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Exercise 4.1 (from the midterm test of 7 October 2020)

Use the Well Ordering Principle to prove the following: if n is a positive
integer and A,B1, B2, . . . , Bn, are arbitrary sets, then

A ∩ (B1 ∪B2 ∪ . . . ∪Bn) = (A ∩B1) ∪ (A ∩B2) ∪ . . . ∪ (A ∩Bn) .

Hint: start with proving that, if m is the minimum counterexample, then
m ≥ 3.

Exercise 4.2

Recall the rules of the Subset Take-Away game:

1. The initial position is a finite nonempty set.

2. Taking turns, the players take away subsets of the initial set.

3. It is not permitted to take away the entire initial set as the first move.

4. Once a subset has been taken away, no subset which contains it can be
taken away anymore.

In particular: no subset can be taken more than once.

5. A player who cannot take away a nonempty subset on his or her turn,
loses the game.

We have seen in classroom that if the initial set has either 1, 2, or 3 elements,
then the second player has a winning strategy.

Prove that if the initial set has 4 elements, then the second player still has
a winning strategy. Hint: consider the cases where the first player chooses a
subset with one, three, or two elements, the last case being the trickiest one.

1



Exercise 4.3 (cf. Problem 4.19)

Before you try this exercise, you might want to revise what you know from
your Calculus course.

For each of the following real-valued total functions on the real numbers,
indicate whether it is a bijection, a surjection but not a bijection, an injec-
tion but not a bijection, or neither an injection nor a surjection.

1. x 7→ x+ 2.

2. x 7→ 2x.

3. x 7→ x2.

4. x 7→ x3.

5. x → sinx.

6. x → x sinx. Hint: intermediate value theorem.

7. x → ex.

Exercise 4.4

We have seen in classroom that if A inj B, then there exists a total injective
function from A to B.

1. Prove a similar, but not identical, fact for the “surject” relation: if
A surj B and in addition B is nonempty, then there exists a total
surjective function from A to B.

2. What happens to the previous point if B is empty?

Exercise 4.5 (cf. Problem 4.29)

Consider a basic Web search engine, which stores information on Web pages
and processes queries to find pages satisfying conditions provided by users.
At a high level, we can formalize the key information as:

� A set P of pages that the search engine knows about.

� A binary relation L (for link) over pages, defined such that p1Lp2 if
and only if p1 links to p2.
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� A set E of endorsers, people who have recorded their opinions about
which pages are high-quality.

� A binary relation R (for recommends) between endorsers and pages,
such that eRp iff person e has recommended page p.

� A set W of words that may appear on pages.

� A binary relation M (for mentions) between pages and words, where
pMw iff word w appears on page p.

Then, for example, if the word “logic” belongs to W , then the set of pages
in P where the word “logic” appears is:

{p ∈ P | pM “logic”} = M−1(“logic”) .

More complex relations can also be constructed from these basic ones. For
example, the relation H : E → W defined by eHw if and only if e has
recommended a page that contains w, is M ◦R, because:

eHw iff ∃p ∈ P . (eRp and pMw) iff e(M ◦R)w .

Use the specification above to express the following:

1. The set of pages containing the word “logic” but not the word “predi-
cate”.

2. The set of pages containing the word “set” that have been recom-
mended by “Meyer”.

3. The set of endorsers who have recommended pages containing the word
“algebra”.

4. The set of pages that have at least one incoming or outgoing link.

5. The relation that relates word w and page p iff w appears on a page
that links to p.

6. The relation that relates word w and endorser e iff w appears on a page
that links to a page that e recommends.

7. The relation that relates pages p1 and p2 iff p2 can be reached from p1
by following a sequence of exactly 3 links.

3



Exercise 4.6

We have seen during Lecture 4 that if A and B are finite sets, then |A| = |B|
if and only if A bij B. In this exercise, we will prove a little more.

First, a definition. For any real number of x, the ceiling of x is the
smallest integer k such that k ≥ x: we denote such smallest k as ⌈x⌉. For
example, ⌈17⌉ = 17, ⌈π⌉ = 4, and ⌈−π⌉ = −3.

