ITB8832 Mathematics for Computer Science Lecture 4 – 23 September 2024

Chapter Four

Sets

Sequences

Functions

Binary Relations

Finite Cardinality

Contents

- 1 Sets
- 2 Sequences
- 3 Functions
- 4 Binary Relations
- 5 Finite Cardinality

Next section

- 1 Sets
- 2 Sequences
- 3 Functions
- 4 Binary Relations
- 5 Finite Cardinality

Sets

Definition (informal)

A set is an aggregate of objects, called the elements of the set.

Sets can be given as *lists* or as *descriptions*:

```
\begin{array}{lll} A & ::= & \{2,3,5,7,11,13,17,19\} & \text{primes smaller than 20} \\ B & ::= & \{\{T\},\{F\},\{T,F\}\} & \text{nonempty sets of Booleans} \\ C & ::= & \{1,2,3,4,\ldots\} & \text{positive integers} \\ D & ::= & \{\text{Sephiroth, Bowser, Diablo,}\ldots\} & \text{villains from video games} \end{array}
```

The symbol ::= is read "is equal by definition to", or "is defined as". Order and repetition do not matter, only elements do:

```
{Sephiroth, Bowser, Diablo} = {Bowser, Diablo, Sephiroth}
{Bowser, Bowser, Bowser} = {Bowser}
```

Elements of a set

Notation

```
"x \in X", read "x in X", means "the object x is an element of the set X". "x \notin X", read "x not in X", means "the object x is not an element of the set X".
```

Usually, when given generic names:

- elements are denoted by uncapitalized letters;
- sets are denoted by capitalized letters.

Examples:

- $17 \in \{2,3,5,7,11,13,17,19\}.$
- Bowser ∈ {Bowser, Diablo, Sephiroth}.

Non-examples:

- $T \notin \{\{T\}, \{F\}, \{T, F\}\}$.

 Do not confuse the *object* T with the *singleton* $\{T\}$ whose only element is T.
- Bowser $\notin \{2,3,5,7,11,13,17,19\}$.

Commonly used sets

$Symbol^1$	Name	Elements
Ø	empty set	
\mathbb{B}	Booleans	T,F
\mathbb{N}	natural numbers	0,1,2,3,
$\mathbb Z$	integers	$\dots, -2, -1, 0, 1, 2, 3, \dots$
\mathbb{Q}	rational numbers	$0,1,-1,\frac{1}{2},-\frac{3}{7},17,\ldots$
\mathbb{R}	real numbers	$0,1,-1,\frac{1}{2},-\frac{3}{7},17,\sqrt{2},\pi,\ldots$
\mathbb{C}	complex numbers	$i, \frac{1}{2}, 17, 1 + i\sqrt{2}, e^{i\pi} + 1, \dots$
\mathbb{Z}^+	positive integers	1,2,3,,17,
\mathbb{R}^+	positive reals	$1, e, \pi, 17, 10^{10^{100}}, \dots$
$\mathbb{R}^{\geq 0}$	non-negative reals	$0, 1, e, \pi, 17, 10^{10^{100}}, \dots$
\mathbb{Z}^-	negative integers	$-1, -2, -3, \ldots, -17, \ldots$
\mathbb{R}^-	negative reals	$-1, -e, -\pi, -17, -10^{10^{100}}, \dots$

 $^{{}^1\}mathsf{The}$ font of the letters \mathbb{N} , \mathbb{Z} , etc. is called "blackboard bold".

Comparisons between sets

Definition

A set X is a *subset* of a set Y if every object which is an element of X is also an element of Y.

In this case, we write: $X \subseteq Y$, and read: "X subset of Y".

If $X\subseteq Y$ but some elements of Y are not elements of X, we may write $X\subset Y$. Examples:

- $\emptyset \subseteq X$ for every set X. Otherwise, there would exist $z \in \emptyset$ such that $z \notin X$...
- $\{2,3,5\} \subset \{2,3,5,7\}.$
- $\{2,3,5\} \not\subseteq \{2,3,7\}$ But $\{2,3,7\} \not\subseteq \{2,3,5\}$ either.

Set construction: Union

Definition 4.1.1.

