ITT9132 Concrete Mathematics Konkreetne Matemaatika Конкретная Математика

Silvio Capobianco

Department of Software Science, School of Information Technology
Tallinn University of Technology

2022/2023 Spring semester

Original slides 2010-2014 Jaan Penjam; modified 2016-2023 Silvio Capobianco

CONtinuous + disCRETE MATHEMATICS

http://www-cs-faculty.stanford.edu/~uno/gkp.html

Concrete Mathematics is ...

- the controlled manipulation of mathematical formulas
- using a collection of techniques for solving problems

Goals of the book:

- to introduce the mathematics that supports advanced computer programming and the analysis of algorithms
- to provide a solid and relevant base of mathematical skills the skills needed
- to solve complex problems
- to evaluate horrendous sums
- to discover subtle patterns in data

Our additional goals

- to get acquainted with well-known and popular literature in Computer Science and in Mathematics;
- to develop mathematical skills and practice formulating complex problems mathematically;
- to practice presentation of results.

Contents of the Book

Chapters:
1 Recurrent Problems
2 Sums
3 Integer Functions
4 Number Theory
5 Binomial Coefficients
6 Special Numbers
7 Generating Functions
8 Discrete Probability
9 Asymptotics

Recurrent problems

Recurrences

- A sequence of complex numbers $\left\langle a_{n}\right\rangle=\left\langle a_{0}, a_{1}, a_{2}, \ldots\right\rangle$ is called recurrent, if for $n \geq 1$ its generic term a_{n} satisfies a recurrence (equation)

$$
a_{n}=f_{n}\left(a_{n-1}, \ldots, a_{0}\right),
$$

where $f_{n}: \mathbb{C}^{n} \rightarrow \mathbb{C}$ for every $n \geq 1$.

- If there exists $f: \mathbb{N} \times \mathbb{C}^{k} \rightarrow \mathbb{C}$ such that:

$$
f_{n}=f\left(n ; a_{n-1}, \ldots, a_{n-k}\right) \text { for every } n \geq k,
$$

the number k is called the order of the recurrence.
recurrent - from the Latin recurrere to run back - in Estonian: taastuv

Two examples of recurrence equations

A recurrence of order 2

$$
\begin{aligned}
& a_{0}=0 ; \\
& a_{1}=1 ; \\
& a_{n}=a_{n-1}+a_{n-2} \text { for every } n \geq 2
\end{aligned}
$$

This recurrence defines the Fibonacci numbers.

A recurrence without a well-defined order

$$
\begin{aligned}
& a_{0}=1 ; \\
& a_{n}=a_{0} a_{n-1}+a_{1} a_{n-2}+\ldots+a_{n-1} a_{0} \text { for every } n \geq 1
\end{aligned}
$$

This recurrence defines the Catalan numbers.

Why solve recurrences?

Reason 1: Efficiency.

- Consider the problem of adding together the first n positive integers.
- Naive algorithm:

```
sum = 0
i
while i <= n:
        sum = sum + i
        i=i+1
return sum
```

- Algorithm based on closed form:

```
return (n * (n+1)) / 2
```

- The second algorithm is clearly faster than the first one!

Why solve recurrences?

Reason 2: Manageability.

- Stirling's approximation for the factorial:

$$
\lim _{n \rightarrow \infty} \frac{e^{n} n!}{n^{n} \sqrt{2 \pi n}}=1
$$

- Then, however given a_{n}, the two sequences:

$$
n!a_{n},\left(\frac{n}{e}\right)^{n} a_{n} \sqrt{2 \pi n}
$$

either both converge or both don't converge...

- ... and if they converge, the limit is the same!
- But the second sequence is more manageable than the first one: For example, we can use fast exponentiation.

Ad hoc techniques: Guess and Confirm

Example: $f(n)=\left(n^{2}-1+f(n-1)\right) / 2, f(0)=2$

- Let's compute some values:

n	0	1	2	3	4	5	6
$f(n)$	2	1	2	5	10	17	26

Guess: $f(n)=(n-1)^{2}+1$.

