if it is true for *every* assignment of truth values to its variables.

Validity

Definition

A propositional formula is valid if it is true for every assignment of truth values to its variables.

Examples:

 \blacksquare not(P and not(P))

 $(P \longrightarrow (Q \longrightarrow R)) \longrightarrow ((P \longrightarrow Q) \longrightarrow (P \longrightarrow R))$

- P or not(P)
- P iff not(not(P))
- P implies (Q implies P)

conditional modus ponens

- law of non-contradiction
 - law of excluded middle
 - double negation

weakening

Validity

Definition

A propositional formula is valid if it is true for every assignment of truth values to its variables.

Examples:

- \blacksquare not(P and not(P))
- P or not(P)
- P iff not(not(P))
- P implies (Q implies P)
- $(P \longrightarrow (Q \longrightarrow R)) \longrightarrow ((P \longrightarrow Q) \longrightarrow (P \longrightarrow R))$

law of non-contradiction

law of excluded middle

double negation

weakening

conditional modus ponens

Non-example:

P, where P is any propositional variable.

Satisfiability

Definition

A propositional formula is *satisfiable* if it is true for *some* assignment of truth values to its variables.

We say that such assignment satisfies the formula.

Satisfiability

Definition

A propositional formula is *satisfiable* if it is true for *some* assignment of truth values to its variables.

We say that such assignment *satisfies* the formula.

Examples:

- P, where P is a propositional variable. That is: every atomic formula is satisfiable.
- $P \otimes Q$, where P and Q are variables and \otimes is any of the binary connectives and , or , implies , iff , and xor .

Satisfiability

Definition

A propositional formula is *satisfiable* if it is true for *some* assignment of truth values to its variables.

We say that such assignment satisfies the formula.

Examples:

- P, where P is a propositional variable. That is: every atomic formula is satisfiable.
- $P \otimes Q$, where P and Q are variables and \otimes is any of the binary connectives and , or , implies , iff , and xor .

Non-example:

 \blacksquare A and not(A), where A is any formula.

Validity, satisfiability, and equivalence

Let P and Q be formulas.

Theorem

P is valid if and only if not(P) is unsatisfiable.

P is satisfiable if and only if not(P) is not valid.

Theorem

P and Q are equivalent if and only if P iff Q is valid.

Next section

- 1 Propositional Logic in Computer Programs
- 2 Equivalence and Validity
- 3 The Algebra of Propositions
- 4 The SAT problem
- 5 Predicate Logic

Disjunctive normal forms: An example

Let $\phi := A$ and (B or C). Consider its truth table:

Α	В	С	φ
Т	Т	Т	Т
Т	Т	F	Т
Т	F	Т	Т
Т	F	F	F
F	Т	Т	F
F	Т	F	F
F	F	Т	F
F	F	F	F

The assignments of (A,B,C) which make ϕ true are (T,T,T), (T,T,F), and (T,F,T). These are the same assignments that make the following formula true:

 $(A \text{ and } B \text{ and } C) \text{ or } (A \text{ and } B \text{ and } \overline{C}) \text{ or } (A \text{ and } \overline{B} \text{ and } C)$

Formulas in disjunctive normal form

Definition

- A *literal* is a symbol of the form A or \overline{A} where A is a propositional variable.
- An and -clause is a conjunction of literals where each variable appears at most once, either as itself or as its negation.
- **A** formula ψ in n variables P_1, \ldots, P_n is in *disjunctive normal form (DNF)* if it is written as a disjunction of and -clauses.
- If every variable appears in every conjunction (either as itself or its negation) the DNF is said to be full.

For example, this formula is in DNF:

(A and B and C) or (A and B and
$$\overline{C}$$
) or (A and \overline{B} and C)

and so is this one:

$$(A \text{ and } B) \text{ or } (A \text{ and } \overline{B} \text{ and } C)$$

but these ones are not:

A and (B or C); A and B and C and A; not(A and B and C)

Disjunctive normal form(s) of a formula

Definition

A disjunctive normal form of a formula ϕ is a formula ψ in DNF which is equivalent to ϕ .

For example,

(A and B and C) or (A and B and \overline{C}) or (A and \overline{B} and C)

is a disjunctive normal form of

A and (B or C)

Existence of the DNF

Theorem

Every satisfiable propositional formula has a DNF.

Existence of the DNF

Theorem

Every satisfiable propositional formula has a DNF.