The *union* of the sets X and Y is the set $X \cup Y$, read "X union Y", such that:

$$x \in X \cup Y \text{ iff } x \in X \text{ or } x \in Y$$

- $\{2,3,5\} \cup \{2,3,7\} = \{2,3,5,7\}.$
- $\{2,3,5\} \cup \{Bowser, Sephiroth\} = \{2,3,5,Bowser, Sephiroth\}.$
- $X \cup \emptyset = \emptyset \cup X = X$ what ever the set X is. In particular: $\emptyset \cup \emptyset = \emptyset$.

Set construction: Intersection

Definition 4.1.1. (cont)

The *intersection* of the sets X and Y is the set $X \cap Y$, read "X intersection Y", such that:

$$x \in X \cap Y$$
 iff $x \in X$ and $x \in Y$

- $\{2,3,5\} \cap \{2,3,7\} = \{2,3\}.$
- $\{2,3,5\} \cap \{\text{Bowser, Sephiroth}\} = \emptyset$.
- $X \cap \emptyset = \emptyset \cap X = \emptyset$ whatever the set X is. In particular: $\emptyset \cap \emptyset = \emptyset$.

Set construction: Difference

Definition 4.1.1. (cont)

The difference of the sets X and Y is the set X - Y, read "X minus Y", such that:

$$x \in X - Y$$
 iff $x \in X$ and $not(x \in Y)$

- $\{2,3,5\} \{2,3,7\} = \{5\}.$
- $\{2,3,5\} \{Bowser, Sephiroth\} = \{2,3,5\}.$
- $X \emptyset = X$ and $\emptyset X = \emptyset$ whatever the set X is. In particular: $\emptyset \emptyset = \emptyset$.
- If X and Y are any two sets, then:

$$X = (X \cap Y) \cup (X - Y)$$

$$X \cup Y = (X \cap Y) \cup (X - Y) \cup (Y - X)$$

Set construction: Complement

For this construction, it is necessary that a *domain* D be defined, such that every object which is element of any set is also an element of D.

Definition

The *complement* of the set X with respect to the domain D is the difference set

$$\overline{X} = D - X$$

Read: "X complement", "X overline", "X bar".

- If $D=\mathbb{Z}$ then $\overline{\mathbb{N}}=\mathbb{Z}^-$.
- If $D = \{Bowser, Diablo, Sephiroth\}\$ then $\{Bowser, Sephiroth\}\$ = $\{Diablo\}\$.

Construction: Power set

Definition

The *power set* of a set X is the set pow(X) whose elements are all and only the subsets of X.

Examples:

- $pow(\emptyset) = \{\emptyset\}.$
- \bullet pow({T,F}) = { \emptyset , {T}, {F}, {T,F}}.
- $pow(\{1,2,3\}) = \{\emptyset,\{1\},\{2\},\{3\},\{1,2\},\{1,3\},\{2,3\},\{1,2,3\}\}.$

Note:

- Power sets are never empty, because $\emptyset \in pow(X)$ for every set X.
- This means that the empty set is both an element and a subset of any power set.
- The context of a statement gives information of which role it has in it.

Set builder notation

The notation

$$S ::= \{x \in X \mid P(x)\}$$

means:

S is defined as the set of all and only those elements x of the set X such that the predicate P(x) is true

The right-hand side is read: "the set of the x in X such that P(x)". Examples:

- $D ::= \{z \in \mathbb{C} \mid \Re z = \Im z\}$. This is the *main diagonal* of the complex plane.
- $E ::= \{z \in \mathbb{C} \mid \exists x, y \in \mathbb{R} : (z = x + iy \land x^2 + 4y^2 = 1)\}$. This is the *ellipse* of width 2 and height 1.
- Primes ::= $\{x \in \mathbb{N} \mid x > 1 \land \forall a, b \in \mathbb{N} . ((a \le b \land ab = x) \longrightarrow (a = 1 \land b = x))\}$

A variant of the set builder notation

Let E(x) be an expression that, for every $x \in X$, represents an element of Y. Then:

$$S ::= \{ E(x) \mid x \in X \}$$

means:

S is defined as the set of all and only the objects of the form E(x) where x is an element of X.

and defines the same set as:

$$S ::= \{ y \in Y \mid \exists x \in X . y = E(x) \}$$

The right-hand side is read: "the set of the E(x) for x in X". Examples:

- $D := \{t + it \mid t \in \mathbb{R}\}$. This is again the main diagonal of the complex plane.
- $\mathbb{N} := \{0\} \cup \{x+1 \mid x \in \mathbb{N}\}.$ This is an example of a *recursive* definition.