- Assuming that the guess holds for $n=k$, we prove that it holds for $n=k+1$

$$
\begin{aligned}
f(k+1) & =\left((k+1)^{2}-1+f(k)\right) / 2 \\
& =\left(k^{2}+2 k+(k-1)^{2}+1\right) / 2 \\
& =\left(k^{2}+2 k+k^{2}-2 k+1+1\right) / 2 \\
& =\left(2 k^{2}+2\right) / 2=k^{2}+1
\end{aligned}
$$

Ad hoc techniques: Guess and Confirm

Example: $f(n)=\left(n^{2}-1+f(n-1)\right) / 2, f(0)=2$

- Let's compute some values:

n	0	1	2	3	4	5	6
$f(n)$	2	1	2	5	10	17	26

Guess: $f(n)=(n-1)^{2}+1$.

- Assuming that the guess holds for $n=k$, we prove that it holds for $n=k+1$:

$$
\begin{aligned}
f(k+1) & =\left((k+1)^{2}-1+f(k)\right) / 2 \\
& =\left(k^{2}+2 k+(k-1)^{2}+1\right) / 2 \\
& =\left(k^{2}+2 k+k^{2}-2 k+1+1\right) / 2 \\
& =\left(2 k^{2}+2\right) / 2=k^{2}+1
\end{aligned}
$$

Next section

1 Recurrent Problems
2
3
4

5
-
7
8
9
稍合

1. Recurrent Problems

1 The Tower of Hanoi
2 Lines in the Plane
3 The Josephus Problem

Regions of the plane defined by lines

$Q_{0}=1$

$$
Q_{2}=4
$$

Regions of the plane defined by lines

Actually ...

穛

Regions of the plane defined by lines

Actually ...

$$
Q_{3}=Q_{2}+3=7
$$

Regions of the plane defined by lines

Actually ...

Generally $Q_{n}=Q_{n-1}+n$.

n	0	1	2	3	4	5	6	7	8	9	\cdots
Q_{n}	1	2	4	7	11	16	22	29	37	46	\cdots

Regions of the plane defined by lines

$T_{0}=1$

$$
T_{2}=7
$$

$$
\begin{gathered}
T_{3}=? \\
T_{n}=?
\end{gathered}
$$

$T_{1}=2$

Regions of the plane defined by lines

$$
\begin{aligned}
& T_{2}=Q_{4}-2 \cdot 2=11-4=7 \\
& T_{3}=Q_{6}-2 \cdot 3=22-6=16 \\
& T_{4}=Q_{8}-2 \cdot 4=37-8=29 \\
& T_{5}=Q_{10}-2 \cdot 5=56-10=46 \\
& \\
& T_{n}=Q_{2 n}-2 n
\end{aligned}
$$

Regions of the plane defined by lines

$$
\begin{aligned}
& \ldots, \ldots \\
& \begin{array}{l}
T_{2}=Q_{4}-2 \cdot 2=11-4=7 \\
T_{3}=Q_{6}-2 \cdot 3=22-6=16 \\
T_{4}=Q_{8}-2 \cdot 4=37-8=29 \\
T_{5}=Q_{10}-2 \cdot 5=56-10=46
\end{array} \\
&
\end{aligned}
$$

Next section

1
2 Sums
3
4
5
6
7
8
9

2. Sums

1 Notation
2 Sums and Recurrences
3 Manipulation of Sums
4 Multiple Sums
5 General Methods
6 Finite and Infinite Calculus
7 Infinite Sums

Sums as solutions of recurrences

The simplest (nontrivial) recurrences have the form:

$$
\begin{aligned}
a_{0} & =c_{0} ; \\
a_{n} & =a_{n-1}+c_{n} \text { for every } n \geq 1
\end{aligned}
$$

The solution to the above is clearly:

$$
a_{n}=\sum_{k=0}^{n} c_{k}
$$

Problem: find a closed form for the sum!

