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Concrete Mathematics is ...

m the controlled manipulation of mathematical formulas
m using a collection of techniques for solving problems
Goals of the book:
m to introduce the mathematics that supports advanced
computer programming and the analysis of algorithms

m to provide a solid and relevant base of mathematical skills -
the skills needed
m to solve complex problems
m to evaluate horrendous sums
m to discover subtle patterns in data
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Our additional goals

m to get acquainted with well-known and popular literature in
Computer Science and in Mathematics;

m to develop mathematical skills and practice formulating
complex problems mathematically;

m to practice presentation of results.
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Contents of the Book

Chapters:
Recurrent Problems
Sums
Integer Functions
Number Theory
Binomial Coefficients
[@ Special Numbers
Generating Functions
B Discrete Probability
El Asymptotics
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Recurrent problems

Recurrences

m A sequence of complex numbers (a,) = (ag,a1,a2,...) is called recurrent, if for
n>1 its generic term a, satisfies a recurrence (equation)

an = fn(an—1,~~~730)7

where f, : C" — C for every n>1.
m If there exists f : N x Ck — C such that:

fo=f(n;an-1,...,an—x) forevery n> k,

the number k is called the order of the recurrence.

recurrent — from the Latin recurrere to run back — in Estonian: taastuv
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Two examples of recurrence equations

A recurrence of order 2

a = 0;
aa = 1;
ap, = ap-1+ap foreveryn>2

This recurrence defines the Fibonacci numbers.

A recurrence without a well-defined order

ag 1;
ap, = apap-1+aiap—2+...+ap—1a0 forevery n>1

This recurrence defines the Catalan numbers.
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Why solve recurrences?

Reason 1: Efficiency.
m Consider the problem of adding together the first n positive integers.

m Naive algorithm:

sum 0
i 1
while i <= n:
sum = sum + i
i=1i+1
return sum

m Algorithm based on closed form:

return (n * (n+1)) / 2

m The second algorithm is clearly faster than the first one!
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Why solve recurrences?

Reason 2: Manageability.
m Stirling's approximation for the factorial:

nanl
en:
1

lim —— =
n—e nN\/27n

m Then, however given a,, the two sequences:

n\n
nla,, (7) anV2mn
e

either both converge or both don't converge. ..
m ...and if they converge, the limit is the same!

m But the second sequence is more manageable than the first one:
For example, we can use fast exponentiation.
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Ad hoc techniques: Guess and Confirm

Example: f(n) = (n®>—1+f(n—1))/2, f(0) =2

m Let's compute some values:

Guess: f(n)=(n—1)2+1.
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Ad hoc techniques: Guess and Confirm

Example: f(n) = (n®>—1+f(n—1))/2, f(0) =2

m Let's compute some values:

Guess: f(n)=(n—1)2+1.
m Assuming that the guess holds for n = k, we prove that it holds for n= k+1:

flk+1) = ((k+1)2=14f(k))/2

(K2 42k +(k—1)2+1)/2
(K2 +2k+k2—2k+1+1)/2
= (2k*+2)2=K2+1

QED.
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Next section

Recurrent Problems
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1. Recurrent Problems

The Tower of Hanoi
Lines in the Plane
The Josephus Problem
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Regions of the plane defined by lines

Q=1 Q=2

In general: Q,=2"7

Q=4
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Regions of the plane defined by lines

Actually ...

Va

Vi V3

Va

Q=4
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Regions of the plane defined by lines

Actually ...

QB=Q+3=7
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Regions of the plane defined by lines

Actually ...

QB=Q+3=7

Generally @, = Q,_1+n.

n|o]1]2]3]4]5
Q|1]2]4]7|11]16]22
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Regions of the plane defined by lines

To=1 T =2
T3 =?
T,=?
To=17
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Regions of the plane defined by lines

T, = @Q—-22=11-4=7
T3 = @Q—2-3=22—-6=16
T4 = 08—24:37—8:29
_______ Ts = (ip—2-5=56—-10=146
i T, = Q2n_2n
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Regions of the plane defined by lines

\\,/ T2 — Q4_22:]_1_4:7
T3 = QR—2-3=22-6=16
T4 = 08—24:37—8:29
______ Ts = Qu0—2-5=56—-10=146
/ Tn = Gopn—2n

n|(0(1(2]3|4|5|6|7]| 8 9
Qu|1|2(|4] 7 |11]16]22|29| 37 | 46
T, |1]12|7]|16|29 |46 |67 92| 121 | 156
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Next section

Sums
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Notation

Sums and Recurrences
Manipulation of Sums
Multiple Sums

General Methods

@A Finite and Infinite Calculus

Infinite Sums
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Sums as solutions of recurrences

The simplest (nontrivial) recurrences have the form:

ao
an

<o ;
ap—1+cy foreveryn>1.

