ITT9132 Concrete Mathematics Lecture 3 – 14 February 2023

Chapter One

Intermezzo: The repertoire method Generalized Josephus problem Chapter Two Sequences Notation for sums Sums and recurrences Manipulation of sums

Original slides 2010-2014 Jaan Penjam; modified 2016-2023 Silvio Capobianco

Contents

1 Intermezzo: The repertoire method

2 Binary representation of generalized Josephus function

3 Sequences

- 4 Notations for sums
- 5 Sums and Recurrences
 - The repertoire method
 - Perturbation method
 - Reduction to known solutions
 - Summation factors
 - Efficiency of the Quicksort algorithm
 - Integrals

Next section

1 Intermezzo: The repertoire method

- 2 Binary representation of generalized Josephus function
- 3 Sequences
- 4 Notations for sums
- 5 Sums and Recurrences
 - The repertoire method
 - Perturbation method
 - Reduction to known solutions
 - Summation factors
 - Efficiency of the Quicksort algorithm
 - Integrals

6 Manipulation of Sums

Let the recursion scheme

$$g(0) = \alpha,$$

$$g(n+1) = \Phi(g(n)) + \Psi(n;\beta,\gamma,...) \quad \text{for } n \ge 0.$$

have the following properties:

- 1 Φ is linear in g: If $g(n) = \lambda_1 g_1(n) + \lambda_2 g_2(n)$, then $\Phi(g(n)) = \lambda_1 \Phi(g_1(n)) + \lambda_2 \Phi(g_2(n))$. No hypotheses are made on the dependence of g on n.
- 2 Ψ is linear in each of the m-1 parameters $\beta, \gamma, ...$ No hypotheses are made on the dependence of Ψ on n.

Then the whole system is linear in the parameters $\alpha, \beta, \gamma, \dots$ We can then look for a general solution of the form

$$g(n) = \alpha A(n) + \beta B(n) + \gamma C(n) + \dots$$

Suppose we have a *repertoire* of *m* pairs of the form $((\alpha_i, \beta_i, \gamma_i, ...), g_i(n))$ satisfying the following conditions:

- **1** For every i = 1, 2, ..., m, $g_i(n)$ is the solution of the system corresponding to the values $\alpha = \alpha_i, \beta = \beta_i, \gamma = \gamma_i, ...$
- **2** The *m m*-tuples $(\alpha_i, \beta_i, \gamma_i, ...)$ are linearly independent.

Then the functions $A(n), B(n), C(n), \ldots$ are uniquely determined. The reason is that, for every fixed n,

$$\alpha_1 A(n) + \beta_1 B(n) + \gamma_1 C(n) + \dots = g_1(n)$$

$$\vdots$$

$$\alpha_m A(n) + \beta_m B(n) + \gamma_m C(n) + \dots = g_m(n)$$

is a system of *m* linear equations in the *m* unknowns $A(n), B(n), C(n), \ldots$ whose coefficients matrix is invertible.

The repertoire method for recursive data types: Setting

Assume that a certain recursive data type S has:

- finitely many base cases b_1, \ldots, b_k ;
- finitely many constructors, which we may assume to have all the same number m of arguments:

$$u_1,\ldots,u_r:S^m\to S.$$

Consider a recursion of the following form:

$$g(b_i) = \alpha_i \quad \text{for } i = 1, \dots, k;$$

$$g(u_j(x_1, \dots, x_m)) = \Phi_j(g(x_1), \dots, g(x_m)) + \Psi_j(n; \beta_{j,1}, \dots, \beta_{j,s_j}) \quad \text{for every } j = 1, \dots, r$$

where $\alpha_1, \ldots, \alpha_k, \beta_{1,1}, \ldots, \beta_{1,s_1}, \ldots, \beta_{r,s_r} \in \mathbb{C}$ and $\Phi_j : S^m \to \mathbb{C}, \Psi_j : S^{r_j} \to \mathbb{C}$ for every $j = 1, \ldots, r$. Assume that:

1 each one of Φ_1, \ldots, Φ_k is linear in all of its arguments; and

2 each one of Ψ_1, \ldots, Ψ_r is linear in each one of its arguments except at most *n*. Then we could look for a generic solution of the recurrence of the following form:

$$A_1,\ldots,A_k,B_{1,1},\ldots,B_{1,s_1},\ldots,B_{r,s_r}:S\to\mathbb{C}$$

such that the solution of the recurrence has the form:

$$g(x) = \sum_{i=1}^k \alpha_i A_i(x) + \sum_{j=1}^r \sum_{\ell=1}^{s_j} \beta_{j,\ell} B_{j,\ell}(x) \text{ for every } x \in S.$$

The repertoire method for recursive data types: Description

Theorem

Given the system in the previous slide, let $p = k + \sum_{j=1}^{r} s_j$ be the total number of parameters. Assume we have a repertoire of p pairs of the form:

$$((\alpha_{1,i},\ldots,\alpha_{k,i},\beta_{1,1,i},\ldots,\beta_{r,s_r,i}),g_i(x))$$

with the following properties:

For every i = 1,..., p, g_i is the solution corresponding to the choice of parameters:

$$\alpha_1 = \alpha_{1,i}, \ldots, \alpha_k = \alpha_{k,i}, \beta_{1,1} = \beta_{1,1,i}, \ldots, \beta_{r,s_r} = \beta_{r,s_r,i}$$

2 The *p*-tuples $(\alpha_{1,i}, \ldots, \alpha_{k,i}, \beta_{1,1,i}, \ldots, \beta_{r,s_r,i})$ are linearly independent. Then the *p* functions $A_1, \ldots, A_k, B_{1,1}, \ldots, B_{r,s_r} : S \to \mathbb{C}$ are uniquely determined.

Reason why: For every $x \in S$, the *p* linear equations:

$$\alpha_{1,1}A_1(x) + \dots + \alpha_{k,i}A_k(x) + \beta_{1,1,i}B_{1,1}(x) + \dots + \beta_{r,s_r,i}B_{r,s_R}(x) = g_i(x), \ i = 1, \dots, p_i(x)$$

in the *p* unknowns $A_1(x), \ldots, A_k(x), B_{1,1}(x), \ldots, B_{r,s_r}(x)$ form a system that has a nonsingular matrix of coefficients.

Next section

1 Intermezzo: The repertoire method

- 2 Binary representation of generalized Josephus function
- 3 Sequences
- 4 Notations for sums
- 5 Sums and Recurrences
 - The repertoire method
 - Perturbation method
 - Reduction to known solutions
 - Summation factors
 - Efficiency of the Quicksort algorithm
 - Integrals

6 Manipulation of Sums

Binary representation of generalized Josephus function

Definition

The generalized Josephus function (GJ-function) is defined for α, β_0, β_1 as follows:

$$f(1) = \alpha$$

 $f(2n+j) = 2f(n) + \beta_j \text{ for } j = 0, 1 \text{ and } n > 0.$

We obtain the definition used before if to select $eta_0=eta$ and $eta_1=\gamma$

Case A: Argument is even

If $2n = 2^m + \ell$, then the binary notation is

$$2n = (b_m b_{m-1} \dots b_1 b_0)_2$$

or

$$2n = b_m 2^m + b_{m-1} 2^{m-1} + \ldots + b_1 2 + b_0$$

where $b_i \in \{0,1\}$, $b_0 = 0$ and $b_m = 1$.

Hence

$$n = b_m 2^{m-1} + b_{m-1} 2^{m-2} + \ldots + b_2 2 + b_1$$

or

$$n=(b_mb_{m-1}\ldots b_1)_2$$

Case B: Argument is odd

If $2n+1 = 2^m + \ell$, then the binary notation is

$$2n+1 = (b_m b_{m-1} \dots b_1 b_0)_2$$

or

$$2n+1 = b_m 2^m + b_{m-1} 2^{m-1} + \ldots + b_1 2 + b_0$$

where $b_i \in \{0,1\}$, $b_0 = 1$ and $b_m = 1$.

