ITB8832 Mathematics for Computer Science Third midterm test: 29 November 2024

Last modified: 2 December 2024

Exercise 1 (3 points)

Let m and n be positive integers such that $m \geq n$.

- 1. (1 point) Let q be a positive integer. Explain why $gcd(5^n 3^n, 5^{qn}) = 1$.
- 2. (2 points) Use the previous point to prove that if $5^m 3^m$ is a multiple of $5^n 3^n$, then m is a multiple of n. Hint: If $r, n \in \mathbb{N}$ and r < n, then $5^r 3^r < 5^n 3^n$.

Exercise 2 (3 points)

Use the Pulverizer to determine the private key d for the RSA public key (e, n) = (227, 1247). Hint: $1247 = 29 \cdot 43$.

Exercise 3 (3 points)

The following DAG represents a set of tasks together with their priorities:

Every task requires one time unit to be performed.

- 1. (1 point) Explain why D does not have a parallel schedule of minimum parallel time with only two processors.
- 2. (2 points) Determine a parallel schedule for D of minimum parallel time with three processors.

Exercise 4 (6 points total)

For each of the following questions, mark the only correct answer.

- 1. Which one of the following is an invariant for the Die Hard machine with jugs of $\ell = 15$ and b = 21 liters?
 - (a) ℓ is a multiple of 3.
 - (b) ℓ and b are both multiple of 3.
 - (c) Neither ell nor b is a multiple of 3.
- 2. True or false: $a^{p-1} \equiv 1 \pmod{p}$ for every positive integer a and prime p.
- 3. Which one of the following pairs (e, n) is a valid RSA public key?
 - (a) (49, 289).
 - (b) (49, 707).
 - (c) (48,707).
- 4. Which one of the following is true for every DAG D with 96 vertices?
 - (a) D has an antichain of size 8.
 - (b) D has either a chain of size 17, or an antichain of size 7, and possibly both.
 - (c) D has either a chain of size 13, or an antichain of size 8, and possibly both.
- 5. Let A and B be sets. Which one of the following statements defines an equivalence relation on A?
 - (a) xRy if and only if f(x) = f(y), where $f: A \to B$ is a function.
 - (b) xRy if and only if f(x) = f(y), where $f: A \to B$ is a total function.
 - (c) xRy if and only if f(x) = f(y), where $f: B \to A$ is a total function.
- 6. True or false: Every relation which is both irreflexive and transitive is the positive walk relation of a DAG.

This page intentionally left blank.

This page too.

Solutions

Exercise 1

- 1. On the one hand, as q and n are positive, 5^{qn} is a power of the prime number 5; on the other hand, $5^n 3^n$ is not a multiple of 5, so it is coprime with any power of 5.
- 2. Write m = qn + r with $0 \le r < n$. As we assume $m \ge n$, we have $q \ge 1$. Then:

$$5^{m} - 3^{m} = 5^{qn+r} - 3^{qn+r}$$

$$= 5^{qn}5^{r} - 5^{qn}3^{r} + 5^{qn}3^{r} - 3^{qn}3^{r}$$

$$= 5^{qn}(5^{r} - 3^{r}) + 3^{r}(5^{qn} - 3^{qn}).$$

On the right-hand side, we know from high school algebra that:

$$5^{qn} - 3^{qn} = (5^n)^q - (3^n)^q$$

is a multiple of $5^n - 3^n$. Assume that the left-hand side $5^m - 3^m$ is also a multiple of $5^n - 3^n$. Then their difference $5^{qn}(5^r - 3^r)$ must also be a multiple of $5^n - 3^n$. But as $\gcd(5^n - 3^n, 5^{qn}) = 1$, the other factor $5^r - 3^r$ must be a multiple of $5^n - 3^n$, and as the former is smaller than the latter, it must be $5^r - 3^r = 0$, which is only possible if r = 0.

Another argument, from the students' discussions, goes as follows. Rewrite the divisibility conditions as $5^{qn+r} \equiv 3^{qn+r} \pmod{5^n-3^n}$ and $5^{qn} \equiv 3^{qn} \pmod{5^n-3^n}$, respectively. Then:

$$5^{qn} \cdot 5^r \equiv 5^{qn} \cdot 3^r \pmod{5^n - 3^n}.$$

By the previous point, $\gcd(5^{qn}, 5^n - 3^n) = 1$, so 5^{qn} is cancellable modulo $5^n - 3^n$. The equality above is thus equivalent to $5^r \equiv 3^r \pmod{5^n - 3^n}$, which says that $5^r - 3^r$ is a multiple of $5^n - 3^n$. As $5^r - 3^r < 5^n - 3^n$, this is only possible if $5^r = 3^r$, so it must be r = 0.

Exercise 2

We have $\phi(1247) = 28 \cdot 42 = 1176$, so $d = 227^{-1} \pmod{1176}$. Using the Pulverizer:

Then d = rem(-373, 1176) = 803.

Exercise 3

- 1. By checking all the paths from the minimal vertices of D to the maximal ones, we see that the maximum chain size is 4; for example, $\{A, B, F, G\}$ is a chain of maximum size. But D has 10 vertices, so any parallel schedule with 2 processors requires at least 10/2 = 5 time units.
- 2. The minimum parallel time obtained by partitioning V(D) into blocks made of vertices with the same depth is:

$$A_0 = \{B, D\},\$$

 $A_1 = \{A, C, E, I\},\$
 $A_2 = \{F, H, J\},\$
 $A_3 = \{G\};\$

which requires 4 processors. However, the vertex J is maximal and is reachable only from D and E, so we can postpone the corresponding

tasks and obtain:

$$B_0 = \{B, D\},\$$

 $B_1 = \{A, C, I\},\$
 $B_2 = \{E, F, H\},\$
 $B_3 = \{G, J\},\$

which uses three processors and runs in minimum parallel time.

Exercise 4

- 1. (a) No: from $(b, \ell) = (4, 3)$ we can reach $(b', \ell') = (0, 7)$.
 - (b) **Yes:** gcd(15, 21) = 3, so if at any point b and ℓ are multiples of 3, they will remain so after a transition of the Die Hard machine.
 - (c) **No:** from $(b, \ell) = (4, 5)$ we can reach $(b', \ell') = (9, 0)$.
- 2. **False:** this happens if and only if a is not divisible by p.
- 3. (a) No: $289 = 17^2$ is not the product of two distinct primes.
 - (b) **Yes:** $707 = 7 \cdot 101$ is a product of two distinct primes and $49 = 7^2$ is coprime with $\phi(707) = 600$.
 - (c) No: if p and q are distinct primes, then (p-1)(q-1) is even, so no pair (2k, pq) can be a valid RSA public key.
- 4. (a) No: the DAG could be a single chain with 96 vertices.
 - (b) No: the DAG could be made of 6 independent chains of size 16.
 - (c) **Yes:** by Dilworth's lemma with n = 96 and t = 12, if D doesn't have a chain of size greater than 12, then it has an antichain of size at least 96/12 = 8.
- 5. (a) No: if f(x) is not defined for x = a, then not(aRa), and R is not reflexive.
 - (b) **Yes:** f is "tricking" the equality relation of B into doing all the work R should be doing on A.
 - (c) No: this defines an equivalence relation on B, not on A.
- 6. True: this is the "only if" part of Theorem 10.10.8.