The solution to the above is clearly:

Problem: find a closed form for the sum!
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A simple case: Gauss' trick

Solve the recurrence:
So=0; S, =S,-1+n foreveryn>1

This is the same as calculating Y] _ k. Well:
= Addition is commutative, so:
n
0+1+-+(n—1)+n=n+(n—-1)+--+140=Y (n—k)
k=0
= Addition is also associative, so:

n n n
25, =Y k+ Y (n—k)=Yn
k= k=0 k=0

0

m The right-hand side is a sum of n+1 summands, all equal to n. We conclude:

n(n+1)
2

S =
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The perturbation method

Consider a recurrence of the form:
So=ap; Sp=Sp-1+a, forevery n>1

Sometimes we can solve the recurrence by perturbing the sum:

Rewrite:
n+1
Sn+1=Sn+apt1=ao+ Z ak
k=1
Manipulate ZZ:; ay to express it as a function of S,.

Solve for S,,.
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Example: Sum of a geometric progression

Let a# 1. Consider the recurrence:

So=1; S, =S,_1+a" foreveryn>1

Rewrite:

Manipulate:

Solve for S,:

S,4+a"t! = 1+a-S,
1-as, = 1-a"!
s 1ian+1 _ an+171
b =

1-a a—1 TAL
TECH



Summation factors

Consider a recurrence of the following form:
anTh=bpTh_1+c, forevery n>1
Assume that we can find a summation factor s, such that:
Spbp =sp—1ap—1 forevery n>1

Then, putting ap =sp =1 and S, = s,a, T,,, we turn our recurrence into the much
easier:

So = To;
S, = Sp-1+snpcy foreveryn>1

From this we recover:

1 n
Tn= (To-f— Zskck> for every n >1

Sndn k=1

and as soon as we have a closed formula for ¥]_; skck, we have one for T, too. ;EEH



Example: A recurrence with a factor n

Consider the recurrence:
3 n
To=1; T,,=2T,,,1+(§) for every n > 1

Here a, =1, b, =2, and ¢, = (3/2)", so we must solve:
Sp-2=sp_1-1 foreveryn>1

Then s, =1/2" and for S, = span T, = T,/2" we have:
3 n
So=1; S, = ,,_1—1—(2) for every n > 1

We know that this has the solution:

n 3 k n 3 k
+ - £ Q-E6)
k=1 \4 i=o \*4
1— 4 n+1 4n+1 __an+l
= 1 (3(/3/)4) = 4n3 for every n > 0
and from this we conclude:
4n+1 73n+1

@ = for every n >0 ;e& H



Finite calculus

A way of “working on sums like they were integrals”:

m Finite difference instead of derivative:
Af(x)=1f(x+1)—f(x) forevery x

m ldea: if S, =Y/ _gak, then AS, =a,,1, and vice versa.

m A new family of elementary functions which solve specific difference equations
(instead of “differential”):

B Falling factorials in place of powers.
B Harmonic numbers in place of logarithm.

“Summation by parts’.

m Stolz-Cesaro lemma in place of I'Hépital’s rule.
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Infinite sums

On the one hand:

Example 1

Let
5—1+1+1+1+1+1+1+ ! +
T2 4 8 16 32 64 128
Then 11 1 1 1 1
25:2+1+§+Z+§+R+372+674+“.:2+S’
and

5=2
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Infinite sums

...but on the other hand:

Example 2

Let
T=1+24+448+16+32464+1...
Then
2T =2+4+4+8+16+32+64+128...=T —1
and

T=-1
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Infinite sums

Existence of the sum:
= Riemann summation as limit of partial sums.
m Lebesgue summation as a difference of least upper bounds.
Manipulation of sums:
m When are infinite sums commutative, associative, etc.?
m Riemann series theorem and absolute convergence.
Sums and limits:
m When does the limit of the sums coincide with the sum of the limits?
m Dominated convergence theorem and monotone convergence theorem.
Double sums:
m When does a simultaneous double sum coincide with an iterated double sum?
m Fubini's theorem on infinite double sums.
Other interpretations of the idea of convergence:

m Cesaro summation and Abel summation.
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Next section

