
ITB8832 Mathematics for Computer Science
Lecture 3 – 16 September 2024

Chapter Three

Propositional Logic in Computer Programs

Equivalence and Validity

The Algebra of Propositions

The SAT problem

Predicate Formulas



Contents

1 Propositional Logic in Computer Programs

2 Equivalence and Validity

3 The Algebra of Propositions

4 The SAT problem

5 Predicate Logic



Next section

1 Propositional Logic in Computer Programs

2 Equivalence and Validity

3 The Algebra of Propositions

4 The SAT problem

5 Predicate Logic



Condition checking with propositional logic

Consider a piece of Python code such as:
if x > 0 or (x <= 0 and y > 100):

%% your code here

Can we determine if and when your code will be run?
Can we write the if-condition in a simpler form?

Let us consider the following propositions:
A ::= x > 0

B ::= y > 100

We observe that x<= 0 is just not(A), so:

x > 0 or (x <= 0 and y > 100)
corresponds to A or (not(A) and B)



Condition checking with propositional logic

Consider a piece of Python code such as:
if x > 0 or (x <= 0 and y > 100):

%% your code here

Can we determine if and when your code will be run?
Can we write the if-condition in a simpler form?

Let us consider the following propositions:
A ::= x > 0

B ::= y > 100

We observe that x<= 0 is just not(A), so:

x > 0 or (x <= 0 and y > 100)
corresponds to A or (not(A) and B)



Equivalent formulas

Definition

Let α and β be formulas in the variables P1, . . . ,Pn.
α and β are equivalent if every assignment of truth values to
P1, . . . ,Pn makes α and β either both true, or both false.



Equivalent formulas

Definition

Let α and β be formulas in the variables P1, . . . ,Pn.
α and β are equivalent if every assignment of truth values to
P1, . . . ,Pn makes α and β either both true, or both false.

Examples:
α ::= P or Q and β ::= not(not(P) and not(Q)).
α ::= P implies (Q implies P) and β ::= R or not(R).



Truth table calculation

Claim

A or (not(A) and B) is equivalent to A or B .



Truth table calculation

Claim

A or (not(A) and B) is equivalent to A or B .

We start with the basics of the table:

A B A or (not(A) and B) A or B
T T
T F
F T
F F



Truth table calculation

Claim

A or (not(A) and B) is equivalent to A or B .

We fill the rightmost column, and take a note of the values:

A B A or (not(A) and B) A or B
T T T
T F T
F T T
F F F



Truth table calculation

Claim

A or (not(A) and B) is equivalent to A or B .

We convert A into not(A), and take note of the values:

A B A or (not(A) and B) A or B
T T F T
T F F T
F T T T
F F T F



Truth table calculation

Claim

A or (not(A) and B) is equivalent to A or B .

We now determine the values of (not(A) and B):

A B A or (not(A) and B) A or B
T T F F T
T F F F T
F T T T T
F F T F F



Truth table calculation

Claim

A or (not(A) and B) is equivalent to A or B .

Finally, we determine the values of A or (not(A) and B):

A B A or (not(A) and B) A or B
T T T F F T
T F T F F T
F T T T T T
F F F T F F



Truth table calculation

Claim

A or (not(A) and B) is equivalent to A or B .

Finally, we determine the values of A or (not(A) and B):

A B A or (not(A) and B) A or B
T T T F F T
T F T F F T
F T T T T T
F F F T F F

. . . and we see that they always match, proving the claim.
We can then rewrite the snippet as:

if x > 0 or y > 100:
%% your code here



Simplifying by reasoning

We can also prove the equivalence by reasoning case by case:
(and making some observations in the meantime)

A= T A formula of the form T or Q has truth value T.
If A is T, so are both A or (not(A) and B) and A or B .

A= F A formula of the form F or Q, or of the form T and Q, has the
same truth value as Q.
If A is F, then not(A) and B has the same truth value of B ,
and so do A or (not(A) and B) and A or B .

In either case, A or (not(A) and B) and A or B take the same truth
value on each assignment of A and B .



