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Exercise 2.1 (from the midterm test of 03.10.2018, tweaked)

1. Prove by contradiction that log20 50 is irrational.

2. Let a > 1 and b > 1 be integers. Can loga b be rational, but not integer?

Exercise 2.2 (from the midterm test of 07.10.2019)

Let a be a real number, different from 1. Use the Well Ordering Principle to
prove that, for every nonnegative integer n,

1 + a+ . . .+ an =
1− an+1

1− a
. (1)

Important: solutions which do not use the Well Ordering Principle will
receive zero points.

Exercise 2.3 (cf. Problem 2.21(d))

Let G be the set of the rational numbers of the form m/n where m,n > 0
and n ≤ g, where g is a googol 10100.

Hint: Let g! (read: “g factorial”) be the product of all the positive integers
from 1 to g. What can we say about the denominators of the fractions that
can represent the elements of G?

Exercise 2.4 (cf. Problem 2.23)

Prove that a set R of real numbers is well ordered iff there is no infinite
decreasing sequence of numbers in R. In other words: R is well ordered if
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and only if there is no set of numbers ri ∈ R such that

r0 > r1 > r2 > . . . (2)

Hint: A set is well ordered if and only if all its subsets are well ordered.
Also, if m ∈ S is not the minimum of S, then there is some x ∈ S such that
x < m.

Exercise 2.5 (from Raymond Smullyan’s “The Gödelian
Puzzle Book”)

You meet a man whom you know to be either a knight who only makes true
statements, or a knave who only makes false statements (but you don’t know
which of the two). The man makes the following statement:

“Today is not the first day on which I make this statement.”

Is he a knight or a knave? Hint: choose a “good” subset of the set of natural
numbers and use the Well Ordering Principle.

Exercise 2.6

Profe that the formulas

(P and Q) implies R (3)

and
P implies (Q implies R) (4)

are equivalent:

1. first, with a truth table;

2. then, with a proof by cases.

The equivalence between (3) and (4) is a special case of an important theorem
of predicate logic, called the deduction theorem.
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Solutions

Exercise 2.1

1. By contradiction, assume log20 50 =
m

n
with m and n integers. As

both the base and the argument are larger than 1, the logarithm is
positive, so we may suppose m and n positive; also, we can assume
that gcd(m,n) = 1.

By hypothesis, 20m/n = 50, that is, 20m = 50n. But 20 = 22 · 5 and
50 = 2 · 52, so the equality becomes:

22m · 5m = 2n · 52n .

This is only possible is n = 2m and m = 2n: but then, n = 4n, which
is only possible if m = n = 0 against the fact that n is the denominator
in a fraction.

2. Yes, it is: it is sufficient that a and b are both powers of the same
integer c. For example, if a = 4 = 22 and b = 8 = 23, then:

log4 8 =
log2 8

log2 4
=

3

2
.

Exercise 2.2

Let C be the set of counterexamples to (1):

C =

{
n ∈ N | 1 + a+ . . .+ an ̸= 1− an+1

1− a

}
.

By contradiction, assume that C is nonempty: by the Well Ordering Prin-
ciple, it has a smallest element c0. This smallest element must be positive,
because for n = 0 the sum on the left-hand side of (1) is 1 and the fraction

on the right-hand side is
1− a0+1

1− a
= 1. But if c0 is positive, then c0 − 1 is

nonnegative, and as it is smaller than c0, it satisfies (1), that is:

1 + a+ . . .+ ac0−1 =
1− ac0

1− a
.
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But by adding ac0 to both sides of the equality we get:

1 + a+ . . .+ ac0 =
1− ac0

1− a
+ ac0

=
1− ac0 + (1− a)ac0

1− a

=
1− ac0 + ac0 − ac0+1

1− a

=
1− ac0+1

1− a
;

that is, the minimum counterexample is not a counterexample after all. We
have reached this contradiction because we had supposed that C is nonempty:
therefore, C is empty, and (1) is true for every nonnegative integer n.

Exercise 2.3

Let a = g!. Then, since n ≤ g when x = m/n ∈ G, for every such x the
number ax is a positive integer; also, if x ≤ y, then ax ≤ ay. So, however
given a nonempty subset S of G, the set T = {ax |x ∈ S} is a nonempty
subset of positive integers: if m is the minimum of T , then m/a is the
minimum of S.

Exercise 2.4

If a sequence such as in (2) exists, then the set of its terms does not have
a minimum. However given an element, there will be another element (for
example, the next one in the sequence) which is strictly smaller. In this case,
R has a subset which is not well ordered, so it is not well ordered.

If R is not well ordered, take a nonempty subset S of R which has no
minimum. Choose r0 ∈ S: as r0 is not the minimum of S, there exists r1 ∈ S
which is strictly smaller than r0. Similarly, as r1 is not the minimum of S,
there exists r2 ∈ S which is strictly smaller than r1. Iterating the procedure,
we obtain a sequence of elements of R such as in (2). More in detail:

1. We choose the starting element r0 ∈ S as we want.

2. For every n ∈ N, after we have chosen rn ∈ S, we choose rn+1 ∈ S so
that it is smaller than rn. This is always possible, because S has no
minimum, so in particular rn is not the minimum of S.

Note that a set of numbers can have a minimum without being well ordered.
For example, the set of nonnegative real numbers has 0 as its minimum and

contains the infinite decreasing sequence 1 >
1

2
>

1

3
> · · ·
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Exercise 2.5

Even if the statement is self-referential, we know that it has been made by
either a knight or a knave, so it must have a truth value.

Count the days since the birth of the man, starting with day 0. Since
there is a day (namely, today) when he made that statement, by the Well
Ordering Principle there must have been a first day when he made it. But
on that first day, the statement was false! Since knights only make true
statements, the man is a knave.

Exercise 2.6

1. Constructing a truth table:

P Q R (P and Q) implies R P implies (Q implies R)
T T T T T T T
T T F T F F F
T F T F T T T
T F F F T T T
F T T F T T T
F T F F T T F
F F T F T T T
F F F F T T T

Here, the fifth column contains the truth values of (3) given those of
P , Q, and R, and the sixth one contains those of (4). The two columns
are equal, so the two formulas are equivalent.

2. There are several ways to do a proof by cases. For example, we could
consider the truth values of the variable R. Then:

(a) First, assume that R is true. Then (P and Q) implies R is
an implication with a true conclusion, so it is true; for the same
reason, Q implies R is true, and so is P implies (Q implies R).
We conclude that, if R is true, then the formulas (3) and (4) are
both true.

(b) Now, assume that R is false. Then (P and Q) implies R is false
if and only if P and Q is true, that is, if and only if P and Q are
both true; as for P implies (Q implies R), it is false if and only
if P is true and Q implies R is false, which in turn only happens
if Q to be true. We conclude that if R is false, then (3) and (4)
are both false if P and Q are both true, and both true if either P
is true, or Q is true, or both P and Q are true.
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In either case, whatever the truth values of P , Q, and R are, the
formulas (3) and (4) are either both true, or both false: thus, the two
formulas are equivalent.
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