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The Tower of Hanoi: Description

The Tower of Hanoi puzzle was invented by the French mathematician Édouard Lucas
in 1883.

The board has three pegs.

The tiles are n disks, all of di�erent sizes, with a hole in the middle so that they
can be put on the pegs.

At the beginning of the game, the disks are all on the �rst peg, in decreasing
order from bottom to top (larger at the bottom, smaller at the top)..

The aim of the game is to put all the disks on the third peg, using the second
peg as a help, so that at no time a disk is above a smaller disk.



The Tower of Hanoi: Solution

Using mathematical induction the following can be proved:

For the Tower of Hanoi puzzle with n ⩾ 0, the minimum number of
moves needed is:

Tn = 2n−1 .

Let's look at the example borrowed from Martin Hofmann and Berteun Damman.
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Tower of Hanoi � 5 Discs

5

4

3

2 1

Moved disc from pole 1 to pole 2.



Tower of Hanoi � 5 Discs

5

4

3

2

1

Moved disc from pole 3 to pole 2.



Tower of Hanoi � 5 Discs

5

4

2

1

3

Moved disc from pole 1 to pole 3.



Tower of Hanoi � 5 Discs

5

4

1

2 3

Moved disc from pole 2 to pole 1.



Tower of Hanoi � 5 Discs

5

4

1

3

2

Moved disc from pole 2 to pole 3.



Tower of Hanoi � 5 Discs

5

4

3

2

1

Moved disc from pole 1 to pole 3.



Tower of Hanoi � 5 Discs

5 4 3

2

1

Moved disc from pole 1 to pole 2.



Tower of Hanoi � 5 Discs

5 4

1

3

2

Moved disc from pole 3 to pole 2.



Tower of Hanoi � 5 Discs

5

2

4

1

3

Moved disc from pole 3 to pole 1.



Tower of Hanoi � 5 Discs

5

2

1

4 3

Moved disc from pole 2 to pole 1.



Tower of Hanoi � 5 Discs

5

2

1

4

3

Moved disc from pole 3 to pole 2.



Tower of Hanoi � 5 Discs

5

2

4

3

1

Moved disc from pole 1 to pole 3.



Tower of Hanoi � 5 Discs

5 4

3

2

1

Moved disc from pole 1 to pole 2.



Tower of Hanoi � 5 Discs

5 4

3

2

1

Moved disc from pole 3 to pole 2.



Tower of Hanoi � 5 Discs

4

3

2

1

5

Moved disc from pole 1 to pole 3.



Tower of Hanoi � 5 Discs

1 4

3

2

5

Moved disc from pole 2 to pole 1.



Tower of Hanoi � 5 Discs

1 4

3

5

2

Moved disc from pole 2 to pole 3.



Tower of Hanoi � 5 Discs

4

3

5

2

1

Moved disc from pole 1 to pole 3.



Tower of Hanoi � 5 Discs

3 4 5

2

1

Moved disc from pole 2 to pole 1.



Tower of Hanoi � 5 Discs

3 4

1

5

2

Moved disc from pole 3 to pole 2.



Tower of Hanoi � 5 Discs

3

2

4

1

5

Moved disc from pole 3 to pole 1.



Tower of Hanoi � 5 Discs

3

2

1

4 5

Moved disc from pole 2 to pole 1.



Tower of Hanoi � 5 Discs

3

2

1

5

4

Moved disc from pole 2 to pole 3.



Tower of Hanoi � 5 Discs

3

2

5

4

1

Moved disc from pole 1 to pole 3.



Tower of Hanoi � 5 Discs

3 2 5

4

1

Moved disc from pole 1 to pole 2.



Tower of Hanoi � 5 Discs

3 2

1

5

4

Moved disc from pole 3 to pole 2.



Tower of Hanoi � 5 Discs

2

1

5

4

3

Moved disc from pole 1 to pole 3.



Tower of Hanoi � 5 Discs

1 2 5

4

3

Moved disc from pole 2 to pole 1.