Why simplify?

1 To improve readability .
Conditions with a simple structure are more easily checked
than complex ones.

2 To increase speed .
Less complex formulas require less time to be evaluated.

3 To reduce cost.
The formula might refer to a circuit, whose realization requires
materials, tools, time, and money.



Symbolic notation for logical connectives

English Symbolic

not(P) ¬P ,P
P and Q P ∧Q
P or Q P ∨Q
P xor Q P⊕Q
P implies Q P −→ Q
P iff Q P ←→ Q



Precedence

From strongest to weakest:
1 not(·)
2 and
3 or
4 xor
5 implies
6 iff

For example,

not(A) and B or C implies D iff E xor F

is a shorthand for

((((not(A)) and B) or C ) implies D) iff (E xor F )

When in doubt: use parentheses.



Next section

1 Propositional Logic in Computer Programs

2 Equivalence and Validity

3 The Algebra of Propositions

4 The SAT problem

5 Predicate Logic



Contrapositives

Definition
The contrapositive of the formula P implies Q is the formula not(Q) implies not(P).

Contrapositives are equivalent to each other.

P Q P implies Q not(Q) implies not(P)
T T T F T F
T F F T F F
F T T F T T
F F T T T T



Contrapositives

Definition
The contrapositive of the formula P implies Q is the formula not(Q) implies not(P).

Contrapositives are equivalent to each other.
For example,

If I am hungry, then I am grumpy

is equivalent to

If I am not grumpy, then I am not hungry



Converses

Definition
The converse of the formula P implies Q is the formula Q implies P.

Converses are not equivalent to each other!

P Q P implies Q Q implies P
T T T T
T F F T
F T T F
F F T T



Converses

Definition
The converse of the formula P implies Q is the formula Q implies P.

Converses are not equivalent to each other!
For example,

If I am hungry, then I am grumpy

is not equivalent to

If I am grumpy, then I am hungry



Converses

Definition
The converse of the formula P implies Q is the formula Q implies P.

Converses are not equivalent to each other!
However, conjunction of converses is equivalent to iff .

P Q (P implies Q) and (Q implies P) P iff Q
T T T T T T
T F F F T F
F T T F F F
F F T T T T



Converses

Definition
The converse of the formula P implies Q is the formula Q implies P.

Converses are not equivalent to each other!
However, conjunction of converses is equivalent to iff .
For example,

If I am hungry, then I am grumpy, and if I am grumpy, then I am hungry

is equivalent to

I am grumpy if and only if I am hungry



Validity

Definition
A propositional formula is valid if it is true for every assignment of truth values to its
variables.



Validity

Definition
A propositional formula is valid if it is true for every assignment of truth values to its
variables.

Examples:

not(P and not(P)) law of non-contradiction

P or not(P) law of excluded middle

P iff not(not(P)) double negation

P implies (Q implies P) weakening

(P −→ (Q −→ R))−→ ((P −→Q)−→ (P −→ R)) conditional modus ponens



Validity

Definition
A propositional formula is valid if it is true for every assignment of truth values to its
variables.

Examples:

not(P and not(P)) law of non-contradiction

P or not(P) law of excluded middle

P iff not(not(P)) double negation

P implies (Q implies P) weakening

(P −→ (Q −→ R))−→ ((P −→Q)−→ (P −→ R)) conditional modus ponens

Non-example:

P, where P is any propositional variable.



Satisfiability

Definition
A propositional formula is satisfiable if it is true for some assignment of truth values
to its variables.
We say that such assignment satisfies the formula.



Satisfiability

Definition
A propositional formula is satisfiable if it is true for some assignment of truth values
to its variables.
We say that such assignment satisfies the formula.

Examples:

P, where P is a propositional variable.
That is: every atomic formula is satisfiable.

P⊗Q, where P and Q are variables and ⊗ is any of the binary connectives
and , or , implies , iff , and xor .



Satisfiability

Definition
A propositional formula is satisfiable if it is true for some assignment of truth values
to its variables.
We say that such assignment satisfies the formula.