Now, a fact:

Lemma (The pigeonhole principle). Let m and b be positive integers. If m
objects are placed into b boxes, then in the end at least one box will contain
at least ⌈m/b⌉ objects.

You are not required to prove the pigeonhole principle (though it is a
good exercise). However, you might want to use it to prove the following:

Theorem (Theorem E4.6). Let A and B be finite sets with |A| = |B| = n,
and let f : A → B be a total function. Then f is injective if and only if f is
surjective.

Hint: Consider the arrows in the graph of f . Also, you may assume
n ≥ 2.

Exercise 4.7 (cf. Problem 4.37)

Let A and B be sets, both having two or more elements. We know from
lecture 4 and exercise session 4 that if A and B are also finite, then |A×B|
is larger than both |A| and |B|, so there cannot be a bijection from A × B
to either A or B.

Let now A = {0, 1} and let Aω (read: A to the omega) the set of infi-
nite binary strings, where we write x ∈ Aω as x0x1x2 . . . xn . . . with n ∈ N.
Construct a bijection from Aω × Aω to Aω. Hint: even positions and odd
positions.

(This is a small taste of what we will discuss in Lecture 8.)
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Solutions

Exercise 4.1

Let C be the set of counterexamples:

C = {c ≥ 1 | ∃A,B1, . . . , Bc . A ∩ (B1 ∪ . . . ∪Bc) ̸= (A ∩B1) ∪ . . . ∪ (A ∩Bc)} .

By contradiction, assume that C is nonempty: by the Well Ordering Prin-
ciple, C has a minimum m. Then it must be m ≥ 3, because for n = 1 the
equality is trivially satisfied, and for n = 2 we have:

x ∈ A ∩ (B1 ∪B2) iff x ∈ A and (x ∈ B1 or x ∈ B2)

iff (x ∈ A and x ∈ B1) or (x ∈ A and x ∈ B2)

iff (x ∈ A ∩B1) or (x ∈ A ∩B2)

iff x ∈ (A ∩B1) ∪ (A ∩B2) .

Let then the sets A,B1, . . . , Bm be such that:

A ∩ (B1 ∪B2 ∪ . . . ∪Bm) ̸= (A ∩B1) ∪ (A ∩B2) ∪ . . . ∪ (A ∩Bm) .

As m ≥ 3, m − 1 is still a positive integer, and as it is smaller than m, for
the sets A,B1, . . . , Bm−1 the equality holds:

A ∩ (B1 ∪B2 ∪ . . . ∪Bm−1) = (A ∩B1) ∪ (A ∩B2) ∪ . . . ∪ (A ∩Bm−1) .

But then,

A ∩ (B1 ∪B2 ∪ . . . ∪Bm) = A ∩ ((B1 ∪B2 ∪ . . . ∪Bm−1) ∪Bm)

= (A ∩ (B1 ∪B2 ∪ . . . ∪Bm−1)) ∪ (A ∩Bm)

= (A ∩B1) ∪ (A ∩B2) ∪ . . . ∪ (A ∩Bm−1) ∪ (A ∩Bm) :

contradiction.

Exercise 4.2

If the initial set {a, b, c, d} has four elements, then the first player can take
away as the first move either a subset of cardinality 1, or a subset of cardi-
nality 2, or a subset of cardinality 3.

1. Let’s start by supposing that the first player takes away a subset of
one element, say, {a}. If the second player chooses {b, c, d}, then any
subset taken away in the next moves cannot contain a, so it will be a
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subset of {b, c, d}. This means that the second player has turned the
game on four objects into a new game on three objects, in which they
are still the second player; and we know that the second player has a
winning strategy if the initial set has three elements.

2. We now notice that the second player can reason similarly if the first
player takes away as the first move a subset of cardinality 3, say,
{a, b, c}. If the second player chooses {d}, then any subset taken away
in the next moves cannot contain d, so it will be a subset of {a, b, c}.
This means that the second player has once again turned the game on
four objects into a new game on three objects, in which they are still
the second player; and we know that the second player has a winning
strategy if the initial set has three elements.