We get

$$2n+1 = b_m 2^m + b_{m-1} 2^{m-1} + \dots + b_1 2 + 1$$

$$2n = b_m 2^m + b_{m-1} 2^{m-1} + \dots + b_1 2$$

$$n = b_m 2^{m-1} + b_{m-1} 2^{m-2} + \dots + b_2 2 + b_1$$

or

$$n=(b_mb_{m-1}\ldots b_1)_2$$

Case B: Argument is odd

If $2n+1 = 2^m + \ell$, then the binary notation is

$$2n+1 = (b_m b_{m-1} \dots b_1 b_0)_2$$

or

$$2n+1 = b_m 2^m + b_{m-1} 2^{m-1} + \ldots + b_1 2 + b_0$$

where $b_i \in \{0,1\}$, $b_0 = 1$ and $b_m = 1$.

We get

$$2n+1 = b_m 2^m + b_{m-1} 2^{m-1} + \dots + b_1 2 + 1$$

$$2n = b_m 2^m + b_{m-1} 2^{m-1} + \dots + b_1 2$$

$$n = b_m 2^{m-1} + b_{m-1} 2^{m-2} + \dots + b_2 2 + b_2$$

As the results for cases A and B are similar, we don't need to consider even and odd cases separately!

Binary representation of generalized Josephus function (4)

Let's evaluate:

$$f((b_m, b_{m-1}, \dots, b_1, b_0)_2) = 2f((b_m, b_{m-1}, \dots, b_1)_2) + \beta_{b_0}$$

= 2 \cdot (2f((b_m, b_{m-1}, \dots, b_2)_2) + \beta_{b_1}) + \beta_{b_0}
= 4f((b_m, b_{m-1}, \dots, b_2)_2) + 2\beta_{b_1} + \beta_{b_0}

$$= f((b_m)_2)2^m + \beta_{b_{m-1}}2^{m-1} + \dots + \beta_{b_1}2 + \beta_{b_0}$$

= $f(1)2^m + \beta_{b_{m-1}}2^{m-1} + \dots + \beta_{b_1}2 + \beta_{b_0}$
= $\alpha 2^m + \beta_{b_{m-1}}2^{m-1} + \dots + \beta_{b_1}2 + \beta_{b_0}$,

where

$$\beta_{b_j} = \begin{cases} \beta_1, & \text{if } b_j = 1\\ \beta_0 & \text{if } b_j = 0 \end{cases}$$

 $f((b_m b_{m-1} \dots b_1 b_0)_2) = (\alpha \beta_{b_{m-1}} \beta_{b_{m-2}} \dots \beta_{b_1} \beta_{b_0})_2$

Binary representation of generalized Josephus function (4)

Let's evaluate:

$$f((b_m, b_{m-1}, \dots, b_1, b_0)_2) = 2f((b_m, b_{m-1}, \dots, b_1)_2) + \beta_{b_0}$$

= 2 \cdot (2f((b_m, b_{m-1}, \dots, b_2)_2) + \beta_{b_1}) + \beta_{b_0}
= 4f((b_m, b_{m-1}, \dots, b_2)_2) + 2\beta_{b_1} + \beta_{b_0}

$$= f((b_m)_2)2^m + \beta_{b_{m-1}}2^{m-1} + \dots + \beta_{b_1}2 + \beta_{b_0}$$

