ITT9132 Concrete Mathematics Exercise session 3: 16 February 2023

Silvio Capobianco

Last update: 16 February 2023

Exercise 1.8

Solve the recurrence:

$$Q_0 = \alpha \; ; \; Q_1 = \beta;$$

 $Q_n = (1 + Q_{n-1})/Q_{n-2} \; , \; \text{for } n > 1 \; .$

Assume that $Q_n \neq 0$ for all $n \ge 0$. *Hint*: $Q_4 = (1 + \alpha)/\beta$.

Solution. Let us just start computing. We get $Q_2 = (1 + \beta)/\alpha$ and $Q_3 = (1 + ((1 + \beta)/\alpha))/\beta = (1 + \alpha + \beta)/\alpha\beta$. Then:

$$Q_4 = \left(1 + \frac{1 + \alpha + \beta}{\alpha\beta}\right) \cdot \frac{\alpha}{1 + \beta}$$
$$= \frac{1 + \alpha + \beta + \alpha\beta}{\alpha\beta} \cdot \frac{\alpha}{1 + \beta}$$
$$= \frac{1 + \alpha + \beta + \alpha\beta}{\beta} \cdot \frac{1}{1 + \beta}$$
$$= \frac{(1 + \alpha)(1 + \beta)}{\beta} \cdot \frac{1}{1 + \beta}$$
$$= \frac{1 + \alpha}{\beta}$$

and

$$Q_5 = \left(1 + \frac{1+\alpha}{\beta}\right) \cdot \frac{\alpha\beta}{1+\alpha+\beta}$$
$$= \frac{1+\alpha+\beta}{\beta} \cdot \frac{\alpha\beta}{1+\alpha+\beta}$$
$$= \alpha$$
$$= Q_0.$$

Thus, $Q_6 = (1 + \alpha)/((1 + \alpha)/\beta) = \beta = Q_1$, and the sequence is periodic.

Important note: Exercise 1.8 asks us to solve a *second order* recurrence with *two* initial conditions, corresponding to two consecutive indices. To be sure that the solution is a periodic sequence, we must then make sure that *two consecutive values* are repeated.

Exercise A.2

In Exercise session 2 we have used the repertoire method to solve the recurrence:

$$g(0) = \alpha,$$

$$g(n+1) = g(n) + \beta n + \gamma \text{ for every } n \ge 0.$$
(1)

What if the recurrence (1) had been

$$g(0) = \alpha ,$$

$$g(n+1) = \delta g(n) + \beta n + \gamma \text{ for every } n \ge 0$$
(2)

instead?

Solution. The recurrence (2), considered as a family of recurrence equations parameterized by $(\alpha, \beta, \gamma, \delta)$, does *not* have the form required by the repertoire method, because the function Φ depends on one of the parameters, not only on the function g: consequently, in general, $g_1(n) + g_2(n)$ is not the solution for $(\alpha_1 + \alpha_2, \beta_1 + \beta_2, \gamma_1 + \gamma_2, \delta_1 + \delta_2)$, because $\delta_1 g_1(n) + \delta_2 g_2(n)$ is not, in general, equal to

 $(\delta_1 + \delta_2)(g_1(n) + g_2(n))$. We cannot therefore use the repertoire method to express g(n) as $g(n) = \alpha \cdot A(n) + \beta \cdot B(n) + \gamma \cdot C(n) + \delta \cdot D(n)$.

However, for every fixed δ , (2) does have the required form, with $\Phi(g) = \delta g$ and $\Psi(n; \beta, \gamma) = \beta n + \gamma$: thus, for every fixed δ , we can use the repertoire method to find three functions $A_{\delta}(n), B_{\delta}(n), C_{\delta}(n)$ such that

$$g_{\delta}(n) = \alpha \cdot A_{\delta}(n) + \beta \cdot B_{\delta}(n) + \gamma \cdot C_{\delta}(n)$$

for every $n \ge 0$. By reasoning as before, the choice $g_{\delta}(n) = 1$ corresponds to $(\alpha, \beta, \gamma) = (1, 0, 1 - \delta)$, thus