3. The last case, where the first move takes away a subset of cardinality 2,
say, {a, b}, requires more care. For example, if the second player takes
away {c, d}, then the moves {a, c}, {a, d}, {b, c}, and {b, d} are still
allowed. However, if the first player take away a subset of cardinality 2
and the second player responds by taking away the complement, then
no subset with three elements can be chosen anymore: for example,
any subset of {a, b, c, d} of cardinality 3 contains either both a and b,
or both c and d. Also, there are six subsets of cardinality 2 of a set
of cardinality 4, so while the first player keeps taking away subsets
with two elements, the second player can always respond by taking the
complement.

Sooner or later, the first player will have to start taking singletons;
let’s say they take {a}. If the second player takes, to fix the ideas,
{b} (more in general, if they take a singleton {x} such that {a, x} was
one of the previous moves) then the moves {a, c}, {a, d}, {b, c}, and
{b, d} all become illegal. But now the game has become a new game
on the two-elements set {c, d}, where the original second player is still
the second player, and has a winning strategy.

Exercise 4.3

1. This is a bijection: y = x+ 2 if and only if x = y − 2.

2. This is also a bijection: y = 2x if and only if x = y/2.

3. This is not a bijection! This is actually neither surjective, not injective:
it is not surjective, because if y < 0, then for no x it is x2 = y; it is not
injective, because for both x = 1 and x = −1 we have x2 = 1.
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4. This is a bijection: y = x3 if and only if x = 3
√
y, and the cubic root of

a real number is always defined, and has the same sign as the number.

5. This is neither a surjection, because for no x it is sin x = 2; nor an in-
jection, because sin 0 = sin π. (Remember that trigonometric functions
consider angles as measured in radians.)

6. This is not a bijection, because 0 sin 0 = π sin π = 0, so it is not in-
jective. However, it is surjective! The reason is that the function is

continuous and takes value x whenever x =
π

2
+ 2kπ, where k is an

arbitrary integer. By the intermediate value theorem, a continuous
function defined in a closed and bounded interval takes every value
between its minimum and its maximum: thus, for every y ∈ R there
exists x ∈ R such that x sinx = y.

7. This function is not surjective, because it only takes positive values;
however, it is injective as it is strictly increasing.

Exercise 4.4

1. Let B be a nonempty set and let f : A → B be a surjective function.
We can then define a total surjective function g : A → B by fixing
an element b0 ∈ B, and putting g(x) = f(x) if f(x) is defined, and
g(x) = b0 if f(x) is undefined.

2. If B is empty, then the empty relation is the only surjective function
from A to B, but it is total if and only if A is also empty.

Exercise 4.5

1. We want the pages which mention “logic” but do not mention “pred-
icate”. This corresponds to the difference set of M−1(“logic”) with
M−1(“predicate”). So the set we need is:

A ::= M−1(“logic”)−M−1(“predicate”) .

2. We want the pages which not only contain the word “set”, but are
also recommended by Meyer. This corresponds to the intersection of
M−1(“set”) of the pages where the word “set” is mentioned with the
set R(Meyer) of the pages which Meyer recommends. So the set we
need is:

B ::= M−1(“set”) ∩R(Meyer) .
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3. We have to make two steps here: first, identify the pages which contain
the word “algebra”; then, identify the people who endorse those pages.
We know that the set of the pages which contain a word w is M−1(w),
and that the set of endorsers of a page p is E−1(p). Thus, to find the
set of endorsers who have recommended pages containing the word “al-
gebra” we first apply M−1 to “algebra”, then E−1 to M−1(“algebra”).
So the set we need is:

C ::= (E−1 ◦M−1)(“algebra”) .

4. A page p has an incoming link if and only if there exists a page q such
that qLp, and has an outgoing link if and only if there exists a page r
such that pLr. The set of the q’s which satisfy qLp is L−1(p), and the
set of the r’s which satisfy pLr is L(p). As at least one of these must
happen, the relation we look for is:

D ::= L−1(p) ∪ L(p) .

5. Let F be the relation we are looking for. We require that pFw if and
only if there exists a page q such that qLp and qMw; this happens if
and only if pL−1q and qMp. Then F = M ◦ L−1.