Tower of Hanoi � 5 Discs

1 5

4

3

2

Moved disc from pole 2 to pole 3.



Tower of Hanoi � 5 Discs

5

4

3

2

1

Moved disc from pole 1 to pole 3.



Tower of Hanoi � 5 Discs

5

4

3

2

1OK



A reminder: The Principle of Mathematical Induction

Let P(n) be a predicate whose truth or falsehood depends on the value taken by a
variable n in the set N of nonnegative integers.
Suppose the following happen:

1 For some k ∈ N, P(k) is true.

2 For every n ⩾ k, the implication P(n)−→ P(n+1) holds:
that is, if P(n) is true, then P(n+1) is also true.

Then P(n) is true for every n ⩾ k.



The idea behind the recursive algorithm

The game requires to move the tower from peg 1 to peg 3, using peg 2 as a �spool�.

Of course, the big issue is to put the largest disc on peg 3.

This requires moving all the other discs from peg 1 to peg 2, using peg 3 as a
spool.

But this is just another Hanoi Tower game with one less disc and the role of the
pegs changed!

After the largest disc is on peg 3, we must move all the other discs from peg 2
to peg 3, using peg 1 as a spool.

Again, this is just another Hanoi Tower game with one less disc and the role of
the pegs changed.



A recursive solution in Python

#!/usr/bin/env python3

import os

def hanoi(n, start='1', step='2', stop='3'):

'''Solve the Hanoi tower with n disks , from start

peg to stop peg , using step peg as a spool '''

if n > 0:

hanoi(n-1, start , stop , step)

move(n, start , stop)

hanoi(n-1, step , start , stop)

def move(n, start , stop):

'''Display move of disk n from start to stop '''

print("Disk %d: %s -> %s" % (n, start , stop))

if __name__ == '__main__ ':

n = int(input('How many disks? '))

hanoi(n, '1', '2', '3')



A recursive solution in Python

#!/usr/bin/env python3

import os

def hanoi(n, start='1', step='2', stop='3'):

'''Solve the Hanoi tower with n disks , from start

peg to stop peg , using step peg as a spool '''

if n > 0:

hanoi(n-1, start , stop , step)

move(n, start , stop)

hanoi(n-1, step , start , stop)

def move(n, start , stop):

'''Display move of disk n from start to stop '''

print("Disk %d: %s -> %s" % (n, start , stop))

if __name__ == '__main__ ':

n = int(input('How many disks? '))

hanoi(n, '1', '2', '3')

Question: why does this program show that Tn = 2n−1?



Tower of Hanoi: Running time

Base case: n= 1.

Then the Python script only performs move('1', '3'), so T1 = 1= 21−1.
Inductive step: n disks require 2n−1 steps. We play a game with n+1 disks.

Then the Python script performs:

hanoi(n, '1', '3', '2')

move('1', '3')

hanoi(n, '2', '1', '3')

which, by inductive hypothesis, requires:

Tn+1 = (2n−1)+1+(2n−1) = 2n+1−1

moves.

What we have proved, is that Tn = 2n−1 is the solution of the recursion:

Tn = 2Tn−1+1 for every n ≥ 2

with the initial condition T1 = 1.



A little tweak for a simpler recurrence

We now change the rules a little bit by saying that, when we complete the game, we
say �Hurrah!� as a �nal move.

Let Un be the number of moves required by this variant. Clearly, Un = Tn+1.

Of course, U1 = 2.

This time, when we play on n disks, we do this:

We play the game on n−1 disks from peg 1 to peg 2.
Instead of saying �Hurrah!�, we move the largest disk to peg 3.
We play the game on n−1 disks from peg 2 to peg 3.
We say �Hurrah!�

Then Un is the solution of the recurrence:

Un = 2Un−1 for every n ≥ 2

with the initial condition U1 = 2.

It is easy to see that Un = 2n.



Warmup: What is wrong with this �proof by induction�?

Theorem

All children have the same color of eyes.