$$A_{\delta}(n) + (1 - \delta)C(n) = 1 :$$
 (3)

the factor $1 - \delta$ in front of $C_{\delta}(n)$ rings a bell, and suggests we might have to be careful about the cases $\delta = 1$ and $\delta \neq 1$. Choosing $g_{\delta}(n) = n$ corresponds to $(\alpha, \beta, \gamma) = (0, 1 - \delta, 1)$, thus

$$(1-\delta)B_{\delta}(n) + C_{\delta}(n) = n.$$
(4)

We are left with one triple of values to choose. As we had put $g(n) = 2^n$ when $\delta = 2$, we are tempted to just put $g(n) = \delta^n$: but if $\delta = 1$ this would be the same as g(n) = 1, which we have already considered. We will then deal separately with the cases $\delta = 1$ and $\delta \neq 1$.

Let us start with the latter. For $\delta \neq 1$ the choice $g_{\delta}(n) = \delta^n$ corresponds to $(\alpha, \beta, \gamma) = (1, 0, 0)$, thus

$$A_{\delta}(n) = \delta^n \quad : \tag{5}$$

by combining this with (3) and (4) we find

$$C_{\delta}(n) = \frac{1 - A_{\delta}(n)}{1 - \delta} = \frac{1 - \delta^n}{1 - \delta} = 1 + \delta + \ldots + \delta^{n-1}$$

and

$$B_{\delta}(n) = \frac{n - C_{\delta}(n)}{1 - \delta} = \frac{n - 1 - \delta - \dots - \delta^{n-1}}{1 - \delta}$$

Let us now consider the case $\delta = 1$. Then (3) becomes $A_1(n) = 1$ and (4) becomes $C_1(n) = n$: for the last case, we set $g_1(n) = n^2$, which corresponds to $(\alpha, \beta, \gamma) = (0, 2, 1)$, and find

$$2B_1(n) + C_1(n) = n^2 , (6)$$

which yields $B_1(n) = (n^2 - n)/2$.

Exercise 2.2

Simplify the expression $x \cdot ([x > 0] - [x < 0])$.

Solution. If x > 0 then the expression has value $x \cdot (1 - 0) = x$. If x = 0 then the expression has value $0 \cdot (0 - 0) = 0$. If x < 0 then the expression has value $x \cdot (0 - 1) = -x$. Thus, $x \cdot ([x > 0] - [x < 0]) = |x|$

Exercise 2.12

Show that the function $p(k) = k + (-1)^k c$ is a permutation of the set of all integers, whenever c is an integer.

Solution. A way to solve the exercise is to prove that p(k) has an *inverse* function q(n), defined for every integer n, such that p(k) = n if and only if q(n) = k.

So let $p(k) = k + (-1)^k c = n$. Then $n + c = k + (1 + (-1)^k)c$. But $1 + (-1)^k$ is 2 if k is even and 0 if k is odd, which means that k and n + c are either both even or both odd: hence, $(-1)^k = (-1)^{n+c}$. We can thus rewrite $k = n + c - (1 + (-1)^k)c = n - (-1)^{n+c}c$: this is the inverse function q(n) we were looking for.

Exercise 2.21

Evaluate the sums $S_n = \sum_{k=0}^n (-1)^{n-k}$, $T_n = \sum_{k=0}^n (-1)^{n-k}k$, and $U_n = \sum_{k=0}^n (-1)^{n-k}k^2$ by the perturbation method, assuming that $n \ge 0$.