= $f(1)2^m + \beta_{b_{m-1}}2^{m-1} + \dots + \beta_{b_1}2 + \beta_{b_0}$
= $\alpha 2^m + \beta_{b_{m-1}}2^{m-1} + \dots + \beta_{b_1}2 + \beta_{b_0}$,

where

$$\beta_{b_j} = \begin{cases} \beta_1, & \text{if } b_j = 1\\ \beta_0 & \text{if } b_j = 0 \end{cases}$$

$$f((b_m b_{m-1} \dots b_1 b_0)_2) = (\alpha \beta_{b_{m-1}} \beta_{b_{m-2}} \dots \beta_{b_1} \beta_{b_0})_2$$

Example

Original Josephus function: $lpha=1,\ eta_0=-1,\ eta_1=1$ i.e.

$$f(1) = 1$$

$$f(2n) = 2f(n) - 1$$

$$f(2n+1) = 2f(n) + 1$$

Compute

$$f((b_m b_{m-1} \dots b_1 b_0)_2) = (\alpha \beta_{b_{m-1}} \beta_{b_{m-2}} \dots \beta_{b_1} \beta_{b_0})_2$$

$$f(100) = f((1100100)_2) = (1,1,-1,-1,1,-1,-1)_2$$

= 64+32-16-8+4-2-1=73

Let $c, d \ge 2$ be integers. Consider the following recurrence:

$$\begin{array}{rcl} f(j) &=& \alpha_j & \text{for } 1 \leqslant j < d \, ; \\ f(dn+j) &=& cf(n) + \beta_j & \text{for } 0 \leqslant j < d \, \text{and} \, n \geqslant 1 \, . \end{array}$$

How can we compute f(n) for an arbitrary positive integer n, without having to go through the entire iterative process?

We can actually use the same technique!

Let $(b_m b_{m-1} \dots b_1 b_0)_d$ be the base-d writing of n. Then $b_m
eq 0$ and

$$\begin{aligned} f((b_m, b_{m-1}, \dots, b_1, b_0)_d) &= cf((b_m, b_{m-1}, \dots, b_1)_d) + \beta_{b_0} \\ &= c \cdot (cf((b_m, b_{m-1}, \dots, b_2)_d) + \beta_{b_1}) + \beta_{b_0} \\ &= c^2 f((b_m, b_{m-1}, \dots, b_2)_d) + c\beta_{b_1} + \beta_{b_0} \\ &= \vdots \\ &= c^m \cdot f(b_m) + c^{m-1}\beta_{b_{m-1}} + \dots + c\beta_{b_1} + \beta_{b_0} \\ &= c^m \alpha_{b_m} + c^{m-1}\beta_{b_{m-1}} + \dots + c\beta_{b_1} + \beta_{b_0} \end{aligned}$$

We can actually use the same technique!

Let $(b_m b_{m-1} \dots b_1 b_0)_d$ be the base-d writing of n. Then $b_m \neq 0$ and:

$$f((b_m, b_{m-1}, \dots, b_1, b_0)_d) = cf((b_m, b_{m-1}, \dots, b_1)_d) + \beta_{b_0}$$

= $c \cdot (cf((b_m, b_{m-1}, \dots, b_2)_d) + \beta_{b_1}) + \beta_{b_0}$
= $c^2 f((b_m, b_{m-1}, \dots, b_2)_d) + c\beta_{b_1} + \beta_{b_0}$
= \vdots
= $c^m \cdot f(b_m) + c^{m-1}\beta_{b_{m-1}} + \dots + c\beta_{b_1} + \beta_{b_0}$
= $c^m \alpha_{b_m} + c^{m-1}\beta_{b_{m-1}} + \dots + c\beta_{b_1} + \beta_{b_0}$

With a slight abuse of notation: (the β_i 's need not be base *c* digits)

$$f((b_m b_{m-1} \dots b_1 b_0)_d) = (\alpha_{b_m} \beta_{b_{m-1}} \beta_{b_{m-2}} \dots \beta_{b_1} \beta_{b_0})_c$$

We can actually use the same technique!

