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Exercise 4.1 (from the midterm test of 7 October 2020)

For n ≥ 3 we define the union and intersection of n sets B1, . . . , Bn recursively
as follows:

B1 ∪B2 ∪ . . . ∪Bn−1 ∪Bn = (B1 ∪B2 ∪ . . . ∪Bn−1) ∪Bn ;

B1 ∩B2 ∩ . . . ∩Bn−1 ∩Bn = (B1 ∩B2 ∩ . . . ∩Bn−1) ∩Bn .

Use the Well Ordering Principle to prove the following: if n is an arbitrary
positive integer and A,B1, B2, . . . , Bn, are arbitrary sets, then

A ∩ (B1 ∪B2 ∪ . . . ∪Bn) = (A ∩B1) ∪ (A ∩B2) ∪ . . . ∪ (A ∩Bn) .

Hint: start with proving that, if m is the minimum counterexample, then
m ≥ 3. Important: Any solutions that do not use the Well Ordering
Principle will receive zero points.

Exercise 4.2

Recall the rules of the Subset Take-Away game:

1. The initial position is a finite nonempty set.

2. Taking turns, the players take away subsets of the initial set.

3. It is not permitted to take away the entire initial set as the first move.

4. Once a subset has been taken away, no subset which contains it can be
taken away anymore.

In particular: no subset can be taken more than once.
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5. A player who cannot take away a nonempty subset on his or her turn,
loses the game.

We have seen in classroom that if the initial set has either 1, 2, or 3 elements,
then the second player has a winning strategy.

Prove that if the initial set has 4 elements, then the second player still has
a winning strategy. Hint: consider the cases where the first player chooses a
subset with one, three, or two elements, the last case being the trickiest one.

Exercise 4.3 (cf. Problem 4.19)

Before you try this exercise, you might want to revise what you know from
your Calculus course.

For each of the following real-valued total functions on the real numbers,
indicate whether it is a bijection, a surjection but not a bijection, an injection
but not a bijection, or neither an injection nor a surjection.

1. f1(x) = x+ 2.

2. f2(x) = 2x.

3. f3(x) = x2.

4. f4(x) = x3.

5. f5(x) = sin x.

6. f6(x) = x sinx. Hint: intermediate value theorem.

7. f7(x) = ex.

Exercise 4.4

1. Let A and B be sets. Give an intuitive reason why, if A inj B, then
there exists a total injective function from A to B.

2. Prove a similar, but not identical, fact for the “surject” relation: if
A surj B and in addition B is nonempty, then there exists a total
surjective function from A to B.

3. What happens to the previous point if B is empty?
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Exercise 4.5 (cf. Problem 4.29(c),(e),(f),(h))

Recall the components of the search engine of Problem 4.29 which we dis-
cussed in Exercise session 4 and its addition:

� A set P of pages that the search engine knows about.

� A binary relation L (for link) over pages, defined such that p1Lp2 if
and only if p1 links to p2.

� A set E of endorsers, people who have recorded their opinions about
which pages are high-quality.

� A binary relation R (for recommends) between endorsers and pages,
such that eRp iff person e has recommended page p.

� A set W of words that may appear on pages.

� A binary relation M (for mentions) between pages and words, where
pMw iff word w appears on page p.

Use the sets P , E, and W , the relations L, R, and M , and the usual oper-
ations on sets (union, intersection, difference, complement) and on relations
(composition, inversion, image, inverse image) to express the following:

(c) The set of endorsers who have recommended pages containing the word
“algebra”.

(e) The set of pages that have at least one incoming or outgoing link.

(f) The relation that relates word w and page p iff w appears on a page
that links to p.

(h) The relation that relates pages p1 and p2 iff p2 can be reached from p1
by following a sequence of exactly 3 links.

Exercise 4.6

We have seen during Lecture 4 that if A and B are finite sets, then |A| = |B|
if and only if A bij B. In this exercise, we will prove a little more.

First, a definition. For any real number of x, the ceiling of x is the
smallest integer k such that k ≥ x: we denote such smallest k as ⌈x⌉. For
example, ⌈17⌉ = 17, ⌈π⌉ = 4, and ⌈−π⌉ = −3.

Now, a fact:
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Lemma (The pigeonhole principle). Let m and b be positive integers. If m
objects are placed into b boxes, then in the end at least one box will contain
at least ⌈m/b⌉ objects.