�Proof�

The thesis is clearly true for n= 1, so let n > 1.

1 Put the n children on a line.

2 By inductive hypothesis, the n−1 leftmost children have the same color of eyes,
and so do the n−1 rightmost children.

3 Then the n−2 children in the middle have the same color of eyes.

4 The �rst and last child must then have that color of eyes.



Warmup: What is wrong with this �proof by induction�?

Theorem

All children have the same color of eyes.

Solution

The problem is with:

Then the n−2 children in the middle have the same color of eyes.

For n= 2 there are no �n−2 children in the middle�.
So the implication P(n)−→ P(n+1) is not true for every n ≥ 1.



Next section

1 The Tower of Hanoi

2 Lines in the Plane

3 The Josephus Problem

4 Intermezzo: Structural induction

5 Binary representation

6 Generalization of Josephus function



Lines in the Plane

Problem

Popularly: How many slices of pizza can a person obtain by making n straight
cuts with a pizza knife?

Academically: What is the maximum number Ln of regions de�ned by n lines in the
plane?

Solved �rst in 1826, by the Swiss mathematician Jacob Steiner.



Lines in the Plane � small cases
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Lines in the Plane � generalization

Observation:

The n-th line (for n > 0) increases the number of regions by k

i� it splits k of the �old regions�

i� it hits the previous lines in k−1 di�erent places.



Lines in the Plane � generalization

Observation:

The n-th line (for n > 0) increases the number of regions by k

i� it splits k of the �old regions�

i� it hits the previous lines in k−1 di�erent places.

Then k must be less or equal to n. � Why?



Lines in the Plane � generalization

Observation:

The n-th line (for n > 0) increases the number of regions by k

i� it splits k of the �old regions�

i� it hits the previous lines in k−1 di�erent places.

k = 3; 2 places k = 2; 1 place



Lines in the Plane � generalization (2)

Therefore the new line can intersect the n−1 �old� lines in at most n−1 di�erent
points.
We have thus established the upper bound:

Ln ⩽ Ln−1+n for n > 0.

If the nth line:

1 is not parallel to any of the others (hence it intersects them all), and

2 doesn't go through any of the existing intersection points (hence it intersects
each one of the others in di�erent places)

then we can reach the upper bound (which becomes a maximum) and obtain the
recurrence:

L0 = 1;

Ln = Ln−1+n for n > 0.

For example, we could place the nth line outside the convex hull of the intersections fo
the previous n−1 lines.

n 0 1 2 3 4 5 6 7 8 9 · · ·
Ln 1 2 4 7 11 16 22 29 37 46 · · ·



Lines in the Plane � solving recurrence

Observation:

Ln = Ln−1+n

= Ln−2+(n−1)+n

= Ln−3+(n−2)+(n−1)+n

= · · ·
= L0+1+2+ . . .+(n−2)+(n−1)+n

= 1+Sn ,

where Sn = 1+2+3+ . . .+(n−1)+n.



Lines in the Plane � solving recurrence (2)

Evaluation of Sn = 1+2+ · · ·+(n−1)+n.

Recurrent equation:

S0 = 0 ;

Sn = Sn−1+n for every n ≥ 1 .

Solution (Gauss, 1786):

Sn = 1 + 2 + . . . + (n−1) + n
+Sn = n + (n−1) + . . . + 2 + 1
2Sn = (n+1) + (n+1) + . . . + (n+1) + (n+1)

Then 2Sn = n · (n+1), so that Sn =
n(n+1)

2
.



Lines in the Plane � solving recurrence (2)

Evaluation of Sn = 1+2+ · · ·+(n−1)+n.

Recurrent equation:

S0 = 0 ;

Sn = Sn−1+n for every n ≥ 1 .

Solution (Gauss, 1786):

Sn = 1 + 2 + . . . + (n−1) + n
+Sn = n + (n−1) + . . . + 2 + 1
2Sn = (n+1) + (n+1) + . . . + (n+1) + (n+1)

Then 2Sn = n · (n+1), so that Sn =
n(n+1)

2
.



