ITT9132 Concrete Mathematics Exercise session 4: 18 February 2021

Silvio Capobianco

Last update: 11 October 2022

Exercise 2.6

What is the value of $\sum_{k}[1 \leqslant j \leqslant k \leqslant n]$ as a function of j and n ?

Exercise 2.14

Use multiple sums to evaluate

$$
\sum_{k=1}^{n} k \cdot 2^{k}
$$

Exercise 2.15

Evaluate 高 $_{n}=\sum_{k=1}^{n} k^{3}$ by the text's Method 5 as follows: First write 回 $_{n}+$ $\square_{n}=2 \sum_{1 \leqslant j \leqslant k \leqslant n} j k$; then apply (2.33).

Exercise 2.21(b)-(c)

For $n \geqslant 0$ evaluate the following sums by the perturbation method:

1. $T_{n}=\sum_{k=0}^{n}(-1)^{n-k} k$.
2. $U_{n}=\sum_{k=0}^{n}(-1)^{n-k} k^{2}$

Hint: use the following sum, which we calculated in the previous session:

$$
S_{n}=\sum_{k=0}^{n}(-1)^{n-k}=[n \text { is even }]
$$