You are not required to prove the pigeonhole principle (though it is a
good exercise). However, you might want to use it to prove the following:

Theorem (Theorem E4.6). Let A and B be finite sets with |A| = |B| = n,
and let f : A→ B be a total function. Then f is injective if and only if f is
surjective.

Hint: Consider the arrows in the graph of f . Also, you may assume
n ≥ 2.

Exercise 4.7 (cf. Problem 4.37)

Let A and B be finite sets, both having two or more elements. From our
discussion on Problem 4.39 in the addition to Exercise session 4 follows that
|A×B| is larger than both |A| and |B|, so there cannot be a bijection from
either A or B to A×B.

Let now A be the set of infinite binary strings, where we write a ∈ A as
the sequence of its bits, that is,

a = a0a1a2 . . . an . . .

Define a bijection from A to A×A, and prove that it is, indeed, a bijection.
Hint: Regroup and split.

(This is a small taste of what we will discuss in Lecture 8.)
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Solutions

Exercise 4.1

Let C be the set of counterexamples:

C = {c ≥ 1 | ∃A,B1, . . . , Bc . A ∩ (B1 ∪ . . . ∪Bc) ̸= (A ∩B1) ∪ . . . ∪ (A ∩Bc)} .

By contradiction, assume that C is nonempty: by the Well Ordering Prin-
ciple, C has a minimum m. Then it must be m ≥ 3, because for n = 1 the
equality is trivially satisfied, and for n = 2 we have:

x ∈ A ∩ (B1 ∪B2) iff x ∈ A and (x ∈ B1 or x ∈ B2)

iff (x ∈ A and x ∈ B1) or (x ∈ A and x ∈ B2)

iff (x ∈ A ∩B1) or (x ∈ A ∩B2)

iff x ∈ (A ∩B1) ∪ (A ∩B2) .

Let then the sets A,B1, . . . , Bm be such that:

A ∩ (B1 ∪ . . . ∪Bm) ̸= (A ∩B1) ∪ . . . ∪ (A ∩Bm) .

As m ≥ 3, m − 1 is still a positive integer, and as it is smaller than m, for
the sets A,B1, . . . , Bm−1 the equality holds:

A ∩ (B1 ∪ . . . ∪Bm−1) = (A ∩B1) ∪ . . . ∪ (A ∩Bm−1) .

But then,

A ∩ (B1 ∪ . . . ∪Bm) = A ∩ ((B1 ∪ . . . ∪Bm−1) ∪Bm)

= (A ∩ (B1 ∪ . . . ∪Bm−1)) ∪ (A ∩Bm)

= (A ∩B1) ∪ . . . ∪ (A ∩Bm−1) ∪ (A ∩Bm) :

contradiction.

Exercise 4.2

If the initial set {a, b, c, d} has four elements, then the first player can take
away as the first move either a subset of cardinality 1, or a subset of cardi-
nality 2, or a subset of cardinality 3.

1. Let’s start by supposing that the first player takes away a subset of
one element, say, {a}. If the second player chooses {b, c, d}, then any
subset taken away in the next moves cannot contain a, so it will be a
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subset of {b, c, d}. This means that the second player has turned the
game on four objects into a new game on three objects, in which they
are still the second player; and we know that the second player has a
winning strategy if the initial set has three elements.

2. We now notice that the second player can reason similarly if the first
player takes away as the first move a subset of cardinality 3, say,
{a, b, c}. If the second player chooses {d}, then any subset taken away
in the next moves cannot contain d, so it will be a subset of {a, b, c}.
This means that the second player has once again turned the game on
four objects into a new game on three objects, in which they are still
the second player; and we know that the second player has a winning
strategy if the initial set has three elements.

3. The last case, where the first move takes away a subset of cardinality 2,
say, {a, b}, requires more care. For example, if the second player takes
away {c, d}, then the moves {a, c}, {a, d}, {b, c}, and {b, d} are still
allowed. However, if the first player take away a subset of cardinality 2
and the second player responds by taking away the complement, then
no subset with three elements can be chosen anymore: for example,
any subset of {a, b, c, d} of cardinality 3 contains either both a and b,
or both c and d. Also, there are six subsets of cardinality 2 of a set
of cardinality 4, so while the first player keeps taking away subsets
with two elements, the second player can always respond by taking the
complement.