A simple case: Gauss' trick

Solve the recurrence:

$$
S_{0}=0 ; S_{n}=S_{n-1}+n \text { for every } n \geq 1
$$

This is the same as calculating $\sum_{k=0}^{n} k$. Well:

- Addition is commutative, so:

$$
0+1+\cdots+(n-1)+n=n+(n-1)+\cdots+1+0=\sum_{k=0}^{n}(n-k)
$$

- Addition is also associative, so:

$$
2 S_{n}=\sum_{k=0}^{n} k+\sum_{k=0}^{n}(n-k)=\sum_{k=0}^{n} n
$$

- The right-hand side is a sum of $n+1$ summands, all equal to n. We conclude:

$$
S_{n}=\frac{n(n+1)}{2}
$$

The perturbation method

Consider a recurrence of the form:

$$
S_{0}=a_{0} ; S_{n}=S_{n-1}+a_{n} \text { for every } n \geq 1
$$

Sometimes we can solve the recurrence by perturbing the sum:
1 Rewrite:

$$
S_{n+1}=S_{n}+a_{n+1}=a_{0}+\sum_{k=1}^{n+1} a_{k}
$$

2 Manipulate $\sum_{k=1}^{n+1} a_{k}$ to express it as a function of S_{n}.
3 Solve for S_{n}.

Example: Sum of a geometric progression

Let $a \neq 1$. Consider the recurrence:

$$
S_{0}=1 ; S_{n}=S_{n-1}+a^{n} \text { for every } n \geq 1
$$

1 Rewrite:

$$
S_{n+1}=S_{n}+a^{n+1}=1+\sum_{k=1}^{n+1} a^{k}
$$

2 Manipulate:

$$
\sum_{k=1}^{n+1} a^{k}=a \cdot \sum_{k=0}^{n} a^{k}=a \cdot S_{n}
$$

3 Solve for S_{n} :

$$
\begin{aligned}
S_{n}+a^{n+1} & =1+a \cdot S_{n} \\
(1-a) S_{n} & =1-a^{n+1} \\
S_{n} & =\frac{1-a^{n+1}}{1-a}=\frac{a^{n+1}-1}{a-1}
\end{aligned}
$$

Summation factors

Consider a recurrence of the following form:

$$
a_{n} T_{n}=b_{n} T_{n-1}+c_{n} \text { for every } n \geq 1
$$

Assume that we can find a summation factor s_{n} such that:

$$
s_{n} b_{n}=s_{n-1} a_{n-1} \text { for every } n \geq 1
$$

Then, putting $a_{0}=s_{0}=1$ and $S_{n}=s_{n} a_{n} T_{n}$, we turn our recurrence into the much easier:

$$
\begin{aligned}
& S_{0}=T_{0} ; \\
& S_{n}=S_{n-1}+s_{n} c_{n} \text { for every } n \geq 1
\end{aligned}
$$

From this we recover:

$$
T_{n}=\frac{1}{s_{n} a_{n}}\left(T_{0}+\sum_{k=1}^{n} s_{k} c_{k}\right) \text { for every } n \geq 1
$$

and as soon as we have a closed formula for $\sum_{k=1}^{n} s_{k} c_{k}$, we have one for T_{n} too.

Example: A recurrence with a factor n

Consider the recurrence:

$$
T_{0}=1 ; \quad T_{n}=2 T_{n-1}+\left(\frac{3}{2}\right)^{n} \text { for every } n \geq 1
$$

Here $a_{n}=1, b_{n}=2$, and $c_{n}=(3 / 2)^{n}$, so we must solve:

$$
s_{n} \cdot 2=s_{n-1} \cdot 1 \text { for every } n \geq 1
$$

Then $s_{n}=1 / 2^{n}$ and for $S_{n}=s_{n} a_{n} T_{n}=T_{n} / 2^{n}$ we have:

$$
S_{0}=1 ; S_{n}=S_{n-1}+\left(\frac{3}{4}\right)^{n} \text { for every } n \geq 1
$$

We know that this has the solution:

$$
\begin{aligned}
S_{n} & =1+\sum_{k=1}^{n}\left(\frac{3}{4}\right)^{k}=\sum_{k=0}^{n}\left(\frac{3}{4}\right)^{k} \\
& =\frac{1-(3 / 4)^{n+1}}{1-(3 / 4)}=\frac{4^{n+1}-3^{n+1}}{4^{n}} \text { for every } n \geq 0
\end{aligned}
$$

and from this we conclude:

$$
T_{n}=\frac{4^{n+1}-3^{n+1}}{2^{n}} \text { for every } n \geq 0
$$

Finite calculus

A way of "working on sums like they were integrals":