Equality between sets

Definition

Two sets are equal if and only if they have the same elements.

Equivalently²:

$$X = Y$$
 iff $X \subseteq Y$ and $Y \subseteq X$

- $\mathbb{N} = \{ x \in \mathbb{Z} \mid x > 0 \}.$
- $\{x \in \mathbb{R} \mid x^2 3x + 2 < 0\} = \{x \in \mathbb{R} \mid 1 < x < 2\}.$
- $\{p \in \text{Primes} \mid p = 2 \text{ or } \exists k \in \mathbb{Z} . p = 4k+1\} = \{p \in \text{Primes} \mid \exists a, b \in \mathbb{Z} . p = a^2 + b^2\}.$ (This nontrivial result is due to *Pierre de Fermat*.)

²Check that the equivalence is true!

Proving Set Equalities

A set equality is, in its essence, an "if and only if" proposition.

Theorem 4.1.2. (Distributive law for sets)

However given three sets A, B, and C,

$$A\cap (B\cup C)=(A\cap B)\cup (A\cap C)$$

Translate the set equality into an "if and only if" proposition:

$$\forall x. (x \in A \cap (B \cup C) \text{ iff } x \in (A \cap B) \cup (A \cap C))$$

Prove the "if and only if" proposition: however chosen x,

$$x \in A \cap (B \cup C)$$
 iff $x \in A$ and $(x \in B \text{ or } x \in C)$
iff $(x \in A \text{ and } x \in B)$ or $(x \in A \text{ and } x \in C)$
iff $x \in (A \cap B) \cup (A \cap C)$

Cheat sheet for set equality

There is a good correspondence between operations on sets and operations on propositions:

Set-theoretical	Logical			
⊆, inclusion	implies, implication			
∪, union	or , disjunction			
∩, intersection	and , conjunction			
$\overline{(\cdot)}$, complementation ³	$not(\cdot)$, $negation$			
=, equality	iff , equivalence			

However, do not mix the two things, as they have different types:

- You can do an intersection of sets: not a conjunction of sets.
- You can do a conjunction of propositions: not an intersection of propositions.

³This requires that a domain has been defined.

Next section

- 1 Sets
- 2 Sequences
- 3 Functions
- 4 Binary Relations
- 5 Finite Cardinality

Sequences

Definition

A sequence of length n is a list of n objects

$$(x_1,x_2,\ldots,x_n)$$

Where a set is a *collection*, a sequence is a *list*:

- Order counts: (Sephiroth, Bowser, Diablo) ≠ (Bowser, Diablo, Sephiroth).
- Entry values can be repeated: (Bowser, Bowser, Bowser) ≠ (Bowser).

As there is an empty set, so there is an empty sequence of length 0: we denote it as λ .

Cartesian products

Definition

The Cartesian product of the sets $S_1, S_2, ..., S_n$ (in this order) is the set

$$S_1 \times S_2 \times \ldots \times S_n$$

of the sequences of length n where, for each i from 1 to n, the ith object is an element of S_i .

If $S_1 = S_2 = \ldots = S_n = S$ we denote the Cartesian product as S^n . Examples:

- $\mathbb{N} \times \mathbb{B} = \{(n, b) \mid n \in \mathbb{N}, b \in \mathbb{B}\} = \{(0, T), (0, F), (1, T), (1, F), \ldots\}$
- $(17, Diablo) \in \mathbb{N} \times \{ \text{video game villains} \}$.
- $(1,e,\pi) \in \mathbb{R}^3.$

Next section

- 1 Sets
- 2 Sequences
- 3 Functions
- 4 Binary Relations
- 5 Finite Cardinality

Functions

Definition

A function with domain A and codomain B is a rule f which assigns to each element x of the set A a unique element f(x) (read "f of x") of the set B.

Notation

- $f: A \rightarrow B$ means: f is a function with domain A and codomain B.
- f(a) = b means: f assigns value b to object a.
 We can also say: b is the value of f at argument a.

Function definition: Formula

Functions can be given by a formula:

- $f_1(x) := 1/x^2$ where $x \in \mathbb{R}$. Here, $f_1(x)$ is not defined for x = 0: f_1 is a partial function.
- $f_2(x,y) ::= y10x$ where x and y are binary strings of finite length. For example: $f_2(10,001) = 0011010$.
- $f_3(x,n)$::= the length of the sequence (x,x,...,x) (n repetitions) where $x \in \mathbb{R}$ and $n \in \mathbb{N}$.
 - You can think of a function with many arguments as a function with a single argument defined on a Cartesian product.
- [P] ::= the truth value of P where P is a proposition.
 These are sometimes called the <u>Iverson brackets</u>.

