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Exercise 1.2

Find the shortest sequence of moves that transfers a tower of n disks from
the left peg A to the right peg B, if direct moves between A and B are
disallowed.

Solution. For n = 1 the shortest sequence is A → C, C → B. For n = 2 it
is:

1. A → C.

2. C → B.

3. A → C.

4. B → C. Note that the whole tower is on peg C now.

5. C → A.

6. C → B.

7. A → C.

8. C → B.

For the general case, observe that the strategy that solves the problem for n
disks works as follows:

1. Move the upper tower of n− 1 disks on peg B.

2. Move the n-th disk to peg C.

3. Move the upper tower of n− 1 disks on peg A.
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4. Move the n-th disk to peg B.

5. Move the upper tower of n− 1 disks on peg B.

Then the number Tn of moves needed by the strategy to solve the problem
with n disks satisfies T0 = 0 and Tn = 3Tn−1 + 2 for every n > 0. We will
now prove by induction thet Tn = 3n − 1 for every n ⩾ 1.

� Base case: n = 1. Then T1 = 2 = 31 − 1.

� Inductive step: Assume that Tn−1 = 3n−1 − 1 for a certain n ⩾ 2.
Then, by our strategy,

Tn = Tn−1 + 1 + Tn−1 + 1 + Tn−1

= 3 · (3n−1 − 1) + 2

= 3 · 3n−1 − 3 + 2 = 3n − 1 .

We conclude that, if Tn−1 = 3n−1− 1, then Tn = 3n− 1. Our argument
holds whatever the actual value of n ⩾ 2 is.

Another way to solve the recurrence is by putting Un = Tn + 1. The new
sequence satisfies:

U1 = 3 ,

Un = 3(Un−1 − 1) + 2 + 1

= 3Un−1 for every n ⩾ 2 .

Then clearly Un = 3n, so Tn = 3n − 1.

Exercise 1.3

Show that, in the previous exercise, each legal arrangement of n disks is
encountered exactly once.

Solution. There is exactly one legal arrangement per subdivision of the
n disks in three (possibly empty) sets. There are 3n − 1 moves between
displacements, so there are 3n displacements reached overall. If one of these
was touched twice, then it would be possible to reduce the number of moves
by performing, the first time we reach said displacement, the chain of steps
we would have taken on the second of its occurrences: which contradicts the
result we obtained in the previous exercise.
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A note: The technique of minimum counterexample

Let P (n) be a predicate whose truth or falsehood depends on a variable n,
which takes values in the set N of natural numbers (nonnegative integers).
If we want to prove that P (n) is true for every value of n, we might use a
technique which relies on the:

Theorem (Well Ordering Principle). Every nonempty subset of N has a
minimum.

TheWell Ordering Principle is equivalent to the principle of mathematical
induction, in the sense that, assuming either of the two, it is possible to prove
the other. This is an interesting exercise.

Here’s how the technique of minimum counterexample works:

1. By contradiction, assume that P (n) is false for some n.

2. By the Well Ordering Principle, there is a minimum m ∈ N such that
P (m) is false.

3. Reach a contradiction. Possible ways:

(a) Prove that m is not minimum:

That is, there is some n ∈ N, n < m such that P (n) is false.

(b) Prove that m is not a counterexample:

That is, P (m) is actually true.

(c) Obtain a contradiction with some other fact which you already
know to be true.

4. Conclude that, since there is no minimum counterexample, there is no
counterexample at all.

This technique, or variants of it, also works with other kinds of induction
such as structural induction.

Exercise 1.4

Are there any starting and ending configurations of n disks on three pegs
that are more than 2n − 1 moves apart, according to Lucas’s original rules?

Solution. By contradiction, let m be the smallest number of tiles such that
there are two configurations X and Y of m tiles which are at least 2m moves
apart. Then the largest tile in X and Y must be on two different pegs,
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Figure 1: Venn diagram for three sets.

otherwise X could be turned into Y by only moving the m− 1 smaller tiles,
which requires less than 2m−1 moves by our hypothesis on m. But then, the
problem can be solved by first transforming X into some other configuration
Z where only the m− 1 smaller tiles are moved, then moving the larger tile,
and finally transforming Z into Y by only moving the m−1 smaller pegs: by
our hypothesis onm, this requires at most (2m−1−1)+1+(2m−1−1) = 2m−1
moves. This is a contradiction.