- Finite difference instead of derivative:

$$
\Delta f(x)=f(x+1)-f(x) \text { for every } x
$$

- Idea: if $S_{n}=\sum_{k=0}^{n} a_{k}$, then $\Delta S_{n}=a_{n+1}$, and vice versa.
- A new family of elementary functions which solve specific difference equations (instead of "differential"):
- Falling factorials in place of powers.
- Harmonic numbers in place of logarithm.
- "Summation by parts".
- Stolz-Cesàro lemma in place of I'Hôpital's rule.

On the one hand:

Example 1

Let

$$
S=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}+\cdots
$$

Then

$$
2 S=2+1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\cdots=2+S
$$

and

$$
S=2
$$

Infinite sums

but on the other hand:

Example 2

Let

$$
T=1+2+4+8+16+32+64+\ldots
$$

Then

$$
2 T=2+4+8+16+32+64+128 \ldots=T-1
$$

and

$$
T=-1
$$

Infinite sums

Existence of the sum:

- Riemann summation as limit of partial sums.
- Lebesgue summation as a difference of least upper bounds.

Manipulation of sums:

- When are infinite sums commutative, associative, etc.?
- Riemann series theorem and absolute convergence.

Sums and limits:

- When does the limit of the sums coincide with the sum of the limits?
- Dominated convergence theorem and monotone convergence theorem.

Double sums:

- When does a simultaneous double sum coincide with an iterated double sum?
- Fubini's theorem on infinite double sums.

Other interpretations of the idea of convergence:

- Cesàro summation and Abel summation.

Next section

1
2
3 Integer Functions
4
5
6
7
-
9
㨦言

3. Integer Functions

1 Floors and Ceilings
2 Floor/Ceiling Applications
3 Floor/Ceiling Recurrences
4 'mod': The Binary Operation
5 Floor/Ceiling Sums

Floor and ceiling

The ceiling of the real number x is the integer:

$$
\lceil x\rceil=\min \{k \in \mathbb{Z} \mid k \geq x\}
$$

Dually, the floor of x is the integer:

$$
\lfloor x\rfloor=\max \{k \in \mathbb{Z} \mid k \leq x\}
$$

The following important chain of inequalities holds:

$$
x-1<\lfloor x\rfloor \leq x \leq\lceil x\rceil<x+1
$$

Floor and ceiling

The ceiling of the real number x is the integer:

$$
\lceil x\rceil=\min \{k \in \mathbb{Z} \mid k \geq x\}
$$

Dually, the floor of x is the integer:

$$
\lfloor x\rfloor=\max \{k \in \mathbb{Z} \mid k \leq x\}
$$

The following important chain of inequalities holds:

$$
x-1<\lfloor x\rfloor \leq x \leq\lceil x\rceil<x+1
$$

Generalized Pigeonhole Principle

If $m \geq 1$ pigeons are to be put in $n \geq 1$ pigeonholes, then:

- at least one pigeonhole will contain at least $\lceil m / n\rceil$ pigeons; and
- at least one pigeonhole will contain at most $\lfloor m / n\rfloor$ pigeons.

Next section

1
2
3
4 Number Theory
5
6
7
8
9
㨦言

4. Number Theory

1 Divisibility
2 Factorial Factors
3 Relative Primality
4 'mod': The Congruence Relation
5 Independent Residues
6 Additional Applications
7 Phi and Mu

Divisibility and congruence

Integer divisibility:

- An integer a divides, or is a factor of, an integer b, written $a \backslash b$, if there exists an integer k such that $k \cdot a=b$.
- Note that, with this definition, every integer divides 0 .

Modular congruence:

- If a, b, n are all integer, then a is congruent to b modulo n, written $a \equiv b$ $(\bmod n)$, if n is a factor of $a-b$.
- Addition and multiplication "behave well" with respect to modular congruence. Not so exponentiation!