Let $(b_m b_{m-1} \dots b_1 b_0)_d$ be the base-d writing of n. Then $b_m \neq 0$ and:

$$f((b_m, b_{m-1}, \dots, b_1, b_0)_d) = cf((b_m, b_{m-1}, \dots, b_1)_d) + \beta_{b_0}$$

= $c \cdot (cf((b_m, b_{m-1}, \dots, b_2)_d) + \beta_{b_1}) + \beta_{b_0}$
= $c^2 f((b_m, b_{m-1}, \dots, b_2)_d) + c\beta_{b_1} + \beta_{b_0}$
= \vdots
= $c^m \cdot f(b_m) + c^{m-1}\beta_{b_{m-1}} + \dots + c\beta_{b_1} + \beta_{b_0}$
= $c^m \alpha_{b_m} + c^{m-1}\beta_{b_{m-1}} + \dots + c\beta_{b_1} + \beta_{b_0}$

Or, more precisely:

$$f((b_m b_{m-1} \dots b_1 b_0)_d) = p(c)$$
 where $p(x) = \alpha_{b_m} x^m + \beta_{b_{m-1}} x^{m-1} + \dots + \beta_{b_1} x + \beta_{b_0} x^{m-1}$

Next section

1 Intermezzo: The repertoire method

2 Binary representation of generalized Josephus function

3 Sequences

- 4 Notations for sums
- 5 Sums and Recurrences
 - The repertoire method
 - Perturbation method
 - Reduction to known solutions
 - Summation factors
 - Efficiency of the Quicksort algorithm
 - Integrals

6 Manipulation of Sums

Sequences

Definition

A sequence of elements of a set A is a function $f : \mathbb{N} \to A$, where \mathbb{N} is the set of natural numbers.

Notations used:

- $f = \langle a_n \rangle$, where we denote $a_n = f(n)$;
- $\{a_n\}_{n\in\mathbb{N}};$
- $(a_0, a_1, a_2, a_3, \ldots).$

 a_n is called the *n*th term of the sequence f

Sequences

Definition

A sequence of elements of a set A is a function $f : \mathbb{N} \to A$, where \mathbb{N} is the set of natural numbers.

Notations used:

- $f = \langle a_n \rangle$, where we denote $a_n = f(n)$;
- $\{a_n\}_{n\in\mathbb{N}};$
- $\langle a_0, a_1, a_2, a_3, \ldots \rangle.$

 a_n is called the *n*th term of the sequence f

Example

$$a_{0} = 0, \ a_{1} = \frac{1}{2 \cdot 3}, \ a_{2} = \frac{2}{3 \cdot 4}, \ a_{3} = \frac{3}{4 \cdot 5}, \cdots$$
$$\left\langle 0, \ \frac{1}{6}, \ \frac{1}{6}, \ \frac{3}{20}, \ \frac{2}{15}, \cdots, \ \frac{n}{(n+1)(n+2)}, \cdots \right\rangle$$

or

Sequences

Definition

A sequence of elements of a set A is a function $f : \mathbb{N} \to A$, where \mathbb{N} is the set of natural numbers.

Notations used:

- $f = \langle a_n \rangle$, where we denote $a_n = f(n)$;
- $\{a_n\}_{n\in\mathbb{N}};$
- $(a_0, a_1, a_2, a_3, \ldots).$

 a_n is called the *n*th term of the sequence f

Notation

$$f(n) = \frac{n}{(n+1)(n+2)}$$

or

$$a_n = \frac{n}{(n+1)(n+2)}$$

Sets of indices

- Default assumption: N.
- Actually, any countably infinite set can be used as an index set. Examples:

$$\mathbb{Z}^+ = \mathbb{N} - \{0\} \sim \mathbb{N}.$$

$$\mathbb{N} \setminus K, \text{ where } K \subseteq \mathbb{N} \text{ is finite.}$$

$$\mathbb{T} \text{ he set } \mathbb{Z} \text{ of relative integers.}$$

$$\{1,3,5,7,\ldots\} = \text{Odd.}$$

$$\{0, 2, 4, 6, \ldots\} = Even$$

Sets of indices

- Default assumption: N.
- Actually, any countably infinite set can be used as an index set. Examples:

$$\mathbb{Z}^+ = \mathbb{N} - \{0\} \sim \mathbb{N}.$$

$$\mathbb{N} \setminus K, \text{ where } K \subseteq \mathbb{N} \text{ is finite.}$$

$$\mathbb{T} \text{ he set } \mathbb{Z} \text{ of relative integers.}$$

$$\{1,3,5,7,\ldots\} = \text{Odd.}$$

$$\{0, 2, 4, 6, \ldots\} = Even$$

Sets of indices

- Default assumption: N.
- Actually, any countably infinite set can be used as an index set. Examples:

$$\mathbb{Z}^+ = \mathbb{N} - \{\mathbf{0}\} \sim \mathbb{N}.$$

- **•** $\mathbb{N} \setminus K$, where $K \subseteq \mathbb{N}$ is finite.
- The set Z of relative integers.
- $\{1,3,5,7,\ldots\} = \text{Odd}.$
- $[0,2,4,6,\ldots] = Even.$

The writing $A \sim B$ denotes that sets A and B are of the same cardinality.

- For finite sets, |A| is the number of elements of A.
- In general, A and B are said to have the same cardinality if there exists a bijection between the two.
 We then write A ~ B, or |A| = |B|

(See http://www.mathsisfun.com/sets/injective-surjective-bijective.html for detailed explanation)

• A finite sequence of elements of a set A is a function $f: K \rightarrow A$, where K is set a finite subset of natural numbers

For example: $f: \{1, 2, 3, 4, \cdots, n\} \rightarrow A, n \in \mathbb{N}$

Special case: n = 0, i.e. empty sequence: $f(\emptyset) = e$

In general, we might be dealing with partial functions:

- Although a generic formula might be given, such formula might not be applicable in some cases.
- For example, the function $f : \mathbb{N} \to \mathbb{R}$ whose rule is:

$$a_n = \frac{n}{(n-2)(n-5)}$$

is not defined for n = 2 and for n = 5.

- We define the domain of a function $f : A \rightarrow B$ as the subset D of A where f is defined.
- For example, the domain of our example function is $D = \mathbb{N} \{2, 5\}$.

Next section

Intermezzo: The repertoire method

- 2 Binary representation of generalized Josephus function
- 3 Sequences
- 4 Notations for sums
- 5 Sums and Recurrences
 - The repertoire method
 - Perturbation method
 - Reduction to known solutions
 - Summation factors
 - Efficiency of the Quicksort algorithm
 - Integrals

6 Manipulation of Sums

For a finite set $K = \{1, 2, \dots, m\} = [1 : m]$ (a slice of \mathbb{N}) and a sequence $\langle a_n \rangle$ we write:

$$\sum_{k=1}^m a_k = a_1 + a_2 + \dots + a_m$$

This specific writing takes into account the order of summation. Other writings, in which the order is less or not important, are:

$$\sum_{1\leqslant k\leqslant m} a_k; \sum_{k\in [1:m]} a_k; \sum_{k\in K} a_k; \sum_{K} a_k$$

$$\sum_{k=4}^{0} q_k$$

Options:

$$\sum_{k=4}^{0} q_k = q_4 + q_3 + q_2 + q_1 + q_0 = \sum_{k \in \{4,3,2,1,0\}} q_k = \sum_{k=0}^{4} q_k$$

This seems the sensible thing—but it forgets the ordering, against our convention from the previous slide...

$$\sum_{4 \le k \le 0} q_k = 0$$

This also seems sensible—but it is counterintuitive.

