ITT9132 Concrete Mathematics
 Exercise session 3: 11 February 2021

Silvio Capobianco

Last update: 11 october 2022

A note on the repertoire method

Suppose that we have a recursion scheme of the form:

$$
\begin{align*}
g(0) & =\alpha \\
g(n+1) & =\Phi(g(n))+\Psi(n ; \beta, \gamma, \ldots) \text { for } n \geq 0 . \tag{1}
\end{align*}
$$

Suppose now that:

1. Φ is linear in g, i.e., if $g(n)=\lambda_{1} g_{1}(n)+\lambda_{2} g_{2}(n)$ then $\Phi(g(n))=$ $\lambda_{1} \Phi\left(g_{1}(n)\right)+\lambda_{2} \Phi\left(g_{2}(n)\right)$.
No hypotheses are made on the dependence of g on n.
2. Ψ is a linear function of the $m-1$ parameters β, γ, \ldots

No hypotheses are made on the dependence of Ψ on n.
Then the whole system (1) is linear in the parameters $\alpha, \beta, \gamma, \ldots$, i.e., if $g_{i}(n)$ is the solution corresponding to the values $\alpha=\alpha_{i}, \beta=\beta_{i}, \gamma=\gamma_{i}, \ldots$, then $g(n)=\lambda_{1} g_{1}(n)+\lambda_{2} g_{2}(n)$ is the solution corresponding to $\alpha=\lambda_{1} \alpha_{1}+$ $\lambda_{2} \alpha_{2}, \beta=\lambda_{1} \beta_{1}+\lambda_{2} \beta_{2}, \gamma=\lambda_{1} \gamma_{1}+\lambda_{2} \gamma_{2}, \ldots$

We can then look for a general solution of the form

$$
\begin{equation*}
g(n)=\alpha A(n)+\beta B(n)+\gamma C(n)+\ldots \tag{2}
\end{equation*}
$$

i.e., think of $g(n)$ as a linear combination of m functions $A(n), B(n), C(n), \ldots$ according to the coefficients $\alpha, \beta, \gamma, \ldots$

To find these functions, we can reason as follows. Suppose we have a repertoire of m pairs of the form $\left(\left(\alpha_{i}, \beta_{i}, \gamma_{i}, \ldots\right), g_{i}(n)\right)$ satisfying the following conditions:

1. For every $i=1,2, \ldots, m, g_{i}(n)$ is the solution of the system corresponding to the values $\alpha=\alpha_{i}, \beta=\beta_{i}, \gamma=\gamma_{i}, \ldots$
2. The m m-tuples $\left(\alpha_{i}, \beta_{i}, \gamma_{i}, \ldots\right)$ are linearly independent.

Then the functions $A(n), B(n), C(n), \ldots$ are uniquely determined. The reason is that, for every fixed n,

$$
\begin{array}{lll}
\alpha_{1} A(n)+\beta_{1} B(n)+\gamma_{1} C(n)+\ldots & =g_{1}(n) \\
\vdots & & =\vdots \\
\alpha_{m} A(n)+\beta_{m} B(n)+\gamma_{m} C(n)+\ldots & =g_{m}(n)
\end{array}
$$

is a system of m linear equations in the m unknowns $A(n), B(n), C(n), \ldots$ whose coefficients matrix is invertible.

This general idea can be applied to several different cases. For instance, if the recurrence is second-order:

$$
\begin{align*}
g(0) & =\alpha_{0} \\
g(1) & =\alpha_{1} \tag{3}\\
g(n+1) & =\Phi_{0}(g(n))+\Phi_{1}(g(n-1))+\Psi(n ; \beta, \gamma, \ldots) \text { for } n \geq 1
\end{align*}
$$

then we will require that Φ_{0} and Φ_{1} are linear in g, and that Ψ is a linear function of the $m-2$ parameters β, γ, \ldots.

The same can be said of systems of the form:

$$
\begin{align*}
g(1) & =\alpha \\
g(k n+j) & =\Phi(g(n))+\Psi\left(n ; \beta_{j}, \gamma_{j}, \ldots\right) \text { for } n \geq 1, \quad 0 \leq j<k \tag{4}
\end{align*}
$$

The previous argument is easily adapted to the new case: this time, the number of tuple-function pairs to determine will be $1+k \cdot(m-1)$.

For instance, in the Josephus problem we have $k=2, \alpha=1, \Phi(g)=2 g$, $\Psi(n ; \beta)=\beta, m=2, \beta_{0}=-1, \beta_{1}=1$: and we need $3=1+2 \cdot(2-1)$ tuple-function pairs.

Exercise A. 1

Use the repertoire method to solve the following general recurrence:

$$
\begin{align*}
g(0) & =\alpha \tag{5}\\
g(n+1) & =2 g(n)+\beta n+\gamma \text { for } n \geq 0
\end{align*}
$$

Exercise A. 2

What if the recurrence (5) had been

$$
\begin{align*}
g(0) & =\alpha \\
g(n+1) & =\delta g(n)+\beta n+\gamma \text { for } n \geq 0 \tag{6}
\end{align*}
$$

instead?

Exercise 2.21(a)

Evaluate the sum $S_{n}=\sum_{k=0}^{n}(-1)^{n-k}$ by the perturbation method, assuming that $n \geq 0$.