Examples:

P, where P is a propositional variable.
That is: every atomic formula is satisfiable.

P⊗Q, where P and Q are variables and ⊗ is any of the binary connectives
and , or , implies , iff , and xor .

Non-example:

A and not(A), where A is any formula.



Validity, satisfiability, and equivalence

Let P and Q be formulas.

Theorem
P is valid if and only if not(P) is unsatisfiable.
P is satisfiable if and only if not(P) is not valid.

Theorem
P and Q are equivalent if and only if P iff Q is valid.



Next section

1 Propositional Logic in Computer Programs

2 Equivalence and Validity

3 The Algebra of Propositions

4 The SAT problem

5 Predicate Logic



Disjunctive normal forms: An example

Let φ ::= A and (B or C). Consider its truth table:

A B C φ

T T T T
T T F T
T F T T
T F F F
F T T F
F T F F
F F T F
F F F F

The assignments of (A,B,C) which make φ true are (T,T,T), (T,T,F), and (T,F,T).
These are the same assignments that make the following formula true:

(A and B and C) or (A and B and C) or (A and B and C)



Formulas in disjunctive normal form

Definition

A literal is a symbol of the form A or A where A is a propositional variable.

An and -clause is a conjunction of literals where each variable appears at most
once, either as itself or as its negation.

A formula ψ in n variables P1, . . . ,Pn is in disjunctive normal form (DNF) if it is
written as a disjunction of and -clauses.

If every variable appears in every conjunction (either as itself or its negation) the
DNF is said to be full .

For example, this formula is in DNF:

(A and B and C) or (A and B and C) or (A and B and C)

and so is this one:
(A and B) or (A and B and C)

but these ones are not:

A and (B or C) ; A and B and C and A ; not(A and B and C)



Disjunctive normal form(s) of a formula

Definition
A disjunctive normal form of a formula φ is a formula ψ in DNF which is equivalent to
φ .

For example,

(A and B and C) or (A and B and C) or (A and B and C)

is a disjunctive normal form of
A and (B or C)



Existence of the DNF

Theorem
Every satisfiable propositional formula has a DNF.



Existence of the DNF

Theorem
Every satisfiable propositional formula has a DNF.

Proof:

Let P1, . . . ,Pn be the variables of the formula φ .

Construct the truth table of φ .

For each row where φ has value T, construct a conjunction (A1 and . . . and An)

where:
Ai = Pi if Pi = T on the row;
Ai = not(Pi ) if Pi = F on the row.

The disjunction of all these conjunctions is a DNF for φ .



Satisfiability and DNF

The procedure in the previous slide constructs a DNF from the rows of the truth table
where the formula is true.

This presumes that there is at least one such row.

But what if there is none?1

A possible way out is to use the following convention:

The DNF of an unsatisfiable formula is empty.

This is a patch rather than a fix, because we did not define propositional formulas so
that they could be empty.

1Remarkably, the textbook says nothing about this.



Conjunctive normal forms

“Dually” to DNF, we have:

Definition

An or -clause is a disjunction of literals where each variable appears at most
once, either as itself or as its negation.

A formula ψ in n variables P1, . . . ,Pn is in conjunctive normal form (CNF) if it is
written as a conjunction of or -clauses.

If every variable appears in every conjunction (either as itself or its negation) the
CNF is said to be full .

A conjunctive normal form of a formula φ is a formula ψ in CNF which is
equivalent to φ .

Theorem
Every non-valid propositional formula has a CNF.

Exercise: Modify the algorithm to derive the full DNF of a satisfiable formula to
obtain an algorithm that derives the full CNF of a non-valid formula.



An algebra for propositional calculus

George Boole (1815-1864) defined a set of rules for manipulating propositional
formula, which are now known as Boolean algebra.

These rules are given as equivalence between propositional formulas constructed
via the connectives ∧, ∨, and ¬.
The reason is that ∧, ∨, and ¬ form a basis of connectives:
Every propositional formula is equivalent to a formula where the only
connectives are ∧, ∨, and ¬.
(For example: a DNF if it is satisfiable, or a CNF if it is not valid.)