Lines in the Plane � solving recurrence (3)

Theorem: Closed formula for Ln

Ln =
n(n+1)

2
+1 for every n ≥ 0 .

Proof (by induction ).

Base: L0 = 1= 0(0+1)
2

+1.

Step: Let's assume Ln =
n(n+1)

2
+1 and evaluate

Ln+1 = Ln+n+1

=
n(n+1)

2
+1+n+1

=
n(n+1)+2+2n

2
+1

=
n(n+1)+2(n+1)

2
+1

=
(n+1)(n+2)

2
+1 . Q.E .D.



Triangular numbers

The nth triangular number is de�ned as:

Tn =
n(n+1)

2
for every n ≥ 0

Then Tn is the solution of the �rst order recurrence equation:

an = an−1+n for every n ≥ 1

with the initial condition a0 = 0.

The numbers Ln are the solution of the same recurrence, but with initial
condition a0 = 1.
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The Josephus Problem

The legend

During the Jewish-Roman war, Flavius Josephus, a famous historian of the �rst
century, was among a band of 41 Jewish rebels trapped in a cave by the Romans.
Preferring suicide to capture, the rebels decided to form a circle and, proceeding
around it, to kill every third remaining person until no one was left. But Josephus,
together with his friend, wanted to avoid being killed. So he quickly calculated where
he and his friend should stand in the vicious circle



The Josephus Problem

Our variation of the problem:

We start with n people numbered 1 to n around a circle.

We eliminate every second remaining person
until only one survives.

Task is to compute the survivor's number, J(n)

Example, n= 10.

1
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4

5

6

7

8

9

10

The elimination order is
2, 4, 6, 8, 10, 3, 7, 1, 9 . So, we have J(10) = 5
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The Josephus Problem � small numbers

Evaluate J(n) for small n:

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 · · ·
J(n) 1 1 3 1 3 5 7 1 3 5 7 9 11 13 15 1 · · ·



The Josephus Problem � small numbers

Evaluate J(n) for small n:
n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 · · ·

J(n) 1 1 3 1 3 5 7 1 3 5 7 9 11 13 15 1 · · ·

Properties

1 J(n) is always odd.

2 The recurrence equation:

J(1) = 1 ;

J(2n) = 2J(n)−1 for n ⩾ 1 ;

J(2n+1) = 2J(n)+1 for n ⩾ 1 .

is still a recurrence in the sense given in the introduction, with:

fn(n;an−1, . . . ,a1) =

{
a n
2
−1 if n is even ,

a n−1
2

+1 if n is odd
for every n ≥ 2

3 We will show that the collowing closed formula holds:

J(2m+ ℓ) = 2ℓ+1 for m ⩾ 0 and 0⩽ ℓ < 2m .



The Josephus Problem � recurrent equation (1)

Case n= 2m.
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First trip eliminates all even numbers. Then we change
numbers and repeat:

Old number k 1 3 5 7 9
New number k' 1 2 3 4 5

or
k = 2k ′−1 .

That correspondance between �old� and �new number�
gives us that:
J(2n) = 2J(n)−1



The Josephus Problem � recurrent equation (1)

Case n= 2m.
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First trip eliminates all even numbers. Then we change
numbers and repeat:

Old number k 1 3 5 7 9
New number k' 1 2 3 4 5

or
k = 2k ′−1 .

That correspondance between �old� and �new number�
gives us that:
J(2n) = 2J(n)−1



The Josephus Problem � recurrent equation (2)

Case n= 2m+1.
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First trip eliminates all even numbers. Then we
eliminate number 1. Then we change numbers and
repeat:

Old number k 3 5 7 9 11
New number k' 1 2 3 4 5

or
k = 2k ′+1

That correspondence between �old� and �new� numbers
givs us that:
J(2n+1) = 2J(n)+1

.