Proof:

- Let $P_1, ..., P_n$ be the variables of the formula ϕ .
- **Construct** the truth table of ϕ .
- For each row where ϕ has value T, construct a conjunction $(A_1$ and ... and $A_n)$ where:
 - \blacksquare $A_i = P_i$ if $P_i = T$ on the row;
 - \blacksquare $A_i = not(P_i)$ if $P_i = F$ on the row.
- The disjunction of all these conjunctions is a DNF for ϕ .

Satisfiability and DNF

The procedure in the previous slide constructs a DNF from the rows of the truth table where the formula is true.

- This presumes that there is at least one such row.
- But what if there is none?¹

A possible way out is to use the following convention:

The DNF of an unsatisfiable formula is empty.

This is a patch rather than a fix, because we did not define propositional formulas so that they could be empty.

¹Remarkably, the textbook says nothing about this.

Conjunctive normal forms

"Dually" to DNF, we have:

Definition

- An or -clause is a disjunction of literals where each variable appears at most once, either as itself or as its negation.
- A formula ψ in n variables P_1, \dots, P_n is in *conjunctive normal form (CNF)* if it is written as a conjunction of or-clauses.
- If every variable appears in every conjunction (either as itself or its negation) the CNF is said to be full.
- **A** conjunctive normal form of a formula ϕ is a formula ψ in CNF which is equivalent to ϕ .

Theorem

Every non-valid propositional formula has a CNF.

Exercise: Modify the algorithm to derive the full DNF of a satisfiable formula to obtain an algorithm that derives the full CNF of a non-valid formula.

An algebra for propositional calculus

George Boole (1815-1864) defined a set of rules for manipulating propositional formula, which are now known as Boolean algebra.

- These rules are given as equivalence between propositional formulas constructed via the connectives \land , \lor , and \neg .
- The reason is that ∧, ∨, and ¬ form a basis of connectives: Every propositional formula is equivalent to a formula where the only connectives are ∧, ∨, and ¬. (For example: a DNF if it is satisfiable, or a CNF if it is not valid.)

The first axiom is the *law of double negation:*

$$\neg(\neg A) \longleftrightarrow A$$

An algebra for the propositional calculus: and

The following formulas are all valid:

An algebra for the propositional calculus: or

The following formulas are all valid:

A strategy for DNF

Let ϕ be an arbitrary propositional formula.

- 1 Apply de Morgan's laws until \neg is only applied to single variables.
- 2 Apply *distributivity* to obtain a disjunction of conjunctions.
- 3 Apply idempotence to remove multiple instances of variables within conjunctions.
- 4 Apply *associativity* to remove unnecessary parentheses.
- Complete each conjunction so that, for each variable P, exactly one between P and \overline{P} appears in it.

 To do this, exploit that $A \longleftrightarrow A \land (B \lor \overline{B})$ is a valid formula, following from $A \land T \longleftrightarrow A$ and $B \lor \overline{B} \longleftrightarrow T$.
- 6 Simplify the formula by using distributivity, commutativity, and absorption.

Completeness of propositional calculus

Theorem

Two propositional formulas *are* equivalent *if and only if* they *can be proved* to be equivalent via the axioms of Boolean algebra.

Proof: (sketch)

- Simple: As all the axioms of Boolean algebra are equivalences, so must be any proposition proved starting from them.
- Complicated: The axioms of Boolean algebra allow conversion to disjunctive normal form, and two formulas are equivalent iff they have the same DNF (up to commutativity).

Next section

- 1 Propositional Logic in Computer Programs
- 2 Equivalence and Validity
- 3 The Algebra of Propositions
- 4 The SAT problem
- 5 Predicate Logic

The Satisfiability problem

The Satisfiability problem, denoted as SAT, is:

Given an arbitrary Boolean formula ϕ , determine if ϕ is satisfiable.

The Satisfiability problem

The Satisfiability problem, denoted as SAT, is:

Given an arbitrary Boolean formula ϕ , determine if ϕ is satisfiable.

How difficult can this be?

Conceptually: not much

- 1 Put ϕ in disjunctive normal form.
- 2 Use truth tables to determine if ϕ is true for some assignment of variables.

The Satisfiability problem

The Satisfiability problem, denoted as SAT, is:

Given an arbitrary Boolean formula ϕ , determine if ϕ is satisfiable.

How difficult can this be?

Conceptually: not much

- 1 Put ϕ in disjunctive normal form.
- 2 Use truth tables to determine if ϕ is true for some assignment of variables.

Computationally: A LOT

- **Suppose** ϕ depends on n Boolean variables.
- If ϕ is not satisfiable, we need to test *each one of the* 2^n *truth assignments* to prove so.
- For n = 50 variables, with a computer capable of 1 million such tests per second, this takes more than thirty-five years.

