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Concrete Mathematics is ...

the controlled manipulation of mathematical formulas

using a collection of techniques for solving problems

Goals of the book:

to introduce the mathematics that supports advanced
computer programming and the analysis of algorithms

to provide a solid and relevant base of mathematical skills -
the skills needed

to solve complex problems

to evaluate horrendous sums

to discover subtle patterns in data



Our additional goals

to get acquainted with well-known and popular literature in
Computer Science and in Mathematics;

to develop mathematical skills and practice formulating
complex problems mathematically;

to practice presentation of results.
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Recurrent problems

Recurrences

A sequence of complex numbers ⟨an⟩= ⟨a0,a1,a2, . . .⟩ is called recurrent, if for
n ≥ 1 its generic term an satis�es a recurrence (equation)

an = fn(an−1, . . . ,a0) ,

where fn : Cn → C for every n ≥ 1.

If there exists f : N×Ck → C such that:

fn = f (n;an−1, . . . ,an−k ) for every n ≥ k ,

the number k is called the order of the recurrence.

recurrent � from the Latin recurrere to run back � in Estonian: taastuv



Two examples of recurrence equations

A recurrence of order 2

a0 = 0 ;
a1 = 1 ;
an = an−1+an−2 for every n ≥ 2

This recurrence de�nes the Fibonacci numbers.

A recurrence without a well-de�ned order

a0 = 1 ;
an = a0an−1+a1an−2+ . . .+an−1a0 for every n ≥ 1

This recurrence de�nes the Catalan numbers.



Why solve recurrences?

Reason 1: E�ciency.

Consider the problem of adding together the �rst n positive integers.

Naive algorithm:

sum = 0

i = 1

while i <= n:

sum = sum + i

i = i + 1

return sum

Algorithm based on closed form:

return (n * (n+1)) / 2

The second algorithm is clearly faster than the �rst one!



Why solve recurrences?

Reason 2: Manageability.

Stirling's approximation for the factorial:

lim
n→∞

enn!

nn
√
2πn

= 1

Then, however given an, the two sequences:

n!an ,
(n
e

)n
an

√
2πn

either both converge or both don't converge. . .

. . . and if they converge, the limit is the same!

But the second sequence is more manageable than the �rst one:
For example, we can use fast exponentiation.



Ad hoc techniques: Guess and Con�rm

Example: f (n) = (n2−1+ f (n−1))/2, f (0) = 2

Let's compute some values:

n 0 1 2 3 4 5 6
f (n) 2 1 2 5 10 17 26

Guess: f (n) = (n−1)2+1.

Assuming that the guess holds for n= k, we prove that it holds for n= k+1:

f (k+1) = ((k+1)2−1+ f (k))/2

= (k2+2k+(k−1)2+1)/2

= (k2+2k+k2−2k+1+1)/2

= (2k2+2)/2= k2+1

QED.
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1. Recurrent Problems

1 The Tower of Hanoi

2 Lines in the Plane

3 The Josephus Problem



Regions of the plane de�ned by lines

Q0 = 1

Q2 = 4

Q1 = 2

In general: Qn = 2n?



Regions of the plane de�ned by lines

Actually ...

V1

V2

V3

V4

Q2 = 4
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Actually ...

V11 V12

V21

V22

V3

V41V42

Q3 = Q2+3= 7

Generally Qn = Qn−1+n.

n 0 1 2 3 4 5 6 7 8 9 · · ·
Qn 1 2 4 7 11 16 22 29 37 46 · · ·
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Regions of the plane de�ned by lines

T0 = 1

T2 = 7

T1 = 2

T3 =?

Tn =?



Regions of the plane de�ned by lines

T2 = Q4−2 ·2= 11−4= 7

T3 = Q6−2 ·3= 22−6= 16

T4 = Q8−2 ·4= 37−8= 29

T5 = Q10−2 ·5= 56−10= 46

Tn = Q2n−2n

n 0 1 2 3 4 5 6 7 8 9 · · ·
Qn 1 2 4 7 11 16 22 29 37 46 · · ·
Tn 1 2 7 16 29 46 67 92 121 156 · · ·
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2. Sums

1 Notation

2 Sums and Recurrences

3 Manipulation of Sums

4 Multiple Sums

5 General Methods

6 Finite and In�nite Calculus

7 In�nite Sums



Sums as solutions of recurrences

The simplest (nontrivial) recurrences have the form:

a0 = c0 ;
an = an−1+cn for every n ≥ 1 .

The solution to the above is clearly:

an =
n

∑
k=0

ck

Problem: �nd a closed form for the sum!