The first axiom is the law of double negation:

¬(¬A)←→ A



An algebra for the propositional calculus: and

The following formulas are all valid:

A∧B ←→ B ∧A commutativity
(A∧B)∧C ←→ A∧ (B ∧C) associativity

A∧A ←→ A idempotence
A∧T ←→ A identity
A∧F ←→ F zero
A∧A ←→ F noncontradiction

A∧ (B ∨C) ←→ (A∧B)∨ (A∧C) distributivity
A∧ (B ∨A) ←→ A absorption
¬(A∧B) ←→ A∨B de Morgan’s law



An algebra for the propositional calculus: or

The following formulas are all valid:

A∨B ←→ B ∨A commutativity
(A∨B)∨C ←→ A∨ (B ∨C) associativity

A∨A ←→ A idempotence
A∨F ←→ A identity
A∨T ←→ T unit
A∨A ←→ T excluded middle

A∨ (B ∧C) ←→ (A∨B)∧ (A∨C) distributivity
A∨ (B ∧A) ←→ A absorption
¬(A∨B) ←→ A∧B de Morgan’s law



A strategy for DNF

Let φ be an arbitrary propositional formula.

1 Apply de Morgan’s laws until ¬ is only applied to single variables.

2 Apply distributivity to obtain a disjunction of conjunctions.

3 Apply idempotence to remove multiple instances of variables within
conjunctions.

4 Apply associativity to remove unnecessary parentheses.

5 Complete each conjunction so that, for each variable P, exactly one between P
and P appears in it.
To do this, exploit that A←→ A∧ (B ∨B) is a valid formula, following from
A∧T←→ A and B ∨B ←→ T.

6 Simplify the formula by using distributivity, commutativity, and absorption.



Completeness of propositional calculus

Theorem
Two propositional formulas are equivalent if and only if they can be proved to be
equivalent via the axioms of Boolean algebra.

Proof: (sketch)

Simple: As all the axioms of Boolean algebra are equivalences, so must be any
proposition proved starting from them.

Complicated: The axioms of Boolean algebra allow conversion to disjunctive
normal form, and two formulas are equivalent iff they have the same DNF (up
to commutativity).



Next section

1 Propositional Logic in Computer Programs

2 Equivalence and Validity

3 The Algebra of Propositions

4 The SAT problem

5 Predicate Logic



The Satisfiability problem

The Satisfiability problem, denoted as SAT, is:

Given an arbitrary Boolean formula φ ,
determine if φ is satisfiable.



The Satisfiability problem

The Satisfiability problem, denoted as SAT, is:

Given an arbitrary Boolean formula φ ,
determine if φ is satisfiable.

How difficult can this be?

Conceptually: not much

1 Put φ in disjunctive normal form.

2 Use truth tables to determine if φ is true for some assignment of variables.



The Satisfiability problem

The Satisfiability problem, denoted as SAT, is:

Given an arbitrary Boolean formula φ ,
determine if φ is satisfiable.

How difficult can this be?

Conceptually: not much

1 Put φ in disjunctive normal form.

2 Use truth tables to determine if φ is true for some assignment of variables.

Computationally: A LOT

Suppose φ depends on n Boolean variables.

If φ is not satisfiable, we need to test each one of the 2n truth assignments to
prove so.

For n= 50 variables, with a computer capable of 1 million such tests per
second, this takes more than thirty-five years.



Big Oh notation

Definition
Given two functions f ,g : N→ [0,+∞) we say that f (n) is big Oh of g(n), and write
f (n) =O(g(n)), if there exist n0 ∈ N and C > 0 such that

f (n)≤ C ·g(n) for every n ≥ n0 .

If T (n) is the maximum time required to solve SAT for a given formula, then
T (n) =O(2n).

Problems only solvable in exponential or larger time are considered to be
intractable.



Polynomial time algorithms

Definition
An algorithm runs in polynomial time T (n) in the size n of its input if T (n) =O(nk )
for some k ≥ 1.