Big Oh notation

Definition

Given two functions $f,g:\mathbb{N}\to [0,+\infty)$ we say that f(n) is big Oh of g(n), and write f(n)=O(g(n)), if there exist $n_0\in\mathbb{N}$ and C>0 such that

$$f(n) \leq C \cdot g(n)$$
 for every $n \geq n_0$.

- If T(n) is the maximum time required to solve SAT for a given formula, then $T(n) = O(2^n)$.
- Problems only solvable in exponential or larger time are considered to be intractable.

Polynomial time algorithms

Definition

An algorithm runs in *polynomial time* T(n) in the size n of its input if $T(n) = O(n^k)$ for some k > 1.

The class of polynomial-time algorithms has some "good" features:

- Polynomials "do not grow too fast".
- The sum and the product of two polynomials are polynomials.
- A composition of polynomials is still a polynomial: If p(x) and q(x) are polynomials, then so is p(q(x)), which is what you obtain if you replace every occurrence of x in p(x) with q(x) and simplify.
- Hence, an algorithm where all the cycles have polynomial length and all the subroutines run in polynomial time, also runs in polynomial time.

P versus NP

Definition: P

The class P is the class of the decision problems that have a *solution algorithm* which runs in polynomial time in the size of the input.

That is: problem X is in class P if and only if there are a polynomial p(t) and an algorithm A running in time O(p(n)) for inputs of size n which, however given in input an instance I of X, produces in output the YES/NO answer to I.

Definition: NP

The class NP is the class of the decision problems that have a *verification algorithm* which runs in polynomial time in the size of the input.

That is: problem X is in class NP if and only if there are a polynomial p(t) and an algorithm A running in time O(p(n)) for inputs of size n which, however given in input an instance I of X and a potential witness w that the answer to I is YES, determines if w is really so.

P versus NP

Definition: P

The class P is the class of the decision problems that have a *solution algorithm* which runs in polynomial time in the size of the input.

Definition: NP

The class NP is the class of the decision problems that have a *verification algorithm* which runs in polynomial time in the size of the input.

The following happens:

- SAT belongs to NP.
- 2 For every problem X in NP there exists an algorithm that turns any instance I of X and potential witness w of I into an instance J of SAT and a potential witness z of J, in time polynomial in the size of I and w, and so that the answer to I is YES if and only if the answer to J is YES.

Consequently:

If $SAT \in P$ then P = NP.

What if P = NP?

The good:

- We can efficiently *design circuits*.
- We get efficient algorithms for scheduling.
- We can efficiently *distribute resources*.

What if P = NP?

The good:

- We can efficiently *design circuits*.
- We get efficient algorithms for scheduling.
- We can efficiently *distribute resources*.

The bad:

■ Modern cryptography becomes *insecure*.

SAT solvers

There is currently a big interest in algorithms that, *under certain conditions*, solve SAT in polynomial time.

SAT solvers

There is currently a big interest in algorithms that, *under certain conditions*, solve SAT in polynomial time.

Question

Doesn't this presume that $SAT \in P$?

SAT solvers

There is currently a big interest in algorithms that, *under certain conditions*, solve SAT in polynomial time.

Question

Doesn't this presume that $SAT \in P$?

Answer: no, because

- even if *the problem as a whole* is not efficiently solvable,
- it might still be that *some well defined subclasses of cases* are.

Next section

- 1 Propositional Logic in Computer Program
- 2 Equivalence and Validity
- 3 The Algebra of Propositions
- 4 The SAT problem
- 5 Predicate Logic

Truth for predicates

Consider a predicate of the form: $x^2 \ge 0$.

- This is always true if x is a *real* number.
- But if x is a *complex* number, it might be false:
- For example, $i^2 = -1 < 0$.
- Worse still, $\left(\frac{1}{2} + i\frac{\sqrt{3}}{2}\right)^2 = -\frac{1}{2} + i\frac{\sqrt{3}}{2}$ is not even a real number, and cannot be said to be "smaller" or "larger" than zero.

How can we specify when a predicate is true?

Universal quantifier

Let P(x) be a predicate depending on a variable x which takes values in a set S (the type of the variable).

Definition

The formula:

$$\forall x \in S . P(x)$$

is true if and only if P(x) is true for every $x \in S$.

The formula can be read as follows:

- For every x in S, P(x).
- P(x) is true for every x in S.