3 But we might want to "sum from negative infinity" instead¹ in which case

$$\sum_{k=m}^n q_k = \sum_{k\leqslant n} q_k - \sum_{k< m} q_k \,,$$

But then,
$$\sum_{k=4}^{0} q_k = \sum_{k < 0} q_k - \sum_{k < 4} q_k = -q_1 - q_2 - q_3$$
.

$$\sum_{k=4}^{0} q_k$$

Options:

$$\sum_{k=4}^{0} q_{k} = q_{4} + q_{3} + q_{2} + q_{1} + q_{0} = \sum_{k \in \{4,3,2,1,0\}} q_{k} = \sum_{k=0}^{4} q_{k}$$

This seems the sensible thing—but it forgets the ordering, against our convention from the previous slide...

$$\sum_{4\leqslant k\leqslant 0}q_k=0$$

This also seems sensible—but it is counterintuitive...

3 But we might want to "sum from negative infinity" instead¹ in which case

$$\sum_{k=m}^n q_k = \sum_{k\leqslant n} q_k - \sum_{k< m} q_k \,,$$

But then,
$$\sum_{k=4}^{0} q_k = \sum_{k \leq 0} q_k - \sum_{k < 4} q_k = -q_1 - q_2 - q_3$$
.

$$\sum_{k=4}^{0} q_k$$

Options:

2

 $\sum_{k=4}^{0} q_{k} = q_{4} + q_{3} + q_{2} + q_{1} + q_{0} = \sum_{k \in \{4,3,2,1,0\}} q_{k} = \sum_{k=0}^{4} q_{k}$

This seems the sensible thing—but it forgets the ordering, against our convention from the previous slide...

 $\sum_{4\leqslant k\leqslant 0}q_k=0$

This also seems sensible—but it is counterintuitive... But we might want to "sum from negative infinity" instead¹ in which cas

$$\sum_{k=m}^n q_k = \sum_{k\leqslant n} q_k - \sum_{k< m} q_k \,,$$

But then, $\sum_{k=4}^{0} q_k = \sum_{k \leq 0} q_k - \sum_{k \leq 4} q_k = -q_1 - q_2 - q_3$.

$$\sum_{k=4}^{0} q_k$$

Options:

1

2

$$\sum_{k=4}^{0} q_k = q_4 + q_3 + q_2 + q_1 + q_0 = \sum_{k \in \{4,3,2,1,0\}} q_k = \sum_{k=0}^{4} q_k$$

This seems the sensible thing—but it forgets the ordering, against our convention from the previous slide...

 $\sum_{4\leqslant k\leqslant 0}q_k=0$

This also seems sensible—but it is counterintuitive

3 But we might want to "sum from negative infinity" instead¹ in which case

$$\sum_{k=m}^{n} q_k = \sum_{k \leqslant n} q_k - \sum_{k < m} q_k \,,$$

But then,
$$\sum_{k=4}^{0} q_k = \sum_{k \leq 0} q_k - \sum_{k \leq 4} q_k = -q_1 - q_2 - q_3$$
.

$$\sum_{k=4}^{0} q_k$$

Options: 1

 $\sum_{k=4}^{0} q_{k} = q_{4} + q_{3} + q_{2} + q_{1} + q_{0} = \sum_{k \in \{4,3,2,1,0\}} q_{k} = \sum_{k=0}^{4} q_{k}$

This seems the sensible thing—but it forgets the ordering, against our convention from the previous slide...

2

$$\sum_{4\leqslant k\leqslant 0}q_k=0$$

This also seems sensible—but it is counterintuitive...

3 But we might want to "sum from negative infinity" instead¹ in which case:

$$\sum_{k=m}^n q_k = \sum_{k\leqslant n} q_k - \sum_{k< m} q_k \,,$$

But then, $\sum_{k=4} q_k = \sum_{k \leq 0} q_k - \sum_{k < 4} q_k = -q_1 - q_2 - q_3$.

$$\sum_{k=4}^{0} q_k$$

Options: 1

 $\sum_{k=4}^{0} q_{k} = q_{4} + q_{3} + q_{2} + q_{1} + q_{0} = \sum_{k \in \{4,3,2,1,0\}} q_{k} = \sum_{k=0}^{4} q_{k}$

This seems the sensible thing—but it forgets the ordering, against our convention from the previous slide...