A simple case: Gauss' trick

Solve the recurrence:

S0 = 0 ; Sn = Sn−1+n for every n ≥ 1

This is the same as calculating ∑
n
k=0 k. Well:

Addition is commutative, so:

0+1+ · · ·+(n−1)+n= n+(n−1)+ · · ·+1+0=
n

∑
k=0

(n−k)

Addition is also associative, so:

2Sn =
n

∑
k=0

k+
n

∑
k=0

(n−k) =
n

∑
k=0

n

The right-hand side is a sum of n+1 summands, all equal to n. We conclude:

Sn =
n(n+1)

2



The perturbation method

Consider a recurrence of the form:

S0 = a0 ; Sn = Sn−1+an for every n ≥ 1

Sometimes we can solve the recurrence by perturbing the sum:

1 Rewrite:

Sn+1 = Sn+an+1 = a0+
n+1

∑
k=1

ak

2 Manipulate ∑
n+1
k=1 ak to express it as a function of Sn.

3 Solve for Sn.



Example: Sum of a geometric progression

Let a ̸= 1. Consider the recurrence:

S0 = 1 ; Sn = Sn−1+an for every n ≥ 1

1 Rewrite:

Sn+1 = Sn+an+1 = 1+
n+1

∑
k=1

ak

2 Manipulate:
n+1

∑
k=1

ak = a ·
n

∑
k=0

ak = a ·Sn

3 Solve for Sn:

Sn+an+1 = 1+a ·Sn
(1−a)Sn = 1−an+1

Sn =
1−an+1

1−a
=

an+1−1

a−1



Summation factors

Consider a recurrence of the following form:

anTn = bnTn−1+cn for every n ≥ 1

Assume that we can �nd a summation factor sn such that:

snbn = sn−1an−1 for every n ≥ 1

Then, putting a0 = s0 = 1 and Sn = snanTn, we turn our recurrence into the much
easier:

S0 = T0 ;

Sn = Sn−1+ sncn for every n ≥ 1

From this we recover:

Tn =
1

snan

(
T0+

n

∑
k=1

skck

)
for every n ≥ 1

and as soon as we have a closed formula for ∑
n
k=1 skck , we have one for Tn too.



Example: A recurrence with a factor n

Consider the recurrence:

T0 = 1 ; Tn = 2Tn−1+

(
3

2

)n

for every n ≥ 1

Here an = 1, bn = 2, and cn = (3/2)n, so we must solve:

sn ·2= sn−1 ·1 for every n ≥ 1

Then sn = 1/2n and for Sn = snanTn = Tn/2
n we have:

S0 = 1 ; Sn = Sn−1+

(
3

4

)n

for every n ≥ 1

We know that this has the solution:

Sn = 1+
n

∑
k=1

(
3

4

)k

=
n

∑
k=0

(
3

4

)k

=
1− (3/4)n+1

1− (3/4)
=

4n+1−3n+1

4n
for every n ≥ 0

and from this we conclude:

Tn =
4n+1−3n+1

2n
for every n ≥ 0



Finite calculus

A way of �working on sums like they were integrals�:

Finite di�erence instead of derivative:

∆f (x) = f (x+1)− f (x) for every x

Idea: if Sn = ∑
n
k=0 ak , then ∆Sn = an+1, and vice versa.

A new family of elementary functions which solve speci�c di�erence equations

(instead of �di�erential�):

Falling factorials in place of powers.
Harmonic numbers in place of logarithm.

�Summation by parts�.

Stolz-Cesàro lemma in place of l'Hôpital's rule.



In�nite sums

On the one hand:

Example 1

Let

S = 1+
1

2
+

1

4
+

1

8
+

1

16
+

1

32
+

1

64
+

1

128
+ · · · .

Then

2S = 2+1+
1

2
+

1

4
+

1

8
+

1

16
+

1

32
+

1

64
+ · · ·= 2+S ,

and
S = 2



In�nite sums

. . . but on the other hand:

Example 2

Let
T = 1+2+4+8+16+32+64+ . . .

Then
2T = 2+4+8+16+32+64+128 . . .= T −1

and
T =−1



In�nite sums

Existence of the sum:

Riemann summation as limit of partial sums.

Lebesgue summation as a di�erence of least upper bounds.

Manipulation of sums:

When are in�nite sums commutative, associative, etc.?

Riemann series theorem and absolute convergence.

Sums and limits:

When does the limit of the sums coincide with the sum of the limits?

Dominated convergence theorem and monotone convergence theorem.

Double sums:

When does a simultaneous double sum coincide with an iterated double sum?

Fubini's theorem on in�nite double sums.