Integer Functions
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3. Integer Functions

Floors and Ceilings
Floor/Ceiling Applications
Floor/Ceiling Recurrences
'mod’: The Binary Operation
Floor/Ceiling Sums
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Floor and ceiling

The ceiling of the real number x is the integer:

[x] =min{k € Z| k > x}
Dually, the floor of x is the integer:

[x] =max{k €Z| k <x}
The following important chain of inequalities holds:

x—1<|x]<x<[x]<x+1
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Floor and ceiling

The ceiling of the real number x is the integer:
[x] =min{k € Z | k > x}
Dually, the floor of x is the integer:
[x] =max{k € Z | k < x}
The following important chain of inequalities holds:
x—1<|x]<x<[x]<x+1

Generalized Pigeonhole Principle

If m>1 pigeons are to be put in n>1 pigeonholes, then:
m at |east one pigeonhole will contain at least [m/n] pigeons; and

m at least one pigeonhole will contain at most [m/n| pigeons.
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Next section

Number Theory
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4. Number Theory

Divisibility

Factorial Factors

Relative Primality

'mod’: The Congruence Relation
Independent Residues

[@ Additional Applications

Phi and Mu
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Divisibility and congruence

Integer divisibility:

= An integer a divides, or is a factor of, an integer b, written a\ b, if there exists
an integer k such that k-a=b.

m Note that, with this definition, every integer divides 0.
Modular congruence:

m If a,b,n are all integer, then a is congruent to b modulo n, written a= b
(mod n), if nis a factor of a—b.

= Addition and multiplication “behave well” with respect to modular congruence.
Not so exponentiation!
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Special functions: ¢ and u

Euler’s function ¢:

= For m positive integer, ¢(m) is the number of integers a between 1 and m such
that ged(a,m) =1.

m Euler's theorem: if a,m > 0 and gcd(a,m) =1, then a®(™ =1 (mod m).
MG&bius’ function p:
m u(m)is (—1) if mis a product of k distinct primes, and 0 if m is divisible by
the square of a prime.
m Mbbius’ inversion formula: for any two functions f,g : Z4 — C the following are
equivalent:
For every m> 1, f(m) =Y q\me(d).
For every m> 1, g(m) = Yo\ (m/d)f(d).
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Next section

Binomial Coefficients
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5. Binomial Coefficients

Basic Identities

Basic Practice

Tricks of the Trade

Generating Functions
Hypergeometric Functions

[@ Hypergeometric Transformations
Partial Hypergeometric Sums

E Mechanical Summation
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Counting choices

The binomial coefficient “n choose k", denoted (}), is the number of ways we can
choose k objects from a set of n objects, regardless of the order in which we choose

them.
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Counting choices

The binomial coefficient “n choose k", denoted (}), is the number of ways we can

choose k objects from a set of n objects, regardless of the order in which we choose
them.

Then for every n>0and 0 < k < n:
(n)_n~(n—1)---(n—k+1) n!

K k! T K(n—k)’

where k!, read k factorial, is the number of ways in which we can order k items, and
can be defined by the recurrence:

o = 1,
nl = n-(n—1)! foreveryn>1.
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Counting choices

The binomial coefficient “n choose k", denoted (Z) is the number of ways we can
choose k objects from a set of n objects, regardless of the order in which we choose
them.

We also have the two-parameter recurrence:

n+1 n n
= > < k<n.
( k) (k>+(k71) foreveryn>0and1 < k<n
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The Binomial Theorem

Theorem (Newton)

For every two real numbers x and y and nonnegative integer n,

(x+y)"= Zn‘, (Z)xky"”‘

k=0
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The Binomial Theorem

Theorem (Newton)

For every two real numbers x and y and nonnegative integer n,

(x+y)"= ¥, (Z)Xky"’k

k=0
Proof: by expanding the product:

(x+y)-(x+y):-(x+y), nfactors overall

m This will be a sum of monomials of the form xky"=k.

m Each such monomial is produced by choosing k factors (x+y) from which to
take the k factors x.
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Next section

@ Special Numbers
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6. Special Numbers

Stirling Numbers
Eulerian Numbers
Harmonic Numbers
Harmonic Summation
Bernoulli Numbers
@ Fibonacci Numbers

Continuants
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Stirling numbers

Definition
The Stirling number of the second kind “n subset k", denoted {}}, is the number of
ways we can partition a set of n objects into k nonempty subsets.