The class of polynomial-time algorithms has some “good” features:

Polynomials “do not grow too fast”.

The sum and the product of two polynomials are polynomials.

A composition of polynomials is still a polynomial:
If p(x) and q(x) are polynomials, then so is p(q(x)), which is what you obtain if
you replace every occurrence of x in p(x) with q(x) and simplify.

Hence, an algorithm where all the cycles have polynomial length and all the
subroutines run in polynomial time, also runs in polynomial time.



P versus NP

Definition: P
The class P is the class of the decision problems that have a solution algorithm which
runs in polynomial time in the size of the input.

That is: problem X is in class P if and only if there are a polynomial p(t) and an
algorithm A running in time O(p(n)) for inputs of size n which, however given in input
an instance I of X , produces in output the YES/NO answer to I .

Definition: NP
The class NP is the class of the decision problems that have a verification algorithm
which runs in polynomial time in the size of the input.

That is: problem X is in class NP if and only if there are a polynomial p(t) and an
algorithm A running in time O(p(n)) for inputs of size n which, however given in input
an instance I of X and a potential witness w that the answer to I is YES , determines
if w is really so.



P versus NP

Definition: P
The class P is the class of the decision problems that have a solution algorithm which
runs in polynomial time in the size of the input.

Definition: NP
The class NP is the class of the decision problems that have a verification algorithm
which runs in polynomial time in the size of the input.

The following happens:

1 SAT belongs to NP.

2 For every problem X in NP there exists an algorithm that turns any instance I of
X and potential witness w of I into an instance J of SAT and a potential
witness z of J, in time polynomial in the size of I and w , and so that the answer
to I is YES if and only if the answer to J is YES.

Consequently:

If SAT ∈ P then P = NP.



What if P = NP?

The good:
We can efficiently design circuits.
We get efficient algorithms for scheduling .
We can efficiently distribute resources.



What if P = NP?

The good:
We can efficiently design circuits.
We get efficient algorithms for scheduling .
We can efficiently distribute resources.

The bad:
Modern cryptography becomes insecure.



SAT solvers

There is currently a big interest in algorithms that, under certain
conditions, solve SAT in polynomial time.



SAT solvers

There is currently a big interest in algorithms that, under certain
conditions, solve SAT in polynomial time.

Question

Doesn’t this presume that SAT ∈ P?



SAT solvers

There is currently a big interest in algorithms that, under certain
conditions, solve SAT in polynomial time.

Question

Doesn’t this presume that SAT ∈ P?

Answer: no, because
even if the problem as a whole is not efficiently solvable,
it might still be that some well defined subclasses of cases are.



Next section

1 Propositional Logic in Computer Programs

2 Equivalence and Validity

3 The Algebra of Propositions

4 The SAT problem

5 Predicate Logic



Truth for predicates

Consider a predicate of the form: x2 ≥ 0.

This is always true if x is a real number.

But if x is a complex number, it might be false:

For example, i2 =−1 < 0.

Worse still,

(
1
2
+ i

√
3

2

)2

=−1
2
+ i

√
3

2
is not even a real number, and cannot

be said to be “smaller” or “larger” than zero.

How can we specify when a predicate is true?



Universal quantifier

Let P(x) be a predicate depending on a variable x which takes values in a set S (the
type of the variable).

Definition
The formula:

∀x ∈ S .P(x)

is true if and only if P(x) is true for every x ∈ S .

The formula can be read as follows:

For every x in S , P(x).

P(x) is true for every x in S.

For example, the following formulas are true:

∀x ∈ R .x2 ≥ 0 ; ∀n ∈ N . if n is prime then
√
n is irrational

but the following ones are false:

∀x ∈ C .x2 ≥ 0 ; ∀n ∈ N .
√
n is irrational



Existential quantifier

Let P(x) be a predicate depending on a variable x which takes values in a set S (the
type of the variable).

Definition
The formula:

∃x ∈ S .P(x)

is true if and only if P(x) is true for at least one x ∈ S.

The formula can be read as follows:

There exists x in S such that P(x).