Function definition: Look-Up Table

A function with finite domain can be defined via its look-up table.

Suppose $f_4(P,Q)$, where P and Q are Boolean variables, has the following look-up table:

$$\begin{array}{c|cccc} P & Q & f_4(P,Q) \\ \hline T & T & T \\ T & F & F \\ F & T & T \\ F & F & T \\ \end{array}$$

The look-up table above is the truth table of implication, so:

$$f_4(P,Q) = [P \text{ implies } Q]$$

Function definition: Procedure

Let x vary in the binary strings and let f_5 return the length of a left-to-right search on x until the first 1 is found.

That is:

$$f_5(x) ::= \begin{cases} 1 & \text{if } x = 1y, \\ 1 + f_5(y) & \text{if } x = 0y. \end{cases}$$

Then:

$$f_5(100) = 1$$

 $f_5(00111) = 3$
 $f_5(00000) = ???$

So this is a partial function too. Exercise: how to make it total?

Image of a set by a function

Definition

If $f: A \rightarrow B$ and $S \subseteq A$, then:

$$f(S) ::= \{b \in B \mid \exists a \in S . f(a) = b\}$$

is the image of S under f.

- If $S = [1,2] = \{x \in \mathbb{R} \mid 1 \le x \le 2\}$, then $f_1(S) = [1/4,1]$.
- If $S = \mathbb{R}$, then $f_1(S) = \mathbb{R}^+$.
- If $S = \{(T,T),(F,T),(F,F)\}$, then $f_4(S) = \{T\}$.
- If $S = \{100,00111,0010,00000\}$, then $f_5(S) = \{1,3\}$.

Function composition

Definition 4.3.1.

If $f: A \rightarrow B$ and $g: B \rightarrow C$, the *composition* of g and f (in this order) is defined as:

$$(g \circ f)(x) ::= g(f(x))$$

(read: g after f) at every $x \in A$ such that f is defined on x and g is defined on f(x).

Order matters:

- Wearing first your socks, then your shoes is not the same as wearing first your shoes, then your socks.
- If $A = B = C = \mathbb{R}$, $f(x) = x^2 + 1$, and g(x) = 3x + 2, then $g(f(x)) = 3(x^2 + 1) + 2 = 3x^2 + 5$, but $f(g(x)) = (3x + 2)^2 + 1 = 9x^2 + 12x + 5$.

Next section

- 1 Sets
- 2 Sequences
- 3 Functions
- 4 Binary Relations
- 5 Finite Cardinality

Binary relations

Definition 4.4.1.

A binary relation with domain A, codomain B, and graph R is a subset of the Cartesian product $A \times B$.

- A relation is "a function without the unique image requirement".
- If the domain and codomain are given, we may identify the relation with its graph.
- \blacksquare $R: A \rightarrow B$ means: "R is a relation from A to B".
- If $a \in A$ and $b \in B$, then a R b means: "a is in relation R with b".

Relation diagrams

A binary relation $R:A\to B$ can be represented as two columns linked by arrows, where:

- The first column contains a list of elements of A.
- The second column contains a list of elements of B.
- There is an arrow from $a \in A$ to $b \in B$ if and only if aRb.

Example: What is taught by whom?

From the 2018-2019 course list:

Arrow properties

Let $R:A \rightarrow B$ be a binary relation. We say that R has the property:

$[\leq n \text{ in }]$	if each element of	В	has	at most <i>n</i>	arrows	coming into	it
$[\geq m in]$	if each element of	В	has	at least m	arrows	coming into	it
[=k in]	if each element of	В	has	exactly \emph{k}	arrows	coming into	it
$[\leq n \text{ out }]$	if each element of	Α	has	at most <i>n</i>	arrows	going out of	it
$[\geq m \text{ out }]$	if each element of	Α	has	at least m	arrows	going out of	it
[=k out]	if each element of	Α	has	exactly \emph{k}	arrows	going out of	it