The Josephus Problem � recurrent equation (2)

Case n= 2m+1.
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First trip eliminates all even numbers. Then we
eliminate number 1. Then we change numbers and
repeat:

Old number k 3 5 7 9 11
New number k' 1 2 3 4 5

or
k = 2k ′+1

That correspondence between �old� and �new� numbers
givs us that:
J(2n+1) = 2J(n)+1

.



The Josephus Problem � application of recurrence

The equation

J(1) = 1 ;

J(2n) = 2J(n)−1 for n ⩾ 1 ;

J(2n+1) = 2J(n)+1 for n ⩾ 1

can be used for computing function for large arguments.

For example

J(86) = 2J(43)−1 = 45

J(43) = 2J(21)+1 = 23

J(21) = 2J(10)+1 = 11

J(10) = 5



The Josephus Problem � closed formula

Theorem

J(2m+ ℓ) = 2ℓ+1 for m ⩾ 0 and 0⩽ ℓ < 2m .

Proof by induction over m:

Base If m= 0 then also ℓ= 0, and J(1) = 1.

Step If m > 0 and 2m+ ℓ= 2n, then ℓ is even and:

J(2m+ ℓ) = 2J(2m−1+ ℓ/2)−1= 2(2ℓ/2+1)−1= 2ℓ+1 .

If 2m+ ℓ= 2n+1, then:

J(2n+1) = 2+J(2n) = 2+2(ℓ−1)+1= 2ℓ+1

Q.E.D.
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Structural induction

Premises

Let S be a set having the following features:

1 A set SB of base cases is contained in S .

2 Finitely many operations ui : Smi → S , i = 1, . . . ,n, exist such that, if
x1, . . . ,xmi

∈ S , then ui (x1, . . . ,xmi
) ∈ S .

The operations ui are also called constructors.

3 Nothing else belongs to S .

The Principle of Structural Induction

Let P be a property such that:

1 each base case x ∈ SB has property P; and

2 for every i = 1, . . . ,n and every x1, . . . ,xmi
∈ S, if each object x1, . . . ,xmi

has
property P, then ui (x1, . . . ,xmi

) has property P.

Then every element of S has property P.



Mathematical induction as structural induction

Natural numbers as a recursive data type

The set S = N of natural numbers is constructed as follows:

1 A set SB = {0} of basic cases is contained in N.
2 A single operation, the successor , s : N→ N, exists such that, if n ∈ N, then

s(n) ∈ N.
3 Nothing else belongs to N.

Structural induction on the natural numbers = Mathematical induction

Let P be a property such that:

1 0 has property P; and

2 for every n ∈ N, if n has property P, then s(n) has property P.

Then every n ∈ N has property P.



Structural induction on positive integers

Positive integers as a recursive data type

The set S = Z+ of positive integers is constructed as follows:

1 A set SB = {1} of basic cases is contained in Z+.

2 Two operations:

1 doubling d : Z+→ Z+,d(n) = 2n;
2 doubling increased sd : Z+→ Z+,sd(n) = 2n+1

exist such that, if n ∈ Z+, then d(n),sd(n) ∈ Z+.

3 Nothing else belongs to Z+.

Structural induction on the positive integers

Let P be a property such that

1 1 has property P.

2 For every n ∈ Z+, if n has property P, then d(n) and sd(n) have property P.

Then every n ∈ Z+ has property P.
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Binary expansion of n = 2m+ ℓ

Denote

n= (bmbm−1 . . .b1b0)2

where bi ∈ {0,1} and bm = 1.

This notation stands for:

n= bm2m+bm−12m−1+ . . .+b12+b0

For example:
20= (10100)2 and 83= (1010011)2



Binary expansion of n = 2m+ ℓ , where 0⩽ ℓ < 2m

Observations:

1 ℓ= (0bm−1 . . .b1b0)2.

2 2ℓ= (bm−1 . . .b1b00)2.

3 2m = (10 . . .00)2 and 1= (00 . . .01)2.

4 n= 2m+ ℓ= (1bm−1 . . .b1b0)2.