Other interpretations of the idea of convergence:

Cesàro summation and Abel summation.
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3. Integer Functions

1 Floors and Ceilings

2 Floor/Ceiling Applications

3 Floor/Ceiling Recurrences

4 'mod': The Binary Operation

5 Floor/Ceiling Sums



Floor and ceiling

The ceiling of the real number x is the integer:

⌈x⌉=min{k ∈ Z | k ≥ x}

Dually, the �oor of x is the integer:

⌊x⌋=max{k ∈ Z | k ≤ x}

The following important chain of inequalities holds:

x−1< ⌊x⌋ ≤ x ≤ ⌈x⌉< x+1



Floor and ceiling

The ceiling of the real number x is the integer:

⌈x⌉=min{k ∈ Z | k ≥ x}

Dually, the �oor of x is the integer:

⌊x⌋=max{k ∈ Z | k ≤ x}

The following important chain of inequalities holds:

x−1< ⌊x⌋ ≤ x ≤ ⌈x⌉< x+1

Generalized Pigeonhole Principle

If m ≥ 1 pigeons are to be put in n ≥ 1 pigeonholes, then:

at least one pigeonhole will contain at least ⌈m/n⌉ pigeons; and
at least one pigeonhole will contain at most ⌊m/n⌋ pigeons.
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4. Number Theory

1 Divisibility

2 Factorial Factors

3 Relative Primality

4 'mod': The Congruence Relation

5 Independent Residues

6 Additional Applications

7 Phi and Mu



Divisibility and congruence

Integer divisibility:

An integer a divides, or is a factor of , an integer b, written a\b, if there exists
an integer k such that k ·a= b.

Note that, with this de�nition, every integer divides 0.

Modular congruence:

If a,b,n are all integer, then a is congruent to b modulo n, written a≡ b
(mod n), if n is a factor of a−b.

Addition and multiplication �behave well� with respect to modular congruence.
Not so exponentiation!



Special functions: φ and µ

Euler's function φ :

For m positive integer, φ(m) is the number of integers a between 1 and m such
that gcd(a,m) = 1.

Euler's theorem: if a,m > 0 and gcd(a,m) = 1, then aφ(m) ≡ 1 (mod m).

Möbius' function µ:

µ(m) is (−1)k if m is a product of k distinct primes, and 0 if m is divisible by
the square of a prime.

Möbius' inversion formula: for any two functions f ,g : Z+ → C the following are

equivalent:

1 For every m ≥ 1, f (m) = ∑d\m g(d).

2 For every m ≥ 1, g(m) = ∑d\m µ(m/d)f (d).
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5. Binomial Coe�cients

1 Basic Identities

2 Basic Practice
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Counting choices

De�nition

The binomial coe�cient �n choose k�, denoted
(n
k

)
, is the number of ways we can

choose k objects from a set of n objects, regardless of the order in which we choose
them.



Counting choices

De�nition

The binomial coe�cient �n choose k�, denoted
(n
k

)
, is the number of ways we can

choose k objects from a set of n objects, regardless of the order in which we choose
them.

Then for every n ≥ 0 and 0≤ k ≤ n:(
n

k

)
=

n · (n−1) · · ·(n−k+1)

k!
=

n!

k!(n−k)!
,

where k!, read k factorial, is the number of ways in which we can order k items, and
can be de�ned by the recurrence:

0! = 1 ,
n! = n · (n−1)! for every n ≥ 1 .



Counting choices

De�nition

The binomial coe�cient �n choose k�, denoted
(n
k

)
, is the number of ways we can

choose k objects from a set of n objects, regardless of the order in which we choose
them.

We also have the two-parameter recurrence:(
n+1

k

)
=

(
n

k

)
+

(
n

k−1

)
for every n ≥ 0 and 1≤ k ≤ n .



The Binomial Theorem

Theorem (Newton)

For every two real numbers x and y and nonnegative integer n,

(x+y)n =
n

∑
k=0

(
n

k

)
xkyn−k



The Binomial Theorem

Theorem (Newton)

For every two real numbers x and y and nonnegative integer n,

(x+y)n =
n

∑
k=0

(
n

k

)
xkyn−k

Proof: by expanding the product:

(x+y) · (x+y) · · ·(x+y) , n factors overall

This will be a sum of monomials of the form xkyn−k .

Each such monomial is produced by choosing k factors (x+y) from which to
take the k factors x .
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6. Special Numbers

1 Stirling Numbers

2 Eulerian Numbers

3 Harmonic Numbers

4 Harmonic Summation

5 Bernoulli Numbers

6 Fibonacci Numbers

7 Continuants



Stirling numbers

De�nition

The Stirling number of the second kind �n subset k�, denoted
{n
k

}
, is the number of

ways we can partition a set of n objects into k nonempty subsets.