For example, the following formulas are true:

$$\forall x \in \mathbb{R} . x^2 \ge 0$$
; $\forall n \in \mathbb{N} . \text{if } n \text{ is prime then } \sqrt{n} \text{ is irrational}$

but the following ones are false:

$$\forall x \in \mathbb{C} . x^2 \ge 0$$
; $\forall n \in \mathbb{N} . \sqrt{n}$ is irrational

Existential quantifier

Let P(x) be a predicate depending on a variable x which takes values in a set S (the type of the variable).

Definition

The formula:

$$\exists x \in S . P(x)$$

is true if and only if P(x) is true for at least one $x \in S$.

The formula can be read as follows:

- There exists x in S such that P(x).
- P(x) is true for some x in S.

For example, the following formulas are true:

$$\exists x \in \mathbb{R} . 5x^2 = 7 ; \exists n \in \mathbb{N} . n^2 = 16$$

but the following ones are false:

$$\exists x \in \mathbb{R} . 5x^2 = -7$$
; $\exists n \in \mathbb{N} . n^2 = 17$

Precedence of quantifiers

Quantifiers have a *stronger* binding than propositional connectives:

$$\forall x. P(x)$$
 implies Q stands for $(\forall x. P(x))$ implies Q.

However, some textbooks (including ours) seem to also use the following convention:

A quantifier using a variable x binds as many instances of x as possible before encountering another quantifier.

Example from the textbook (page 67, formula (3.27))

- Textbook: $\exists x . \forall y . P(x,y)$ implies $\forall x . \exists y . P(x,y)$.
- Meaning: $(\exists x . \forall y . P(x,y))$ implies $(\forall x . \exists y . P(x,y))$.

Again: When in doubt, use parentheses.

If you can solve any exercise, then you will pass the test

Let solve(x) be a predicate meaning that you can solve exercise x. Let pass be a proposition meaning that you pass the test.

You can pass the test if you can solve only one exercise

 $(\exists x \in \text{Exercises . solve}(x)) \longrightarrow \text{pass}$

You can pass the test if you can solve one specific exercise

 $\exists x \in \text{Exercises.} (\text{solve}(x) \longrightarrow \text{pass})$

To pass the test, you need to be able to solve every single exercise

 $pass \longrightarrow \forall x \in Exercises.solve(x)$

Mixing quantifiers

Many mathematical statements involve more than one quantifier:

Goldbach's Conjecture

Every even integer larger than 2 is a sum of two primes.

If we define S as the set of the even integers larger than 2, Goldbach's conjecture can be expressed by the formula:

$$\forall n \in S . \exists p \in \text{Primes} . \exists q \in \text{Primes} . p + q = n$$

As p and q vary in the same set Primes, we can also use the more compact writing:

$$\forall n \in S . \exists p, q \in \text{Primes} . p + q = n$$

read: "for every n in S, there exist p and q in Primes such that p+q=n".

Everyone has a dream

Let dreams(p,d) mean that person p has dream d.

Every single person has some dream

 $\forall p \in \text{Persons} . \exists d \in \text{Dreams} . \text{dreams}(p, d)$

There is a single dream everyone has

 $\exists d \in \text{Dreams} . \forall p \in \text{Persons} . \text{dreams}(p, d)$

De Morgan's laws for quantifiers

When the operator $not(\cdot)$ is applied to a predicate starting with a quantifier, the following happen:

$$not(\forall x. P(x))$$
 is equivalent to $\exists x. not(P(x))$
 $not(\exists x. P(x))$ is equivalent to $\forall x. not(P(x))$

Validity for predicate formulas

Intuitively, a predicate formula is valid if it is evaluated as true:

- no matter what the *domain* of the discourse is,
- no matter what the type of the variables are, and
- no matter what interpretation of its predicates is given.

This is much harder to formalize, and to verify, than validity of propositional formulas.

A valid predicate formula

Theorem

The following predicate formula is valid:

$$(\exists x . \forall y . P(x,y))$$
 implies $(\forall y . \exists x . P(x,y))$

Note the analogy with our "everyone has a dream" example:

If there is a single dream that every person has, then every single person has some dream.

A valid predicate formula

Theorem

The following predicate formula is valid:

$$(\exists x. \forall y. P(x,y))$$
 implies $(\forall y. \exists x. P(x,y))$

Proof:

If x varies in D and y varies in H, the formula becomes:

$$(\exists x \in D . \forall y \in H . P(x,y))$$
 implies $(\forall y \in H . \exists x \in D . P(x,y))$

- Suppose $\exists x \in D . \forall y \in H . P(x,y)$ is true: We want to show that $\forall y \in H . \exists x \in D . P(x,y)$ is also true.
- Take $x_0 \in D$ such that $\forall y \in H.P(x_0,y)$ is true.
- If we are given $y \in H$, we can always find $x \in D$ such that P(x,y) is true, simply by choosing $x = x_0$.
- Then $\forall y \in H . \exists x \in D . P(x,y)$ is true, as we wanted.
- As the argument does not depend on the specific domain, types, and interpretation, it always works, and the predicate formula is valid.