Special functions: ϕ and μ

Euler's function ϕ :

- For m positive integer, $\phi(m)$ is the number of integers a between 1 and m such that $\operatorname{gcd}(a, m)=1$.
- Euler's theorem: if $a, m>0$ and $\operatorname{gcd}(a, m)=1$, then $a^{\phi(m)} \equiv 1(\bmod m)$.

Möbius' function μ :

- $\mu(m)$ is $(-1)^{k}$ if m is a product of k distinct primes, and 0 if m is divisible by the square of a prime.
- Möbius' inversion formula: for any two functions $f, g: \mathbb{Z}_{+} \rightarrow \mathbb{C}$ the following are equivalent:

1 For every $m \geq 1, f(m)=\sum_{d \backslash m} g(d)$.
2 For every $m \geq 1, g(m)=\sum_{d \backslash m} \mu(m / d) f(d)$.

Next section

1

2
3

4
5 Binomial Coefficients
6
7
8
9
㨦言

5. Binomial Coefficients

1 Basic Identities
2 Basic Practice
3 Tricks of the Trade
4 Generating Functions
5 Hypergeometric Functions
6 Hypergeometric Transformations
7 Partial Hypergeometric Sums
8 Mechanical Summation

Counting choices

Definition

The binomial coefficient " n choose k ", denoted $\binom{n}{k}$, is the number of ways we can choose k objects from a set of n objects, regardless of the order in which we choose them.

Counting choices

Definition

The binomial coefficient " n choose k ", denoted $\binom{n}{k}$, is the number of ways we can choose k objects from a set of n objects, regardless of the order in which we choose them.

Then for every $n \geq 0$ and $0 \leq k \leq n$:

$$
\binom{n}{k}=\frac{n \cdot(n-1) \cdots(n-k+1)}{k!}=\frac{n!}{k!(n-k)!},
$$

where k !, read k factorial, is the number of ways in which we can order k items, and can be defined by the recurrence:

$$
\begin{aligned}
& 0!=1 \\
& n!=n \cdot(n-1)!\text { for every } n \geq 1
\end{aligned}
$$

Counting choices

Definition

The binomial coefficient " n choose k ", denoted $\binom{n}{k}$, is the number of ways we can choose k objects from a set of n objects, regardless of the order in which we choose them.

We also have the two-parameter recurrence:

$$
\binom{n+1}{k}=\binom{n}{k}+\binom{n}{k-1} \text { for every } n \geq 0 \text { and } 1 \leq k \leq n .
$$

The Binomial Theorem

Theorem (Newton)

For every two real numbers x and y and nonnegative integer n,

$$
(x+y)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{k} y^{n-k}
$$

The Binomial Theorem

Theorem (Newton)

For every two real numbers x and y and nonnegative integer n,

$$
(x+y)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{k} y^{n-k}
$$

Proof: by expanding the product:

$$
(x+y) \cdot(x+y) \cdots(x+y), n \text { factors overall }
$$

- This will be a sum of monomials of the form $x^{k} y^{n-k}$.
- Each such monomial is produced by choosing k factors $(x+y)$ from which to take the k factors x.

Next section

1
2
3

4

5
6 Special Numbers
7
8
9
嗬言

6. Special Numbers

1 Stirling Numbers
2 Eulerian Numbers
3 Harmonic Numbers
4 Harmonic Summation
5 Bernoulli Numbers
6 Fibonacci Numbers
7 Continuants

Stirling numbers

Definition

The Stirling number of the second kind " n subset k ", denoted $\left\{\begin{array}{l}n \\ k\end{array}\right\}$, is the number of ways we can partition a set of n objects into k nonempty subsets.

Computing Stirling numbers is harder than computing binomial coefficients, but the following two-parameter recurrence holds:

$$
\left\{\begin{array}{c}
n+1 \\
k
\end{array}\right\}=k \cdot\left\{\begin{array}{l}
n \\
k
\end{array}\right\}+\left\{\begin{array}{c}
n \\
k-1
\end{array}\right\} \text { for every } n \geq 0 \text { and } 1 \leq k \leq n .
$$

Definition

The Stirling number of the first kind " n cycle k ", denoted $\left[\begin{array}{c}n \\ k\end{array}\right]$, is the number of ways we can partition a set of n objects into k nonempty cycles.