Arrow properties

Let $R: A \rightarrow B$ be a binary relation. We say that R has the property:

```
\leq n \text{ in }
             if each element of
                                          has
                                                                           coming into
                                                  at most n
                                                                arrows
[> m \text{ in }]
              if each element of
                                          has
                                                 at least m
                                                                           coming into
                                                                                           it
                                                                arrows
 [=k in]
              if each element of
                                          has
                                                exactly k
                                                                           coming into
                                                                                           it
                                                                arrows
[< n out ]
            if each element of
                                          has
                                                 at most n
                                                                          going out of
                                                                arrows
[> m out ]
              if each element of
                                          has
                                                 at least m
                                                                          going out of
                                                                                           it
                                                                arrows
[=k \text{ out }]
              if each element of
                                          has
                                                  exactly k
                                                                          going out of
                                                                                           it
                                                                arrows
```

Note that this may depend on how domain and codomain are chosen:

- xRy iff $y=1/x^2$ has both [=1 in] and [=1 out] as a binary relation on \mathbb{R}^+ ...
- \blacksquare . . . but as a binary relation on $\mathbb R,$ it has neither [$\le 1\, \text{in}$], nor [$\ge 1\, \text{out}$].

Relation properties

Definition 4.4.2.

Let $R: A \rightarrow B$ be a binary relation. We say that:

```
R is
       a function
                    if it has
                                the [< 1 out ] property
R is
          total if it has
                                the [\geq 1 out ] property
R is
     injective if it has
                               the [\leq 1 \text{ in }] property
R is surjective if it has
                               the [>1 in ] property
                                 both the [= 1 \text{ out }] and the [= 1 \text{ in }] property
R is
       bijective
                    if it has
```

Important:

- Bijective relations are total.
- If $A = \emptyset$ then R is a total function: Otherwise, there would exist $x \in \emptyset$ with either no outgoing arrow, or more than one outgoing arrow...
- If $B = \emptyset$ then R is both injective and surjective: Otherwise, there would exist $y \in \emptyset$ with either more than one incoming arrow, or no incoming arrow. . .

Relational images

Let R be a relation with domain A and codomain B.

Definition 4.4.4

The *image* of $S \subseteq A$ under R is:

$$R(S) ::= \{ y \in B \mid \exists x \in S . xRy \}$$

For example, let $A = B = \mathbb{N}$ and let aRb if and only if b is a prime factor of a. Then:

- $R({2,4,6,8,10,17,26}) = {2,3,5,13,17}.$
- $R(\{0\}) = \text{Primes}$. Remember that m is a factor of n if and only if there exists an integer k such that km = n; for n = 0 we can choose k = 0.

Relation composition

Composition of relations is defined similarly to composition of functions:

Definition

If $R:A\to B$ and $S:B\to C$, the *composition* of S and R (in this order) is the relation $S\circ R:A\to C$ (read: S after R) defined as:

$$a(S \circ R)c$$
 iff $\exists b \in B.aRb$ and bSc

Again, order matters:

The mother of the father is not the father of the mother.

Inverse relations and inverse images

Let $R: A \rightarrow B$ be a binary relation.

Definitions 4.4.5 and 4.4.6.

The *inverse* of R is the binary relation $R^{-1}: B \to A$ defined by:

$$yR^{-1}x$$
 iff xRy

The *inverse image* of $T \subseteq B$ according to R is then its image under the inverse relation:

$$R^{-1}(T) = \{x \in A \mid \exists y \in T . xRy\}$$

Example: Who teaches what?

The empty relation

Let $E: A \to B$ be the *empty relation* such that $not((x,y) \in E)$ for any $x \in A$ and $y \in B$.

- E is a function:
 E clearly has the [= 0 in] property, so it has the [≤ 1 in] property too.
- E is *injective*: E clearly has the [=0 out] property, so it has the $[\le 1$ out] property too.
- E is total if and only if $A = \emptyset$: If A is nonempty then E doesn't have the $[\ge 1 \text{ out }]$ property. If E wasn't total with $A = \emptyset$, there would exist $x \in \emptyset$ such that $\text{not}((x,y) \in E)$ for any $y \in B$; but there is no $x \in \emptyset$.
- E is surjective if and only if $B = \emptyset$: If B is nonempty then E doesn't have the $[\ge 1 \text{ in }]$ property. If E wasn't surjective with $B = \emptyset$, there would exist $y \in \emptyset$ such that $\text{not}((x,y) \in E)$ for any $x \in A$; but there is no $y \in \emptyset$.

Next section

- 1 Sets
- 2 Sequences
- 3 Functions
- 4 Binary Relations
- 5 Finite Cardinality

The cardinality of a finite set

Definition 4.5.1.