5 2ℓ+1= (bm−1 . . .b1b01)2

Corollary

J(( 1 bm−1 . . .b1b0)2 = (bm−1 . . .b1b0 1 )2

shift



Binary expansion of n = 2m+ ℓ , where 0⩽ ℓ < 2m

Observations:

1 ℓ= (0bm−1 . . .b1b0)2.

2 2ℓ= (bm−1 . . .b1b00)2.

3 2m = (10 . . .00)2 and 1= (00 . . .01)2.

4 n= 2m+ ℓ= (1bm−1 . . .b1b0)2.

5 2ℓ+1= (bm−1 . . .b1b01)2

Corollary

J(( 1 bm−1 . . .b1b0)2 = (bm−1 . . .b1b0 1 )2

shift



Binary expansion of n = 2m+ ℓ , where 0⩽ ℓ < 2m

Example

100 = 64+32+4

J(100) = J((1100100)2) = (1001001)2

J(100) = 64+8+1= 73



Iterating the Josephus function

Consider a sequence x0,x1, . . . ,xk , . . . where:

x0 = n is an arbitrary positive integer; and

xk = J(xk−1) for every k ≥ 1.

Questions:

1 Will the sequence reach a �xed point?
That is: will xk+1 = xk for every k large enough?

2 If so: what are the possible �xed points?



Iterating the Josephus function: the answer

Proposition A

For every positive integer n, the sequence de�ned by:

x0 = n ,

xk = J(xk−1) ∀k ⩾ 1

reaches the �xed point 2ν(n)−1, where ν(n) is the number of bits equal to 1 in the
binary representation of n.



Iterating the Josephus function: the answer

Proposition A

For every positive integer n, the sequence de�ned by:

x0 = n ,

xk = J(xk−1) ∀k ⩾ 1

reaches the �xed point 2ν(n)−1, where ν(n) is the number of bits equal to 1 in the
binary representation of n.

Proof that xk reaches a �xed point:

For every n= 2m+ ℓ we have J(n) = 2ℓ+1⩽ n.

Then the sequence xk is nonincreasing in k:
If k ⩽m, then xk ⩾ xm.

But a nonincreasing sequence of positive integers is ultimately constant.



Iterating the Josephus function: the answer

Proposition A

For every positive integer n, the sequence de�ned by:

x0 = n ,

xk = J(xk−1) ∀k ⩾ 1

reaches the �xed point 2ν(n)−1, where ν(n) is the number of bits equal to 1 in the
binary representation of n.

Proof that the �xed point is 2ν(n)−1:
The binary representation of J(n) is obtained from that of n by a circular
permutation.

But after such a permutation, a leading 0 disappears, while a leading 1 is
preserved.

Then the binary writing of any �xed point must be made entirely of 1s.
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Generalization

A �rst example of �simplifying by complicating�

The Josephus function J : N→ N was de�ned using the recurrence:

J(1) = 1 ;

J(2n) = 2J(n)−1 for n ⩾ 1 ;

J(2n+1) = 2J(n)+1 for n ⩾ 1 .

Introducing integer constants α, β and γ, generalize it as follows:

f (1) = α ;

f (2n) = 2f (n)+β for n ⩾ 1 ;

f (2n+1) = 2f (n)+ γ for n ⩾ 1 .

The Josephus function f (n) = J(n) corresponds to α = 1, β =−1, γ = 1.



The repertoire method

To �nd closed form of a function f :

Step 1 Find few initial values for f .

Step 2 Find (or guess) closed formula from the values found by Step 1:
examine a repertoire of cases and combine them to �nd general
closed formula.

Step 3 Verify the closed formula constructed as the result of Step 2.

The idea is to examine a repertoire of cases and use it to �nd a general closed formula
for the recurrently de�ned function.