Sooner or later, the first player will have to start taking singletons;
let’s say they take {a}. If the second player takes, to fix the ideas,
{b} (more in general, if they take a singleton {x} such that {a, x} was
one of the previous moves) then the moves {a, c}, {a, d}, {b, c}, and
{b, d} all become illegal. But now the game has become a new game
on the two-elements set {c, d}, where the original second player is still
the second player, and has a winning strategy.

Exercise 4.3

1. f1 is a bijection: y = x+ 2 if and only if x = y − 2.

2. f2 is also a bijection: y = 2x if and only if x = y/2.

3. f3 is neither surjective, nor injective. It is not surjective, because if
y < 0, then for no x it is x2 = y. It is not injective, because for both
x = 1 and x = −1 it is x2 = 1.
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4. f4 is a bijection: y = x3 if and only if x = 3
√
y, and the cubic root of a

real number is always defined, and has the same sign as the number.

5. f5 is neither surjective, nor injective. It is not surjective, because for
no x it is sinx = 2. It is not injective, because sin 0 = sinπ.

6. f6 is not injective, because 0 sin 0 = π sin π = 0; however, it is surjec-
tive. To see why, observe that f6 is continuous on the entire real line
as the product of two continuous functions. By the intermediate value
theorem, given any two real numbers a and b with a < b, for every
y ∈ R such that min(f6(a), f6(b)) < y < max(f6(a), f6(b)) there exists
x ∈ (a, b) such that f6(x) = y. So let y ∈ R be arbitrary. If y = 0,

take x = 0. If y > 0, take k > 0 so that b =
π

2
+ 2kπ > y: then, as

f6(0) = 0 and f6(b) = b, there exists x ∈ (0, b) such that f6(x) = y. If

y < 0, take k < 0 so that a =
π

2
+ 2kπ < y: then, as f6(0) = 0 and

f6(a) = a, there exists x ∈ (a, 0) such that f6(x) = y.

7. f7 is not surjective, because it only takes positive values; however, it
is injective, because it is strictly increasing, that is, if x < y then
f7(x) < f7(y).

Exercise 4.4

1. Let A be nonempty and let R : A → B be a total injective relation.
Then R has the [≥ 1 out ] and the [≤ 1 in ] properties. We can then
construct a relation which has the [= 1 out ] and [≤ 1 in ] properties—
that is, a total injective function—by choosing, for every a ∈ A, exactly
one b ∈ B such that aRb, and defining f(a) as that b. This relation
has the [= 1 out ] property by construction, and still has the [≤ 1 in ]
property, because we cannot add entering arrows by removing arrows.

(The reason why this is an intuitive reason and not a proof, is that it
isn’t really clear why we can make such choice at all. We will see this
in greater detail in Lecture 8.)

2. Let B be a nonempty set and let f : A → B be a surjective function.
We can then define a total surjective function g : A → B by fixing an
element b0 ∈ B, and for every a ∈ A putting g(a) = f(a) if f(a) is
defined, and g(a) = b0 if f(a) is undefined.

3. If B is empty, then the empty relation is the only surjective function
from A to B, but it is total if and only if A is also empty.
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Exercise 4.5

(c) We want to express the set:

{e ∈ E | ∃p ∈ P . eRp ∧ pM“algebra”} .

This can be rewritten as:

{e ∈ E | e(M ◦R)“algebra”} ,

which is (M ◦R)−1 (“algebra”); or as:{
e ∈ E

∣∣∃p ∈ P . “algebra”M−1p ∧ pR−1e
}
,

which is (R−1 ◦M−1) (“algebra”). That these two relations are equal,
is not a case: it is true in general that, if R : A → B and S : B → C
are relations, then (S ◦ R)−1 = R−1 ◦ S−1. You might want to prove
this fact as an additional exercise (or to look for a proof online).

(e) We want to express the set:

{p ∈ P | (∃q ∈ P . qLp) ∨ (∃r ∈ P . pLr)} .

This is the union of the set:

{p ∈ P | ∃q ∈ P . qLp} ,

which is L−1(P ), and of the set:

{p ∈ P | ∃r ∈ P . pLr} ,

which is L(P ).