P(x) is true for some x in S .

For example, the following formulas are true:

∃x ∈ R .5x2 = 7 ; ∃n ∈ N .n2 = 16

but the following ones are false:

∃x ∈ R .5x2 =−7 ; ∃n ∈ N .n2 = 17



Precedence of quantifiers

Quantifiers have a stronger binding than propositional connectives:

∀x .P(x) implies Q stands for (∀x .P(x)) implies Q.

However, some textbooks (including ours) seem to also use the following convention:

A quantifier using a variable x binds as many instances of x as possible before
encountering another quantifier.

Example from the textbook (page 67, formula (3.27))

Textbook: ∃x .∀y .P(x ,y) implies ∀x .∃y .P(x ,y).

Meaning: (∃x .∀y .P(x ,y)) implies (∀x .∃y .P(x ,y)).

Again: When in doubt, use parentheses.



If you can solve any exercise, then you will pass the test

Let solve(x) be a predicate meaning that you can solve exercise x .
Let pass be a proposition meaning that you pass the test.

You can pass the test if you can solve only one exercise

(∃x ∈ Exercises .solve(x))−→ pass

You can pass the test if you can solve one specific exercise

∃x ∈ Exercises .(solve(x)−→ pass)

To pass the test, you need to be able to solve every single exercise

pass−→ ∀x ∈ Exercises .solve(x)



Mixing quantifiers

Many mathematical statements involve more than one quantifier:

Goldbach’s Conjecture

Every even integer larger than 2 is a sum of two primes.

If we define S as the set of the even integers larger than 2, Goldbach’s conjecture can
be expressed by the formula:

∀n ∈ S .∃p ∈ Primes .∃q ∈ Primes .p+q = n

As p and q vary in the same set Primes, we can also use the more compact writing:

∀n ∈ S .∃p,q ∈ Primes .p+q = n

read: “for every n in S , there exist p and q in Primes such that p+q = n”.



Everyone has a dream

Let dreams(p,d) mean that person p has dream d .

Every single person has some dream

∀p ∈ Persons .∃d ∈ Dreams .dreams(p,d)

There is a single dream everyone has

∃d ∈ Dreams .∀p ∈ Persons .dreams(p,d)



De Morgan’s laws for quantifiers

When the operator not(·) is applied to a predicate starting with a quantifier, the
following happen:

not(∀x .P(x)) is equivalent to ∃x .not(P(x))

not(∃x .P(x)) is equivalent to ∀x .not(P(x))



Validity for predicate formulas

Intuitively, a predicate formula is valid if it is evaluated as true:

no matter what the domain of the discourse is,

no matter what the type of the variables are, and

no matter what interpretation of its predicates is given.

This is much harder to formalize, and to verify, than validity of propositional formulas.



A valid predicate formula

Theorem
The following predicate formula is valid:

(∃x .∀y .P(x ,y)) implies (∀y .∃x .P(x ,y))

Note the analogy with our “everyone has a dream” example:

If there is a single dream that every person has,
then every single person has some dream.



A valid predicate formula

Theorem
The following predicate formula is valid:

(∃x .∀y .P(x ,y)) implies (∀y .∃x .P(x ,y))

Proof:

If x varies in D and y varies in H, the formula becomes:

(∃x ∈D .∀y ∈H .P(x ,y)) implies (∀y ∈H .∃x ∈D .P(x ,y))

Suppose ∃x ∈D .∀y ∈H .P(x ,y) is true:
We want to show that ∀y ∈H .∃x ∈D .P(x ,y) is also true.

Take x0 ∈D such that ∀y ∈H .P(x0,y) is true.

If we are given y ∈H, we can always find x ∈D such that P(x ,y) is true, simply
by choosing x = x0.

Then ∀y ∈H .∃x ∈D .P(x ,y) is true, as we wanted.

As the argument does not depend on the specific domain, types, and
interpretation, it always works, and the predicate formula is valid.