Computing Stirling numbers is harder than computing binomial coefficients, but the
following two-parameter recurrence holds:

n+1 n n
— k- > < k<n.
{ K } k {k}+{k71} foreveryn>0and1 < k<n

The Stirling number of the first kind “n cycle k”, denoted [}], is the number of ways
we can partition a set of n objects into k nonempty cycles.

This time:

n+1 n n
=n- > < k<n.
[ X } n {k]—i_{k—l} foreveryn>0and1 < k <n
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Fibonacci numbers

Defined by the “simplest” second-order recurrence:

Fo=0; F1=1;
Fn=Fp_1+F,2 foreveryn>2

Appear in several “natural” processes.

m Cassini's identity:
Fop1Fo1 — F3=(-1)"

m gcd law:
ng(FmaFn) = Fgcd(m,n)

Played a crucial role in the solution of Hilbert’s tenth problem.
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Harmonic numbers

The harmonic numbers, denoted by H,, are defined by the recurrence:

Ho = 0 5
Hn

1
H, 1+ " forevery n>1.

Note that Han > g for every n>0:

1 1
aFs +7>H2"+§-

Hynt1 = Han + o 2

1
2n41
In fact, the following estimate holds:

Inn<H,<1l+Inn

That is, harmonic numbers grow logarithmically.
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Harmonic numbers

The harmonic numbers, denoted by H,, are defined by the recurrence:
Ho = 0,
1
H, = H,,,1+E forevery n > 1.

More in general, the harmonic numbers of order s, denoted by H,(,s), are defined by the
recurrence:
HY = o

’ 1
H,(f) = H,(,i)l + = forevery n > 1.

For s > 1 the sequence <H,(,s)> converges to a real number {(s): this defines the
Riemann zeta function.
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Bernoulli numbers

Jakob Bernoulli (1654-1705) studied the family of functions:
n—1
Sm(n)=Y k™
k=0

and discovered the following regularity:

There exists a sequence (B,) such that for every m,n nonnegative integers:

1 & (m+1
— B m+1—k
Sm(n) m+1 = ( k ) kN

The numbers B, are called the Bernoulli numbers and have many remarkable
properties.
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Next section

Generating Functions
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7. Generating Functions

Domino Theory and Change
Basic Maneuvers

Solving Recurrences

Special Generating Functions
Convolutions

[@ Exponential Generating Functions

Dirichlet Generating Functions
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Solving recurrences with generating functions

Given a sequence (g,) that satisfies a given recurrence, we seek a closed form for g,
which expresses it as a function of n, but not of go,...,gn_1-

The method of generating functions

Write a single equation that expresses g, in terms of other elements of the
sequence.
This equation must hold for all integers n, assuming that g, =0 for every n < 0:
this might need to add correction terms for the initial values.

Multiply both sides of the equation by z” and sum over all n.
This gives, on the left-hand side, the series Y, g,z", which is the generating
function G(z) of the sequence (gp).
The right-hand side should be turned into some other expression involving G(z).

Solve with respect to G(z), obtaining an analytic form.

[~}

Expand the right-hand side into a power series and read off the coefficient of z":
thanks to the properties of analytic functions in the complex plane, this is a
closed form for gj,.
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Example: Fibonacci numbers

Then for large n, F, is the closest integer to 4>"/\/§.

Single equation holding for every n € Z:
8n = &n-1+8n-2+ [” = 1]

where [True] =1 and [False] =0 are the Iverson brackets.
Multiply by z" and obtain an equation for G(z) =Y, gnz":

G(z) =2G(2)+2%G(z) +z

Solve with respect to G(z):

z 1 1 1
EE —ﬁ(*l—w**l_az)

1-v5
7
Derive an expression for g, which only depends on n:

where ® = AL is the golden mean and o=

1

gn <¢” - $”) for every n > 0
NG
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Next section

B Discrete Probability
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8. Discrete Probability

Definitions

Mean and Variance

Probability Generating Functions
Flipping Coins

Hashing

TAL
TECH



Next section

Bl Asymptotics
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9. Asymptotics

