ITT9132 Concrete Mathematics Exercise session 5: 25 February 2021

Silvio Capobianco

Last update: 11 October 2022

Exercise 2.8

What is the value of $0^{\underline{m}}$, when m is a given integer?

Exercise 2.10

The text derives the following formula for the difference of a product:

$$
\begin{equation*}
\Delta(u v)=u \Delta v+E v \Delta u . \tag{1}
\end{equation*}
$$

How can this formula be correct, when the left-hand side is symmetric with respect to u and v but the right-hand side is not?

Exercise 2.16

Prove that $x^{\underline{\underline{m}}} /(x-n)^{\underline{\underline{m}}}=x^{\underline{\underline{n}}} /(x-m)^{\underline{n}}$ unless one of the denominators is zero.

Exercise 2.27

Compute $\Delta\left(c^{\underline{x}}\right)$, and use it to deduce $\sum_{k=1}^{n}(-2)^{\underline{k}} / k$.

Exercise 2.28

At what point does the following derivation go astray?

$$
\begin{align*}
1 & =\sum_{k \geqslant 1} \frac{1}{k \cdot(k+1)} \tag{2}\\
& =\sum_{k \geqslant 1}\left(\frac{k}{k+1}-\frac{k-1}{k}\right) \tag{3}\\
& =\sum_{k \geqslant 1} \sum_{j \geqslant 1}\left(\frac{k}{j}[j=k+1]-\frac{j}{k}[j=k-1]\right) \tag{4}\\
& =\sum_{j \geqslant 1} \sum_{k \geqslant 1}\left(\frac{k}{j}[j=k+1]-\frac{j}{k}[j=k-1]\right) \tag{5}\\
& =\sum_{j \geqslant 1} \sum_{k \geqslant 1}\left(\frac{k}{j}[k=j-1]-\frac{j}{k}[k=j+1]\right) \tag{6}\\
& =\sum_{j \geqslant 1}\left(\frac{j-1}{j}-\frac{j}{j+1}\right) \tag{7}\\
& =\sum_{j \geqslant 1} \frac{-1}{j \cdot(j+1)} \tag{8}\\
& =-1 \tag{9}
\end{align*}
$$

Exercise from midterm test of 8 November 2016

1. Prove that $H_{n} \leqslant 1+\log _{2} n$ for every $n \geqslant 1$.
2. Use the previous point to evaluate $\sum_{k=1}^{\infty} k^{-2} H_{k}$.