Counter-models

Definition
Let φ(x1, . . . ,xn) be a predicative formula depending on the n variables xi .
A counter-model for φ is a choice of:

a domain D,

types Si for the variables xi , and

interpretations in D for the predicates occurring in φ

that make φ false.



Counter-models

Definition
Let φ(x1, . . . ,xn) be a predicative formula depending on the n variables xi .
A counter-model for φ is a choice of:

a domain D,

types Si for the variables xi , and

interpretations in D for the predicates occurring in φ

that make φ false.

Counter-models are at least as important as models, because they allow to disprove
implications:

Let P and Q be predicate formulas.

Suppose that you want to prove that the predicate P implies Q is not valid.

You can do so by choosing a domain, types for the variables, and interpretations
which make P true and Q false.



A predicate formula with a counter-model

The following predicate formula is obtained from the one of two slides ago, swapping
antecedent with consequent:

(∀y .∃x .P(x ,y)) implies (∃x .∀y .P(x ,y))

The following is a counter-model for the formula above:

Domain: the arithmetics of natural numbers.

Type of the variables: natural numbers.

Interpretation of P(x ,y): x > y .

In this counter-model, the formula means:

“if for every natural number there is a larger natural number,
then there is a natural number which is larger than every natural number”

which is clearly false.



A counter-model from Euclidean geometry

Consider the predicate formula:

∀v ,x ,y ,z .(T (v ,x)∧T (v ,y)∧T (v ,z)−→ C(x ,y)∨C(x ,z)∨C(y ,z))



A counter-model from Euclidean geometry

Consider the predicate formula:

∀v ,x ,y ,z .(T (v ,x)∧T (v ,y)∧T (v ,z)−→ C(x ,y)∨C(x ,z)∨C(y ,z))

We construct a counter-model as follows:

As our domain, we choose Euclidean plane geometry.

As types for variables, we make v be a straight line, and x ,y ,z be points.

As interpretation for the predicates, we read T (v ,x) as “the straight line v goes
through point x”, and C(x ,y) as “the points x and y coincide”.



A counter-model from Euclidean geometry

Consider the predicate formula:

∀v ,x ,y ,z .(T (v ,x)∧T (v ,y)∧T (v ,z)−→ C(x ,y)∨C(x ,z)∨C(y ,z))

We construct a counter-model as follows:

As our domain, we choose Euclidean plane geometry.

As types for variables, we make v be a straight line, and x ,y ,z be points.

As interpretation for the predicates, we read T (v ,x) as “the straight line v goes
through point x”, and C(x ,y) as “the points x and y coincide”.

Then the formula above is interpreted as:

“if a line of the Euclidean plane goes through three points,
then two of those three points coincide”

which is false.



. . . and a model too!

Consider again the predicate formula:

∀v ,x ,y ,z .(T (v ,x)∧T (v ,y)∧T (v ,z)−→ C(x ,y)∨C(x ,z)∨C(y ,z))



. . . and a model too!

Consider again the predicate formula:

∀v ,x ,y ,z .(T (v ,x)∧T (v ,y)∧T (v ,z)−→ C(x ,y)∨C(x ,z)∨C(y ,z))

We construct a model as follows:

Domain: a cube.

Variable types: v is an edge, and x ,y ,z are vertices.

Interpretation: we read T (v ,x) as “the edge v touches the vertex x”, and
E(x ,y) as “the vertices x and y coincide”.



. . . and a model too!

Consider again the predicate formula:

∀v ,x ,y ,z .(T (v ,x)∧T (v ,y)∧T (v ,z)−→ C(x ,y)∨C(x ,z)∨C(y ,z))

We construct a model as follows:

Domain: a cube.

Variable types: v is an edge, and x ,y ,z are vertices.

Interpretation: we read T (v ,x) as “the edge v touches the vertex x”, and
E(x ,y) as “the vertices x and y coincide”.

Then the formula above is interpreted as:

“if an edge of a cube touches three vertices,
then two of those three vertices coincide”

which is true.


	Propositional Logic in Computer Programs
	Equivalence and Validity
	The Algebra of Propositions
	The SAT problem
	Predicate Logic