Exercise 1.5

A Venn diagram with three overlapping circles is often used to illustrate the
eight possible subsets associated with three given sets (see Figure 1). Can
the sixteen possibilities that arise with four given sets be illustratd by four
overlapping circles?

Solution. Contrary to intuition coming from school years, the answer is: no.
The reason is that two different circles have at most two points in common:
consequently, an eventual fourth circle would add at most six regions, instead
of the eight needed to fully represent a fourth set.

Surprisingly enough, four sets can be represented by four ovals. Even
more surprisingly, and against a conjecture by John Venn himself, five sets
can be represented by five ellipses.

Exercise 1.9 (tweaked)

In this exercise we will prove the famous:
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Theorem (Arithmetic-geometric inequality). Let n be a positive integer.
However chosen n positive reals x1, . . . , xn,

n
√
x1 · · ·xn ⩽

x1 + · · ·+ xn

n
. (1)

That is: the arithmetic mean of a nonempty list of positive reals is an
upper bound for the geometric mean of the same list.

To do this, let P (n) be the proposition:

P (n) ::= ∀x1, . . . , xn ∈ R+ . x1 · · · xn ⩽

(
x1 + · · ·+ xn

n

)n

(2)

Observe that the inequality in (2) is equivalent to that in (1), and that P (1)
is trivially true.

1. Prove that P (2) is true.

2. Prove that if n ⩾ 2 and P (n) is true, then P (n − 1) is true. Hint:
choose xn well.

3. Prove that if P (n) and P (2) are both true, then P (2n) is true.

4. Explain why it follows from the three points above that the arithmetic-
geometric inequality is true for every positive integer n and positive
reals x1, . . . , xn.

Solution. 1. For n = 2 the proposition P (2) is:

x1x2 ⩽

(
x1 + x2

2

)2

.

But the following manipulations turn each inequality into an equivalent
inequality:

x1x2 ⩽

(
x1 + x2

2

)2

4x1x2 ⩽ x2
1 + 2x1x2 + x2

2

0 ⩽ x2
1 − 2x1x2 + x2

2

and the last inequality is true, because x2
1 − 2x1x2 + x2

2 = (x1 − x2)
2,

and the square of a real number is always nonnegative.
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2. Suppose P (n) is true. Then it remains true with the special choice of
xn:

x1 · · · xn−1 ·
x1 + . . .+ xn−1

n− 1

⩽

(
x1 + . . .+ xn−1 +

x1+...+xn−1

n−1

n

)n

=

(
(n−1)(x1+...+xn−1)+(x1+...+xn−1)

n−1

n

)n

=

(
x1 + . . .+ xn−1

n− 1

)n

=

(
x1 + . . .+ xn−1

n− 1

)n−1

· x1 + . . .+ xn−1

n− 1
.

As x1, . . . , xn−1 are arbitrary and (x1+ . . .+xn−1)/(n−1) > 0, P (n−1)
is true.

3. Suppose P (n) and P (2) are both true. Then:

x1 · · ·xn · xn+1 · · · x2n

⩽

(
x1 + . . .+ xn

n

)n

·
(
xn+1 + . . .+ x2n

n

)n

=

((
x1 + . . .+ xn

n

)
·
(
xn+1 + . . .+ x2n

n

))n

⩽

( x1+...+xn

n
+ xn+1+...+x2n

n

2

)2
n

=

(
x1 + . . .+ xn + xn+1 + . . .+ x2n

2n

)2n

.

As x1, . . . , x2n are arbitrary, P (2n) is true.

4. We could conclude that P (n) is true for every positive integer n if we
could know that every positive integer n falls under at least one of the
following cases:

(a) n = 1;

(b) n = 2;

(c) n = m− 1 for some integer m ⩾ 2;
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(d) n = 2m for some positive integer m.

But that it is so, we can prove in the following way. Consider the
following algorithm:

� Initialize the variable m with the value 1.

� While m ⩽ n: update m to 2m.

� While m > n: update m to m− 1.

Then, when the algorithm terminates, the value of m is exactly n.
The last point deserves some consideration, as it shows that the set Z+

of positive integers can be obtained with the following choice of base cases
and constructors:

� Base case 1: 1 ∈ Z+.

� Base case 2: 2 ∈ Z+.

� Constructor case 1: if n ∈ Z+ and n ⩾ 2 then n− 1 ∈ Z+.

� Constructor case 1: if n ∈ Z+ then 2n ∈ Z+.