The repertoire method for generalized f : STEP 1

n f (n) Calculation
1 α f (1) = α

2 2α +β f (2) = 2f (1)+β

3 2α + γ f (3) = 2f (1)+ γ

4 4α +3β f (4) = 2f (2)+β

5 4α +2β + γ f (5) = 2f (2)+ γ

6 4α + β +2γ f (6) = 2f (3)+β

7 4α + 3γ f (7) = 2f (3)+ γ

8 8α +7β f (8) = 2f (4)+β

9 8α +6β + γ f (9) = 2f (4)+ γ



The repertoire method for generalized f : STEP 2

Observations:

For n= 1,2, . . . ,9, taking n= 2m+ ℓ:

The coe�cient of α is 2m;

The coe�cient of β is 2m−1− ℓ;

The coe�cient of γ is ℓ.



The repertoire method for generalized f : STEP 3

Proposition

If the function f is de�ned by the recurrence formula:

f (1) = α ;

f (2n) = 2f (n)+β for n ⩾ 1 ;

f (2n+1) = 2f (n)+ γ for n ⩾ 1 .

then letting n= 2m+ ℓ with 0≤ ℓ < 2m,

f (n) = αA(n)+βB(n)+ γC(n) ,

where:

A(n) = 2m ;

B(n) = 2m−1− ℓ ;

C(n) = ℓ .



Proof of the Proposition: Part 1

Lemma 1.

Let n= 2m+ ℓ with 0⩽ ℓ < 2k Then:

A(n) = 2m for every n ∈ N

Proof: Let α = 1 and β = γ = 0. Then f (n) = A(n) and:

A(1) = 1 ; A(2n) = 2A(n) for n > 0 ;A(2n+1) = 2A(n) for n > 0 .

By induction over m:
Base: If m= 0, then n= 20+ ℓ and 0⩽ ℓ < 1. Thus n= 1 and

A(1) = 20 = 1 .

Step: Assume that A(2m−1+ t) = 2m−1, where 0⩽ t < 2m−1 Two cases:
If n is even, then ℓ is even and ℓ/2< 2m/2= 2m−1, thus

A(n) = A(2m+ ℓ) = 2A(2m−1+ ℓ/2) = 2 ·2m−1 = 2k

If n is odd, then ℓ−1 is even and (ℓ−1)/2< 2m−1 as above,
thus:

A(n) = A(2m+ ℓ) = 2A(2m−1+(ℓ−1)/2) = 2 ·2m−1 = 2m



Proof of the Proposition: Part 2

Lemma 2.

Let n= 2m+ ℓ with 0⩽ ℓ < 2m Then:

A(n)−B(n)−C(n) = 1 for every n ∈ N

Proof: Let f be the constant function f (n) = 1. Then:

f (1) = α ; f (2n) = 2f (n)+β ; f (2n+1) = 2f (n)+ γ

or equivalently,
1= α ; 1= 2+β ; 1= 2+ γ .

As this must hold for every n ≥ 1, it must be α = 1 and β = γ =−1.



Proof of the Proposition: Part 3

Lemma 3.

Let n= 2m+ ℓ with 0⩽ ℓ < 2m Then:

A(n)+C(n) = 1 for every n ∈ N

Proof: Let f (n) = n. Then:

f (1) = α ; f (2n) = 2f (n)+β ; f (2n+1) = 2f (n)+ γ

or equivalently,
1= α ; 2n= 2n+β ; 2n+1= 2n+ γ .

As this must hold for every n ≥ 1, it must be α = 1, β = 0 and γ = 1.



Proof of the Proposition: Part 4

We have obtained a repertoire of three triples, each one associated to a function of n:

(1,0,0)←→ 2m ; (1,−1,−1)←→ 1 ; (1,0,1)←→ n .

From Lemma 3 and Lemma 1 we can conclude:

2m+C(n) = A(n)+C(n) = n= 2m+ ℓ ,

which gives:
C(n) = ℓ .

From Lemma 2 follows:

B(n) = A(n)−1−C(n) = 2m−1− ℓ .

Incidentally, we observe that det

1 0 0
1 −1 −1
1 0 1

 ̸= 0. Um. . .
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