Computing Stirling numbers is harder than computing binomial coe�cients, but the
following two-parameter recurrence holds:{

n+1

k

}
= k ·

{
n

k

}
+

{
n

k−1

}
for every n ≥ 0 and 1≤ k ≤ n .

De�nition

The Stirling number of the �rst kind �n cycle k�, denoted
[n
k

]
, is the number of ways

we can partition a set of n objects into k nonempty cycles.

This time: [
n+1

k

]
= n ·

[
n

k

]
+

[
n

k−1

]
for every n ≥ 0 and 1≤ k ≤ n .



Fibonacci numbers

De�ned by the �simplest� second-order recurrence:

F0 = 0 ; F1 = 1 ;
Fn = Fn−1+Fn−2 for every n ≥ 2

Appear in several �natural� processes.

Cassini's identity:
Fn+1Fn−1−F 2

n = (−1)n

gcd law:
gcd(Fm,Fn) = Fgcd(m,n)

Played a crucial role in the solution of Hilbert's tenth problem.



Harmonic numbers

De�nition

The harmonic numbers, denoted by Hn, are de�ned by the recurrence:

H0 = 0 ,

Hn = Hn−1+
1

n
for every n ≥ 1 .

Note that H2n >
n

2
for every n ≥ 0:

H2n+1 =H2n +
1

2n+1
+ . . .+

1

2n+1
≥H2n +

1

2
.

In fact, the following estimate holds:

lnn <Hn < 1+lnn

That is, harmonic numbers grow logarithmically.



Harmonic numbers

De�nition

The harmonic numbers, denoted by Hn, are de�ned by the recurrence:

H0 = 0 ,

Hn = Hn−1+
1

n
for every n ≥ 1 .

More in general, the harmonic numbers of order s, denoted by H
(s)
n , are de�ned by the

recurrence:
H

(s)
0 = 0 ,

H
(s)
n = H

(s)
n−1+

1

ns
for every n ≥ 1 .

For s > 1 the sequence
〈
H

(s)
n

〉
converges to a real number ζ (s): this de�nes the

Riemann zeta function.



Bernoulli numbers

Jakob Bernoulli (1654-1705) studied the family of functions:

Sm(n) =
n−1

∑
k=0

km

and discovered the following regularity:

Theorem

There exists a sequence ⟨Bn⟩ such that for every m,n nonnegative integers:

Sm(n) =
1

m+1

m

∑
k=0

(
m+1

k

)
Bkn

m+1−k

The numbers Bn are called the Bernoulli numbers and have many remarkable
properties.
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7. Generating Functions

1 Domino Theory and Change

2 Basic Maneuvers

3 Solving Recurrences

4 Special Generating Functions

5 Convolutions

6 Exponential Generating Functions

7 Dirichlet Generating Functions



Solving recurrences with generating functions

Given a sequence ⟨gn⟩ that satis�es a given recurrence, we seek a closed form for gn
which expresses it as a function of n, but not of g0, . . . ,gn−1.

The method of generating functions

1 Write a single equation that expresses gn in terms of other elements of the
sequence.
This equation must hold for all integers n, assuming that gn = 0 for every n < 0:
this might need to add correction terms for the initial values.

2 Multiply both sides of the equation by zn and sum over all n.
This gives, on the left-hand side, the series ∑n gnz

n, which is the generating
function G(z) of the sequence ⟨gn⟩.
The right-hand side should be turned into some other expression involving G(z).

3 Solve with respect to G(z), obtaining an analytic form.

4 Expand the right-hand side into a power series and read o� the coe�cient of zn:
thanks to the properties of analytic functions in the complex plane, this is a
closed form for gn.



Example: Fibonacci numbers

1 Single equation holding for every n ∈ Z:

gn = gn−1+gn−2+[n= 1]

where [True] = 1 and [False] = 0 are the Iverson brackets.

2 Multiply by zn and obtain an equation for G(z) = ∑n gnz
n:

G(z) = zG(z)+ z2G(z)+ z

3 Solve with respect to G(z):

G(z) =
z

1−z−z2
=

1√
5

(
1

1−Φz
− 1

1− Φ̂z

)

where Φ=
1+

√
5

2
is the golden mean and Φ̂ =

1−
√
5

2
.