This time:

$$
\left[\begin{array}{c}
n+1 \\
k
\end{array}\right]=n \cdot\left[\begin{array}{l}
n \\
k
\end{array}\right]+\left[\begin{array}{c}
n \\
k-1
\end{array}\right] \text { for every } n \geq 0 \text { and } 1 \leq k \leq n .
$$

Fibonacci numbers

Defined by the "simplest" second-order recurrence:

$$
\begin{aligned}
& F_{0}=0 ; F_{1}=1 ; \\
& F_{n}=F_{n-1}+F_{n-2} \quad \text { for every } n \geq 2
\end{aligned}
$$

- Appear in several "natural" processes.
- Cassini's identity:

$$
F_{n+1} F_{n-1}-F_{n}^{2}=(-1)^{n}
$$

- gcd law:

$$
\operatorname{gcd}\left(F_{m}, F_{n}\right)=F_{\operatorname{gcd}(m, n)}
$$

- Played a crucial role in the solution of Hilbert's tenth problem.

Harmonic numbers

Definition

The harmonic numbers, denoted by H_{n}, are defined by the recurrence:

$$
\begin{aligned}
H_{0} & =0 \\
H_{n} & =H_{n-1}+\frac{1}{n} \text { for every } n \geq 1
\end{aligned}
$$

Note that $H_{2^{n}}>\frac{n}{2}$ for every $n \geq 0$:

$$
H_{2^{n+1}}=H_{2^{n}}+\frac{1}{2^{n}+1}+\ldots+\frac{1}{2^{n+1}} \geq H_{2^{n}}+\frac{1}{2} .
$$

In fact, the following estimate holds:

$$
\ln n<H_{n}<1+\ln n
$$

That is, harmonic numbers grow logarithmically.

Harmonic numbers

Definition

The harmonic numbers, denoted by H_{n}, are defined by the recurrence:

$$
\begin{aligned}
H_{0} & =0 \\
H_{n} & =H_{n-1}+\frac{1}{n} \text { for every } n \geq 1
\end{aligned}
$$

More in general, the harmonic numbers of order s, denoted by $H_{n}^{(s)}$, are defined by the recurrence:

$$
\begin{aligned}
H_{0}^{(s)} & =0, \\
H_{n}^{(s)} & =H_{n-1}^{(s)}+\frac{1}{n^{s}} \text { for every } n \geq 1 .
\end{aligned}
$$

For $s>1$ the sequence $\left\langle H_{n}^{(s)}\right\rangle$ converges to a real number $\zeta(s)$: this defines the Riemann zeta function.

Bernoulli numbers

Jakob Bernoulli (1654-1705) studied the family of functions:

$$
S_{m}(n)=\sum_{k=0}^{n-1} k^{m}
$$

and discovered the following regularity:

Theorem

There exists a sequence $\left\langle B_{n}\right\rangle$ such that for every m, n nonnegative integers:

$$
S_{m}(n)=\frac{1}{m+1} \sum_{k=0}^{m}\binom{m+1}{k} B_{k} n^{m+1-k}
$$

The numbers B_{n} are called the Bernoulli numbers and have many remarkable properties.

Next section

1
2
3
4
5
6
7 Generating Functions

㨦言

7. Generating Functions

1 Domino Theory and Change
2 Basic Maneuvers
3 Solving Recurrences
4 Special Generating Functions
5 Convolutions
6 Exponential Generating Functions
7 Dirichlet Generating Functions

Solving recurrences with generating functions

Given a sequence $\left\langle g_{n}\right\rangle$ that satisfies a given recurrence, we seek a closed form for g_{n} which expresses it as a function of n, but not of g_{0}, \ldots, g_{n-1}.

The method of generating functions

1 Write a single equation that expresses g_{n} in terms of other elements of the sequence.
This equation must hold for all integers n, assuming that $g_{n}=0$ for every $n<0$: this might need to add correction terms for the initial values.
2 Multiply both sides of the equation by z^{n} and sum over all n.
This gives, on the left-hand side, the series $\sum_{n} g_{n} z^{n}$, which is the generating function $G(z)$ of the sequence $\left\langle g_{n}\right\rangle$.
The right-hand side should be turned into some other expression involving $G(z)$.
3 Solve with respect to $G(z)$, obtaining an analytic form.
4 Expand the right-hand side into a power series and read off the coefficient of z^{n} : thanks to the properties of analytic functions in the complex plane, this is a closed form for g_{n}.