If A is a finite set, the *cardinality* of A is the number |A| of its elements.

Examples:

- $|\{\text{Sephiroth, Bowser, Diablo}\}| = 3.$
- $|\{p \in \text{Primes } | p \le 20\}| = 8.$
- $|\emptyset| = 0.$

Functions between finite sets

Let A and B be finite sets and R a relation from A to B. Suppose the relation diagram of R has n arrows.

- 1 If R is a function, then it has the $[\le 1 \text{ out }]$ property, so $|A| \ge n$.
- 2 If R is surjective, then it has the $[\ge 1 \text{ in }]$ property, so $n \ge |B|$.

We conclude that:

If A and B are finite sets and $f: A \rightarrow B$ is a surjective function, then $|A| \ge |B|$.

Surjectivity, injectivity, bijectivity

Definition 4.5.2.

Given any two (finite or infinite) sets A and B, we write:

- A surj B iff there exists a *surjective function* from A to B;
- A inj B iff there exists a total injective relation from A to B;
- A bij B iff there exists a bijection from A to B

Read: A surject B, A inject B, A biject B.

Surjectivity, injectivity, bijectivity

Definition 4.5.2.

Given any two (finite or infinite) sets A and B, we write:

- A surj B iff there exists a surjective function from A to B;
- A inj B iff there exists a total injective relation from A to B;
- A bij B iff there exists a bijection from A to B.

Read: A surject B, A inject B, A biject B.

Examples:

If A is the set of video games and $B = \{Bowser, Diablo, Sephiroth\}$, then A surj B:

V	Super Mario	Diablo II	Final Fantasy VII	Tetris	Diablo III	
f(v)	Bowser	Diablo	Sephiroth	undefined	Diablo	

where f(v) is the Big Bad Evil Guy of video game v, is a surjective function (but neither total nor injective).

- If $A \subseteq B$, then A inj B: f(x) = x for every $x \in A$ is injective and total (and also a function).
- If $A = \{ p \in \text{Primes} \mid p \le 20 \}$ and $B = \{ n \in \mathbb{N} \mid 1 \le n \le 8 \}$, then A bij B:

Surjectivity, injectivity, bijectivity

Definition 4.5.2.

Given any two (finite or infinite) sets A and B, we write:

- A surj B iff there exists a *surjective function* from A to B;
- A inj B iff there exists a total injective relation from A to B;
- A bij B iff there exists a bijection from A to B.

Read: A surject B, A inject B, A biject B.

Important note:

- If B = Ø then A surj B whatever A is: In this case, the empty relation is a surjective function.
- If A = 0 then A inj B whatever B is: In this case, the empty relation is total and injective.

Finite sets and arrow properties

Lemma 4.5.3

Let A and B be finite sets. Then:

- 1 If A surj B, then $|A| \ge |B|$.
- 2 If A inj B, then $|A| \leq |B|$.
- 3 If A bij B, then |A| = |B|

Proof:

- 1 We proved this on the second slide of the section.
- 2 If $R: A \to B$ is injective and total, then R^{-1} is a surjective function, so $|B| \ge |A|$. Bonus: prove that A inj B iff B surj A.
- 3 If f: A → B is a bijection, then it is a total function which is both injective and surjective.

Function and arrow properties: Summary

Theorem 4.5.4

Let A and B be finite sets. Then:

- 1 $|A| \ge |B|$ iff there exists a surjective function from A to B.
- $|A| \le |B|$ iff there exists an injective total relation from A to B.
- |A| = |B| iff there exists a bijection from A to B.

How Many Subsets of a Finite Set?

Theorem

A finite set with n elements has 2^n subsets.

Proof:

- 1 The thesis is true for the empty set, so let $n \ge 1$.
- 2 Let $a_1, ..., a_n$ be the elements of the set A.
- 3 Let B be the set of *binary strings* of length n.
- 4 Define $f: pow(A) \to B$ so that the *i*th bit of f(S) is 1 if and only if $a_i \in S$.
- 5 Then f is a bijection, because subsets with the same image have the same elements, and each string describes a subset.

Alternatively: f is a bijection, because it is a total function whose inverse:

$$g(s) = \{a_i \in A \mid b_i = 1\} \text{ where } s = b_1 b_2 \dots b_n$$

is also a total function.

6 Since there are 2^n binary strings of length n, the thesis follows.