(f) Let’s provisionally denote by H the relation we are looking for. Then:

wHp ←→ ∃q ∈ P . (qMw ∧ qLp)

←→ ∃q ∈ P . (wM−1q ∧ qLp)

←→ w(L ◦M−1)p .

The relation H we are looking for is thus L ◦M−1.

(h) Let’s provisionally denote by Z the relation we are looking for. Then:

p1Zp2 ←→ ∃q ∈ P . (p1Lq ∧ ∃r ∈ P . (qLr ∧ rLp2))

←→ ∃q ∈ P . (p1Lq ∧ q(L ◦ L)p2)
←→ p1(L ◦ L ◦ L)p2 .

We don’t need additional parentheses, because we mentioned in the
addition to Exercise session 4 that composition is associative. We can
also denote the composition of three instances of L simply as L3.
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Exercise 4.6

As in the thesis of Theorem E4.6, let A and B be finite sets with |A| =
|B| = n, and let f : A → B be a total function. If n = 0 then f is the
empty relation with empty domain and codomain, which is a bijection; so
let’s assume n ≥ 1. Then f has both the [≥ 1 out ] (for being total) and the
[≤ 1 out ] (for being a function) property, so it has the [= 1 out ] property:
in particular, its relation graph has exactly n arrows. We will prove that the
negations of the two statements in the “if and only if” are equivalent: that
is, the total function f is not injective if and only if it is not surjective.

� First, assume that f is not injective. Then f does not have the [≤ 1 in ]
property, so there will be two arrows (maybe more, but we only need
two) that will point to the same element b0 of B. Then at most n− 2
other elements of B can have entering arrows, so at most n− 1 of the
n elements of B will have entering arrows. Then f doesn’t have the
[≥ 1 in ] property, so it is not surjective.

� Next, assume that f is not surjective. Then f does not have the
[≥ 1 in ] property, so there will be an element b0 of B which has no
arrows entering. Then we have m = n objects, the arrows, to put
into b ≤ n− 1 boxes, the elements of B to which they point. By the
pigeonhole principle, at least one element of B will have at least:⌈m

b

⌉
≥

⌈
n

n− 1

⌉
= 2

arrow pointing to it. (Note that the ceiling function is weakly increas-
ing: if x < y, then ⌈x⌉ ≤ ⌈y⌉.) Then f does not have the [≤ 1 in ]
property, so it is not injective.

Exercise 4.7

Let a ∈ A. Let’s write:

a = a0a1a2a3a4a5 . . . an . . .

Let’s follow the hint and, instead of reading every single bit, we read blocks
of two bits:

[a0a1][a2a3][a4a5] . . . [a2na2n+1] . . .

For every k ≥ 0, the kth block will have a2k as its first element, and a2k+1

as its second element. We can then use the sequence of the first elements
of the blocks as the first element of the pair of infinite sequences, and the
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sequence of the second elements of the blocks as the second element of the
pair of infinite sequences. We then define f : A→ A× A as follows:

f (a0a1a2a3 . . . a2na2n+1) = (a0a2 . . . a2n . . . , a1a3 . . . a2n+1 . . .) , (1)

that is, f(a) = (b, c) where, for every k ∈ N, bk = a2k and ck = a2k+1). This
f is, indeed, a bijection:

� f is a total function. As soon as a ∈ A is given, there is a unique
(b, c) ∈ A× A such that f(a) = (b, c).

� f is injective. Assume a, a′ ∈ A differ at some index n, that is, an ̸= a′n.
Let f(a) = (b, c) and f(a′) = (b′, c′). If n = 2k is even, then bk ̸= b′k,
so b ̸= b′ and (b, c) ̸= (b′, c′) too; if n = 2k + 1 is odd, then ck ̸= c′k, so
c ̸= c′ and (b, c) ̸= (b′, c′) too.

� f is surjective. Let (b, c) ∈ A× A: we must determine an infinite
binary string a such that f(a) = (b, c). We do so by choosing, for every
n ∈ N, the nth bit of a as follows:

an =

{
bk if n = 2k is even ,

ck if n = 2k + 1 is odd .
(2)

By construction, for every k ∈ N it is bk = a2k and ck = a2k+1: thus,
f(a) = (b, c).

The sequence a defined by (2) is called the interleaving of b and c, in this
order.
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