This definition, however, is ambiguous in the sense that a positive integer
can be obtained in more than one way. For example,

2 → 4 → 8 → 7 → 6

produces 6, but so does:

1 → 2 → 4 → 8 → 16 → 15 → 14 → 13 → 12 → 11 → 10 → 9 → 8 → 7 → 6

Instead, the definition given in Lecture 2 is unambiguous, because every
positive integer can be obtained in a unique way from the base case 1 with
the operations of doubling and doubling increased.

A note on the repertoire method

Consider a family of recurrences of the form:

g(0) = α ,
g(n+ 1) = Φ(g(n)) + Ψ(n; β, γ, . . .) for every n ⩾ 0

(3)

where α, β, γ, . . . are m parameters. Assume that the following happens:
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1. Φ is linear in g: that is, if g(n) = λ1g1(n) + λ2g2(n), then Φ(g(n)) =
λ1Φ(g1(n)) + λ2Φ(g2(n)).

2. Ψ is linear in each of the m − 1 parameters β, γ, . . . No hypothesis is
made on the dependence of Ψ on n.

Then the whole system is linear in the parameters α, β, γ, . . ., and we can
think of a general solution of the form:

g(n) = αA(n) + βB(n) + γC(n) + . . .

where A(n), B(n), C(n), . . . are uniquely determined functions.
Now, suppose that we have a repertoire ofm pairs of the form ((αi, βi, γi, . . .), gi(n))

satisfying the following conditions:

1. For every i = 1, 2, . . . ,m, gi(n) is the solution of the system corre-
sponding to the values

α = αi, β = βi, γ = γi, . . . .

2. The m m-tuples
(αi, βi, γi, . . .)

are linearly independent.

Then the functions A(n), B(n), C(n), . . . are uniquely determined.
The reason is that, for every fixed n,

α1A(n) +β1B(n) +γ1C(n) + . . . = g1(n)
...

...
αmA(n) +βmB(n) +γmC(n) + . . . = gm(n)

is a system of m linear equations in the m unknowns A(n), B(n), C(n), . . .
whose coefficients matrix is invertible.

Exercise A.1

Use the repertoire method to solve the following general recurrence:

g(0) = α ,
g(n+ 1) = 2g(n) + βn+ γ for every n ⩾ 0 .

(4)
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Solution. The recurrence (4) has the form (3) with Φ(g) = 2g and Ψ(n; β, γ) =
βn+ γ, which are linear in g and in β and γ, respectively: therefore we can
apply the repertoire method. The right-hand side of the recurrence suggests
that the solution might have an exponential component, a linear compo-
nent, and a constant component: we use this intuition to construct our test
functions.

1. The choice g(n) = 2n for every n ⩾ 0 gives the recurrence:

1 = α ,
2n+1 = 2 · 2n + βn+ γ for every n ⩾ 0 .

Then α = 1. For n = 0 we get 2 = 2 · 1 + γ, so γ = 0; for n = 1 we get
4 = 2 · 2 + β, so β = 0. Our first tuple-function pair is thus:

((1, 0, 0), 2n) .

2. The choice g(n) = n for every n ⩾ 0 gives the recurrence:

0 = α ,
n+ 1 = 2n+ βn+ γ for every n ⩾ 0 .

Then α = 0. For n = 0 we get 1 = 2 · 0 + γ, so γ = 1; for n = 1 we get
2 = 2 · 1 + β + γ, so β = 1. Our second tuple-function pair is thus:

((0,−1, 1), n) .

3. The choice g(n) = 1 for every n ⩾ 0 gives the recurrence:

1 = α ,
1 = 2 · 1 + βn+ γ for every n ⩾ 0 .

Then α = 1. For n = 0 we get 1 = 2 · 1 + γ, so γ = −1; for n = 1 we
get 1 = 2 · 1 + β − 1, so β = 0. Our third tuple-function pair is thus:

((1, 0,−1), 1) .

Putting everything together, we obtain the system:

A(n) = 2n

−B(n) +C(n) = n
A(n) −C(n) = 1
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whose solution is:

A(n) = 2n ; B(n) = 2n − n− 1 ; C(n) = 2n − 1 .

The general solution of the recurrence is thus:

g(n) = αA(n) + βB(n) + γC(n)

= α · 2n + β · (2n − 1− n) + γ · (2n − 1)

= (α + β + γ) · 2n − βn− (β + γ) .
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