4 Derive an expression for gn which only depends on n:

gn =
1√
5

(
Φn− Φ̂n

)
for every n ≥ 0

Then for large n, Fn is the closest integer to Φn/
√
5.
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8. Discrete Probability

1 De�nitions

2 Mean and Variance

3 Probability Generating Functions

4 Flipping Coins

5 Hashing
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9. Asymptotics

1 A Hierarchy

2 Big-O Notation

3 Big-O Manipulation

4 Two Asymptotic Tricks

5 Euler's Summation Formula
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Big-O notation

De�nition

Let f and g be real-valued functions de�ned on the natural numbers.
We say that f (n) is big-O of g(n), and write f (n) =O(g(n)), if there exists C > 0
such that:

|f (n)| ≤ C · |g(n)| for every n large enough
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De�nition

Let f and g be real-valued functions de�ned on the natural numbers.
We say that f (n) is big-O of g(n), and write f (n) =O(g(n)), if there exists C > 0
such that:

|f (n)| ≤ C · |g(n)| for every n large enough

For example:

f (n) =O(1) if and only if f is bounded .

(logn)α =O(nβ ) and nβ =O(γn) for every α,β > 0 and γ > 1.

nα =O(nβ ) if and only if α ≤ β .



Big-O notation

De�nition

Let f and g be real-valued functions de�ned on the natural numbers.
We say that f (n) is big-O of g(n), and write f (n) =O(g(n)), if there exists C > 0
such that:

|f (n)| ≤ C · |g(n)| for every n large enough

For example:

f (n) =O(1) if and only if f is bounded .

(logn)α =O(nβ ) and nβ =O(γn) for every α,β > 0 and γ > 1.

nα =O(nβ ) if and only if α ≤ β .

Big-O notation can be tricky:

Suppose f1(n) =O(g1(n)) and f2(n) =O(g2(n)).

Then we can conclude that f1(n) · f2(n) =O(g1(n) ·g2(n)) . . .
. . . but only that f1(n)+ f2(n) =O(|g1(n)|+ |g2(n)|).

It also loses the information about the value of C . . .



Errors and the role of power series

We know that ex = ∑
k≥0

xk

k!
and sinx = ∑

k≥0

(−1)kx2k+1

(2k+1)!
for every x ∈ R. Then:

sin
1

n
=

1

n
− 1

6n3
+O

(
1

n5

)

so
1

n
− 1

6n3
approximates sin

1

n
with absolute error O

(
1

n5

)
. Also:

e
1

n = 1+
1

n
+

1

2n2
+O

(
1

n3

)
=

(
1+

1

n
+

1

2n2

)
·

(
1+

1
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.



Pedagogical dilemma: what to teach?

Chapters:

1 Recurrent Problems

2 Sums

3 Integer Functions

4 Number Theory

5 Binomial Coe�cients

6 Special Numbers

7 Generating Functions

8 Discrete Probability

9 Asymptotics



Course program (tentative)

Week 1: Introduction

Weeks 2 and 3: Recurrent Problems

Weeks 4 and 5: Sums

Week 6: Integer Functions

Weeks 7 and 8: Number Theory

Weeks 9 and 10: Binomial Coe�cients

Weeks 11 and 12: Special Numbers

Weeks 13 and 14: Generating Functions

Weeks 15 and 16: Asymptotics



Grading

Based on 100 points, distributed as follows:

Two classroom presentations: 10 points each.
One, two, or three each week, according to the number of participants.

A midterm test: 30 points.
On the ninth week.

The �nal exam: 50 points.
Three dates: one, two, and three weeks after the end of the course.

The �nal grade G is computed from the total score S as follows:

G =max

(
0,

⌈
S−50

10

⌉)

91 or more: 5.

81 to 90: 4.

71 to 80: 3.

61 to 70: 2.

51 to 60: 1.

50 or less: 0.



Grading

Based on 100 points, distributed as follows:

Two classroom presentations: 10 points each.
One, two, or three each week, according to the number of participants.

A midterm test: 30 points.
On the ninth week.

The �nal exam: 50 points.
Three dates: one, two, and three weeks after the end of the course.

The prerequisites to be admitted to the �nal exam are:

1 At least one classroom presentation.

2 At least 15 points at the midterm test.

Students who are not admitted to the �nal exam, or do not return their �nal
assignment, will receive a �no show� mark.



Contact

Instructor: Silvio Capobianco

Address: Room B421, Tehnopol building, Akadeemia tee 21B

O�ce hours: Thursdays from 15:00 to 17:00

Telephone: 620 4221

Email: silvio.capobianco@taltech.ee

silvio@cs.ioc.ee

Moodle page of the course

https://moodle.taltech.ee/course/view.php?id=31471

Enrolment key: ConcMATH2023Spr (case sensitive)

mailto:silvio.capobianco@taltech.ee
mailto:silvio@cs.ioc.ee
https://moodle.taltech.ee/course/view.php?id=31471
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