6. Let G be the relation we are looking for. We want that wGe if and
only if there exists a page p such that, for some page q, it happens that
pMw, pLq, and eRq. This is the same as asking that p and q satisfy
wM−1p, pLq, and qR−1e. Then:

G = R−1 ◦ L ◦M−1 .

There is no need to use parentheses because, as the reader can verify1,
composition of relations is associative: however given three relations
R : A → B, S : B → C, and T : C → D, calling U = T ◦ (S ◦ R) and
V = (T ◦ S) ◦R, we have aUd if and only if aV d, whatever a ∈ A and
d ∈ D are.

7. Let H be the relation we are looking for. We want that p1Hp2 if and
only if there exist words q1 and q2 such that p1Lq1, q2Lp2, and q2Lp2.
Then:

H = E ◦ E ◦ E = E3 .

Note the new notation that we have introduced: a composition of n
instances of a relation R is denoted by Rn.

1And if you haven’t, you should!
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Exercise 4.6

As in the thesis of Theorem E4.6, let A and B be finite sets with |A| = |B| =
n, and let f : A → B be a total function. This means that f has both the
[≥ 1 out ] (for being total) and the [≤ 1 out ] (for being a function) property,
so it has the [= 1 out ] property: in particular, its relation graph has exactly
n arrows.

To prove Theorem E4.6, we prove that the negations of the two statements
in the “if and only if” are equivalent: that is, the total function f is not
injective if and only if it is not surjective. We observe that we only need to
do so if n ≥ 2, because for n = 1 and n = 0 there is only one total function
from A to B, and that function is a bijection. Following the hint, we reason
in terms of arrows.

� First, assume that f is not injective. Then f does not have the [≤ 1 in ]
property, so there will be two arrows (maybe more, but we only need
two) that will point to the same element b0 of B. Then at most n− 2
other elements of B can have entering arrows, so at most n− 1 of the
n elements of B will have entering arrows. Then f doesn’t have the
[≥ 1 in ] property, so it is not surjective.

� Next, assume that f is not surjective. Then f does not have the
[≥ 1 in ] property, so there will be an element b0 of B which has no
arrows entering. Then we have m = n objects, the arrows, to put
into b ≤ n− 1 boxes, the elements of B to which they point. By the
pigeonhole principle, at least one element of B will have at least:⌈m

b

⌉
≥

⌈
n

n− 1

⌉
= 2

arrow pointing to it. (Note that the ceiling function is weakly increas-
ing: if x < y, then ⌈x⌉ ≤ ⌈y⌉.) Then f does not have the [≤ 1 in ]
property, so it is not injective.

Exercise 4.7

Let x = x0x1x2 . . . and y = y0y1y2 . . . be infinite binary strings. Define f(x, y)
bit by bit as follows:

(f(x, y))i =

{
xi/2 if i is even,
y(i−1)/2 if i is odd.

(1)

That is, f(x, y) = x0y0x1y1x2y2 . . .
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� f is a function. As soon as the arguments x and y are given, the value
f(x, y) is determined once and for all.

� f is total. The definition given by (1) can be applied to any pair (x, y)
of infinite binary strings.

� f is injective. Assume f(x, y) = f(z, w): then (f(x, y))i = (f(z, w))i
for every i ∈ N. Two cases are possible:

1. i is even. Write i = 2j for suitable j ∈ N. Then:

xj = (f(x, y))i = (f(z, w))i = zj .

As this is true for every j ∈ N, we conclude that x = z.

2. i is odd. Write i = 2j + 1 for suitable j ∈ N. Then:

yj = (f(x, y))i = (f(z, w))i = wj .

As this is true for every j ∈ N, we conclude that y = w.

We have thus proved that if f(x, y) = f(z, w), then (x, y) = (z, w). As
this holds for every two pairs (x, y), (z, w), f is injective.

� f is surjective. Let z be an infinite binary sequence. Define:

xi = z2i for every i ∈ N ,

yi = z2i+1 for every i ∈ N .

It is straightforward to prove that f(x, y) = z. As this can be done
with any infinite binary string z, f is surjective.

The string z = f(x, y) is called the interleaving of the strings x and y (in
this order).
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