A Hierarchy

Big-O Notation

Big-O Manipulation

Two Asymptotic Tricks
Euler's Summation Formula

@A Final Summations
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Big-O notation

Let f and g be real-valued functions defined on the natural numbers.
We say that f(n) is big-O of g(n), and write f(n) = O(g(n)), if there exists C >0

such that:
|f(n)| < C-|g(n)| forevery n large enough
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Big-O notation

Let f and g be real-valued functions defined on the natural numbers.
We say that f(n) is big-O of g(n), and write f(n) = O(g(n)), if there exists C >0

such that:
|f(n)| < C-|g(n)| forevery n large enough

For example:
m f(n)=O(1) if and only if f is bounded.
m (logn)* = O(nP) and nf = O(y") for every ., >0 and y> 1.
m n%=0O(nP) if and only if o < B.
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Big-O notation

Let f and g be real-valued functions defined on the natural numbers.
We say that f(n) is big-O of g(n), and write f(n) = O(g(n)), if there exists C >0
such that:

[f(n)] < C-|g(n)| forevery nlarge enough

For example:
m f(n)=O(1) if and only if f is bounded.
m (logn)* = O(nP) and nf = O(y") for every o, >0 and y> 1.
m n%=0(nP) if and only if & <.

Big-O notation can be tricky:
m Suppose f1(n) = O(g1(n)) and H(n) = O(g2(n)).
m Then we can conclude that fi(n)-fa(n) = O(g1(n)-g2(n)) ...
= ... but only that fi(n)+ f2(n) = O(|g1(n)|+ |g2(n)|).

It also loses the information about the value of C ...
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Errors and the role of power series

k (_l)kX2k+1
X .
We know that e* = Z T and smx_!gom for every x € R. Then:
1 1
smfff—fj?-i-O(F)
1 1 1 1
so — — —= approximates sin — with absolute error O( ) Also:
n 6n3 n n®
et = 14241 40(2
2n? n3

Il
/N
=
N

3
4
3=
N
~—
/
=
S

)
(1+%+§)'(1+°<”'°(73))
(147 +3m) (40 (%))

1 1 1
so 1+ " + 2 approximates e with relative error O (ﬁ) ;EEH



Pedagogical dilemma: what to teach?

Chapters:
Recurrent Problems
Sums
Integer Functions
Number Theory
Binomial Coefficients
B Special Numbers
Generating Functions
B Discrete Probability
El Asymptotics
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Course program (tentative)

m Week 1: Introduction

m Weeks 2 and 3: Recurrent Problems

m Weeks 4 and 5: Sums

m Week 6: Integer Functions

m Weeks 7 and 8: Number Theory

m Weeks 9 and 10: Binomial Coefficients
m Weeks 11 and 12: Special Numbers

m Weeks 13 and 14: Generating Functions
m Weeks 15 and 16: Asymptotics
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Grading

Based on 100 points, distributed as follows:

m Two classroom presentations: 10 points each.
One, two, or three each week, according to the number of participants.

® A midterm test: 30 points.
On the ninth week.

m The final exam: 50 points.
Three dates: one, two, and three weeks after the end of the course.

The final grade G is computed from the total score S as follows:

connfo 257

m 91 or more: 5.

= 81 to 90: 4.

m 71 to 80: 3.

m 61 to 70: 2.

m 51 to 60: 1.

m 50 or less: 0. ¥E(L:H



Grading

Based on 100 points, distributed as follows:

m Two classroom presentations: 10 points each.
One, two, or three each week, according to the number of participants.

® A midterm test: 30 points.
On the ninth week.

m The final exam: 50 points.
Three dates: one, two, and three weeks after the end of the course.

The prerequisites to be admitted to the final exam are:
At least one classroom presentation.
At least 15 points at the midterm test.
Students who are not admitted to the final exam, or do not return their final

assignment, will receive a “no show” mark.
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Contact

|
Instructor: Silvio Capobianco
Address: Room B421, Tehnopol building, Akadeemia tee 21B
Office hours: Thursdays from 15:00 to 17:00
Telephone: 620 4221

Email: silvio.capobianco@taltech.ee
silvio@cs.ioc.ee

Moodle page of the course

https://moodle.taltech.ee/course/view.php?id=31471
Enrolment key: ConcMATH2023Spr (case sensitive)
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