Counter-models

Definition

Let $\phi(x_1,...,x_n)$ be a predicative formula depending on the n variables x_i . A *counter-model* for ϕ is a choice of:

- a domain D,
- types S_i for the variables x_i , and
- \blacksquare interpretations in D for the predicates occurring in ϕ

that make ϕ false.

Counter-models

Definition

Let $\phi(x_1,...,x_n)$ be a predicative formula depending on the n variables x_i . A *counter-model* for ϕ is a choice of:

- \blacksquare a domain D,
- types S_i for the variables x_i , and
- lacksquare interpretations in D for the predicates occurring in ϕ

that make ϕ false.

Counter-models are at least as important as models, because they allow to *disprove implications*:

- Let P and Q be predicate formulas.
- Suppose that you want to prove that the predicate P implies Q is not valid.
- You can do so by choosing a domain, types for the variables, and interpretations which make P true and Q false.

A predicate formula with a counter-model

The following predicate formula is obtained from the one of two slides ago, swapping antecedent with consequent:

$$(\forall y. \exists x. P(x,y))$$
 implies $(\exists x. \forall y. P(x,y))$

The following is a counter-model for the formula above:

- Domain: the arithmetics of natural numbers.
- Type of the variables: natural numbers.
- Interpretation of P(x,y): x > y.

In this counter-model, the formula means:

"if for every natural number there is a larger natural number, then there is a natural number which is larger than every natural number"

which is clearly false.

A counter-model from Euclidean geometry

Consider the predicate formula:

$$\forall v, x, y, z . (T(v,x) \land T(v,y) \land T(v,z) \longrightarrow C(x,y) \lor C(x,z) \lor C(y,z))$$

A counter-model from Euclidean geometry

Consider the predicate formula:

$$\forall v, x, y, z . (T(v,x) \land T(v,y) \land T(v,z) \longrightarrow C(x,y) \lor C(x,z) \lor C(y,z))$$

We construct a counter-model as follows:

- As our domain, we choose Euclidean plane geometry.
- As types for variables, we make v be a straight line, and x, y, z be points.
- As interpretation for the predicates, we read T(v,x) as "the straight line v goes through point x", and C(x,y) as "the points x and y coincide".

A counter-model from Euclidean geometry

Consider the predicate formula:

$$\forall v, x, y, z . (T(v, x) \land T(v, y) \land T(v, z) \longrightarrow C(x, y) \lor C(x, z) \lor C(y, z))$$

We construct a counter-model as follows:

- As our domain, we choose Euclidean plane geometry.
- As types for variables, we make v be a straight line, and x, y, z be points.
- As interpretation for the predicates, we read T(v,x) as "the straight line v goes through point x", and C(x,y) as "the points x and y coincide".

Then the formula above is interpreted as:

"if a line of the Euclidean plane goes through three points, then two of those three points coincide"

which is false

...and a model too!

Consider again the predicate formula:

$$\forall v, x, y, z . (T(v, x) \land T(v, y) \land T(v, z) \longrightarrow C(x, y) \lor C(x, z) \lor C(y, z))$$

...and a model too!

Consider again the predicate formula:

$$\forall v, x, y, z . (T(v, x) \land T(v, y) \land T(v, z) \longrightarrow C(x, y) \lor C(x, z) \lor C(y, z))$$

We construct a model as follows:

- Domain: a cube.
- Variable types: v is an edge, and x, y, z are vertices.
- Interpretation: we read T(v,x) as "the edge v touches the vertex x", and E(x,y) as "the vertices x and y coincide".

...and a model too!

Consider again the predicate formula:

$$\forall v, x, y, z . (T(v,x) \land T(v,y) \land T(v,z) \longrightarrow C(x,y) \lor C(x,z) \lor C(y,z))$$

We construct a model as follows:

- Domain: a cube.
- Variable types: v is an edge, and x, y, z are vertices.
- Interpretation: we read T(v,x) as "the edge v touches the vertex x", and E(x,y) as "the vertices x and y coincide".

Then the formula above is interpreted as:

"if an edge of a cube touches three vertices, then two of those three vertices coincide"

which is true