Example: Fibonacci numbers

1 Single equation holding for every $n \in \mathbb{Z}$:

$$
g_{n}=g_{n-1}+g_{n-2}+[n=1]
$$

where $[$ True $]=1$ and [False] $=0$ are the Iverson brackets.
2 Multiply by z^{n} and obtain an equation for $G(z)=\sum_{n} g_{n} z^{n}$:

$$
G(z)=z G(z)+z^{2} G(z)+z
$$

3 Solve with respect to $G(z)$:

$$
G(z)=\frac{z}{1-z-z^{2}}=\frac{1}{\sqrt{5}}\left(\frac{1}{1-\Phi_{z}}-\frac{1}{1-\widehat{\Phi}_{z}}\right)
$$

where $\Phi=\frac{1+\sqrt{5}}{2}$ is the golden mean and $\widehat{\phi}=\frac{1-\sqrt{5}}{2}$.
4 Derive an expression for g_{n} which only depends on n :

$$
g_{n}=\frac{1}{\sqrt{5}}\left(\Phi^{n}-\widehat{\Phi}^{n}\right) \text { for every } n \geq 0
$$

Then for large n, F_{n} is the closest integer to $\Phi^{n} / \sqrt{5}$.

Next section

1

2
3

4

5
6

7
8 Discrete Probability

8. Discrete Probability

1 Definitions
2 Mean and Variance
3 Probability Generating Functions
4 Flipping Coins
5 Hashing

Next section

1
2
3
4
5
6
7
8
9 Asymptotics

9. Asymptotics

1 A Hierarchy
2 Big-O Notation
3 Big-O Manipulation
4 Two Asymptotic Tricks
5 Euler's Summation Formula
6 Final Summations

Big-O notation

Definition

Let f and g be real-valued functions defined on the natural numbers. We say that $f(n)$ is big-O of $g(n)$, and write $f(n)=O(g(n))$, if there exists $C>0$ such that:

$$
|f(n)| \leq C \cdot|g(n)| \text { for every } n \text { large enough }
$$

Big-O notation

Definition

Let f and g be real-valued functions defined on the natural numbers. We say that $f(n)$ is big-O of $g(n)$, and write $f(n)=O(g(n))$, if there exists $C>0$ such that:

$$
|f(n)| \leq C \cdot|g(n)| \text { for every } n \text { large enough }
$$

For example:

- $f(n)=O(1)$ if and only if f is bounded.
- $(\log n)^{\alpha}=O\left(n^{\beta}\right)$ and $n^{\beta}=O\left(\gamma^{n}\right)$ for every $\alpha, \beta>0$ and $\gamma>1$.
- $n^{\alpha}=O\left(n^{\beta}\right)$ if and only if $\alpha \leq \beta$.

Big-O notation

Definition

Let f and g be real-valued functions defined on the natural numbers. We say that $f(n)$ is big-O of $g(n)$, and write $f(n)=O(g(n))$, if there exists $C>0$ such that:

$$
|f(n)| \leq C \cdot|g(n)| \text { for every } n \text { large enough }
$$

For example:

- $f(n)=O(1)$ if and only if f is bounded.
- $(\log n)^{\alpha}=O\left(n^{\beta}\right)$ and $n^{\beta}=O\left(\gamma^{n}\right)$ for every $\alpha, \beta>0$ and $\gamma>1$.
- $n^{\alpha}=O\left(n^{\beta}\right)$ if and only if $\alpha \leq \beta$.

Big-O notation can be tricky:

- Suppose $f_{1}(n)=O\left(g_{1}(n)\right)$ and $f_{2}(n)=O\left(g_{2}(n)\right)$.
- Then we can conclude that $f_{1}(n) \cdot f_{2}(n)=O\left(g_{1}(n) \cdot g_{2}(n)\right) \ldots$
- \ldots but only that $f_{1}(n)+f_{2}(n)=O\left(\left|g_{1}(n)\right|+\left|g_{2}(n)\right|\right)$.