Solution. By applying the permutation p(k) = n - k we see that $S_n = [n \text{ is even}]$. Let's try to reach the same result via the perturbation method. First,

$$S_{n+1} = \sum_{0 \le k \le n+1} (-1)^{n+1-k}$$
$$= \sum_{0 \le k \le n} (-1)^{n+1-k} + 1$$
$$= -S_n + 1;$$

next,

$$S_{n+1} = (-1)^{n+1} + \sum_{1 \le k \le n+1} (-1)^{n+1-k}$$
$$= (-1)^{n+1} + \sum_{0 \le k \le n} (-1)^{n-k}$$
$$= (-1)^{n+1} + S_n .$$

Together, the two equalities above yield $2S_n = 1 - (-1)^{n+1} = 1 + (-1)^n$, so that:

$$S_n = \frac{1 + (-1)^n}{2} = [n \text{ is even}].$$

For T_n we use a similar trick. First,

$$T_{n+1} = \sum_{0 \le k \le n} (-1)^{n+1-k} k + n + 1$$

= $-T_n + n + 1$;

next,

$$T_{n+1} = 0 + \sum_{1 \le k \le n+1} (-1)^{n+1-k} k$$

=
$$\sum_{0 \le k \le n} (-1)^{n-k} (k+1)$$

=
$$T_n + S_n;$$

together these yield $2T_n = n + 1 - S_n$. But as $S_n = [n \text{ is even}], 1 - S_n = [n \text{ is odd}]$: thus,

$$T_n = \frac{n + [n \text{ is odd}]}{2} \,.$$

With U_n the trick will be similar as with T_n , but we will have to be careful about the square:

$$-U_n + (n+1)^2 = \sum_{0 \le k \le n} (-1)^{n-k} (k+1)^2$$
$$= \sum_{0 \le k \le n} (-1)^{n-k} (k^2 + 2k + 1)$$
$$= U_n + 2T_n + S_n ,$$

which yields $2U_n = (n+1)^2 - 2T_n - S_n$. But

$$2T_n + S_n = n + [n \text{ is odd}] + [n \text{ is even}] = n + 1$$
:

thus, $U_n = (n^2 + n)/2$.

Exercise B.1 (from the classroom test of 23 November 2016)

Solve the recurrence:

$$T_0 = 1;$$

$$nT_n = 2T_n + \frac{2^n}{n!} \left(1 + \frac{n}{3^n}\right) \text{ for every } n \ge 1.$$
(7)

Solution. The recurrence (7) has the form:

$$a_n T_n = b_n T_{n-1} + c_n$$
 for every $n \ge 1$

with $a_n = b_n = 2$, and $c_n = \frac{2^n}{n!} \left(1 + \frac{n}{3^n}\right)$ for every $n \ge 1$: this suggests using a summation factor. As usual, we put $s_0 = 1$ and, considering $a_0 = 1$, we have:

$$s_n = \frac{a_0 \cdot a_1 \cdots a_{n-1}}{b_1 \cdot b_2 \cdots b_n}$$
$$= \frac{1 \cdot 1 \cdots (n-1)}{2 \cdot 2 \cdots 2}$$
$$= \frac{(n-1)!}{2^n}$$

We then put $U_n = s_n a_n T_n = \frac{n!}{2^n} T_n$ and the recurrence becomes:

$$\begin{array}{rcl} U_{0} & = & 1 \; ; \\ U_{1} & = & U_{n-1} + \frac{1}{n} + \frac{1}{3^{n}} \; \; {\rm for \; every} \; n \geqslant 1 \end{array}$$

which has solution:

$$U_n = 1 + \sum_{k=1}^n \left(\frac{1}{k} + \frac{1}{3^k}\right)$$

= 1 + H_n + $\frac{1}{3}\sum_{k=0}^{n-1}\frac{1}{3^k}$
= 1 + H_n + $\frac{1}{3} \cdot \frac{1 - (1/3)^n}{1 - 1/3}$
= 1 + H_n + $\frac{1}{2} \cdot \left(1 - \frac{1}{3^n}\right)$

We conclude:

$$T_n = \frac{1}{s_n a_n} U_n = \frac{2^n}{n!} \cdot \left(1 + H_n + \frac{1}{2} \cdot \left(1 - \frac{1}{3^n} \right) \right)$$
$$= \frac{2^n}{n!} \left(1 + H_n \right) + \frac{2^{n-1} (3^n - 1)}{3^n n!} .$$