It also loses the information about the value of $C \ldots$

Errors and the role of power series

We know that $e^{x}=\sum_{k \geq 0} \frac{x^{k}}{k!}$ and $\sin x=\sum_{k \geq 0} \frac{(-1)^{k} x^{2 k+1}}{(2 k+1)!}$ for every $x \in \mathbb{R}$. Then:

$$
\sin \frac{1}{n}=\frac{1}{n}-\frac{1}{6 n^{3}}+O\left(\frac{1}{n^{5}}\right)
$$

so $\frac{1}{n}-\frac{1}{6 n^{3}}$ approximates $\sin \frac{1}{n}$ with absolute error $O\left(\frac{1}{n^{5}}\right)$. Also:

$$
\begin{aligned}
e^{\frac{1}{n}} & =1+\frac{1}{n}+\frac{1}{2 n^{2}}+O\left(\frac{1}{n^{3}}\right) \\
& =\left(1+\frac{1}{n}+\frac{1}{2 n^{2}}\right) \cdot\left(1+\frac{1}{1+\frac{1}{n}+\frac{1}{2 n^{2}}} \cdot O\left(\frac{1}{n^{3}}\right)\right) \\
& =\left(1+\frac{1}{n}+\frac{1}{2 n^{2}}\right) \cdot\left(1+O(1) \cdot O\left(\frac{1}{n^{3}}\right)\right) \\
& =\left(1+\frac{1}{n}+\frac{1}{2 n^{2}}\right) \cdot\left(1+O\left(\frac{1}{n^{3}}\right)\right)
\end{aligned}
$$

so $1+\frac{1}{n}+\frac{1}{2 n^{2}}$ approximates $e^{\frac{1}{n}}$ with relative error $O\left(\frac{1}{n^{3}}\right)$.

Pedagogical dilemma: what to teach?

Chapters:
1 Recurrent Problems
2 Sums
3 Integer Functions
4 Number Theory
5 Binomial Coefficients
6 Special Numbers
7 Generating Functions
8 Discrete Probability
9 Asymptotics

Course program (tentative)

- Week 1: Introduction

■ Weeks 2 and 3: Recurrent Problems

- Weeks 4 and 5: Sums
- Week 6: Integer Functions
- Weeks 7 and 8: Number Theory
- Weeks 9 and 10: Binomial Coefficients
- Weeks 11 and 12: Special Numbers
- Weeks 13 and 14: Generating Functions
- Weeks 15 and 16: Asymptotics

Grading

Based on 100 points, distributed as follows:

- Two classroom presentations: 10 points each. One, two, or three each week, according to the number of participants.
- A midterm test: 30 points. On the ninth week.
- The final exam: 50 points.

Three dates: one, two, and three weeks after the end of the course.
The final grade G is computed from the total score S as follows:

$$
G=\max \left(0,\left\lceil\frac{S-50}{10}\right\rceil\right)
$$

- 91 or more: 5.
- 81 to 90: 4.
- 71 to 80: 3.
- 61 to 70: 2.
- 51 to 60: 1 .
- 50 or less: 0 .

Grading

Based on 100 points, distributed as follows:

- Two classroom presentations: 10 points each. One, two, or three each week, according to the number of participants.
- A midterm test: 30 points.

On the ninth week.

- The final exam: 50 points.

Three dates: one, two, and three weeks after the end of the course.

The prerequisites to be admitted to the final exam are:
1 At least one classroom presentation.
2 At least 15 points at the midterm test.
Students who are not admitted to the final exam, or do not return their final assignment, will receive a "no show" mark.

Contact

Instructor: Silvio Capobianco
Address: Room B421, Tehnopol building, Akadeemia tee 21B
Office hours: Thursdays from 15:00 to 17:00
Telephone: 6204221

```
Email: silvio.capobianco@taltech.ee
silvio@cs.ioc.ee
```

Moodle page of the course
https://moodle.taltech.ee/course/view.php?id=31471 Enrolment key: ConcMATH2023Spr (case sensitive)