2

$$\sum_{4\leqslant k\leqslant 0}q_k=0$$

This also seems sensible—but it is counterintuitive...

3 But we might want to "sum from negative infinity" instead¹ in which case:

$$\sum_{k=m}^n q_k = \sum_{k\leqslant n} q_k - \sum_{k< m} q_k \,,$$

But then, $\sum_{k=4}^{0} q_k = \sum_{k \leq 0} q_k - \sum_{k < 4} q_k = -q_1 - q_2 - q_3 \dots$
Warmup: Interpreting the Σ -notation

Compute $\sum_{\{0 \leqslant k \leqslant 5\}} a_k$ and $\sum_{\{0 \leqslant k^2 \leqslant 5\}} a_{k^2}$.

First sum

 $\{0 \leq k \leq 5\} = \{0, 1, 2, 3, 4, 5\}$:

thus, $\sum_{\{0 \le k \le 5\}} a_k = a_0 + a_1 + a_2 + a_3 + a_4 + a_5$.

Second sum

 $\{0 \le k^2 \le 5\} = \{0, 1, 2, -1, -2\}:$

thus, $\sum_{\{0 \leqslant k \leqslant 5\}} a_{k^2} = a_{0^2} + a_{1^2} + a_{2^2} + a_{(-1)^2} + a_{(-2)^2} = a_0 + 2a_1 + 2a_2$

Compute $\sum_{\{0 \leqslant k \leqslant 5\}} a_k$ and $\sum_{\{0 \leqslant k^2 \leqslant 5\}} a_{k^2}$.

First sum

 $\{0 \leqslant k \leqslant 5\} = \{0, 1, 2, 3, 4, 5\}$:

thus, $\sum_{\{0 \leq k \leq 5\}} a_k = a_0 + a_1 + a_2 + a_3 + a_4 + a_5$.

Second sum

 $\{0 \leq k^2 \leq 5\} = \{0, 1, 2, -1, -2\}:$

thus, $\sum_{\{0\leqslant k\leqslant 5\}}a_{k^2}=a_{0^2}+a_{1^2}+a_{2^2}+a_{(-1)^2}+a_{(-2)^2}=a_0+2a_1+2a_2$

Compute $\sum_{\{0 \leqslant k \leqslant 5\}} a_k$ and $\sum_{\{0 \leqslant k^2 \leqslant 5\}} a_{k^2}$.

First sum

 $\{0 \leqslant k \leqslant 5\} = \{0, 1, 2, 3, 4, 5\}$:

thus, $\sum_{\{0 \leq k \leq 5\}} a_k = a_0 + a_1 + a_2 + a_3 + a_4 + a_5$.

Second sum

$$\{0 \leq k^2 \leq 5\} = \{0, 1, 2, -1, -2\}$$
:

thus, $\sum_{\{0\leqslant k\leqslant 5\}}a_{k^2}=a_{0^2}+a_{1^2}+a_{2^2}+a_{(-1)^2}+a_{(-2)^2}=a_0+2a_1+2a_2$

Compute $\sum_{\{0 \leqslant k \leqslant 5\}} a_k$ and $\sum_{\{0 \leqslant k^2 \leqslant 5\}} a_{k^2}$.

First sum

 $\{0 \leqslant k \leqslant 5\} = \{0, 1, 2, 3, 4, 5\}$:

thus, $\sum_{\{0 \leq k \leq 5\}} a_k = a_0 + a_1 + a_2 + a_3 + a_4 + a_5$.

Second sum

$$\{0 \leq k^2 \leq 5\} = \{0, 1, 2, -1, -2\}:$$

thus, $\sum_{\{0 \leq k \leq 5\}} a_{k^2} = a_{0^2} + a_{1^2} + a_{2^2} + a_{(-1)^2} + a_{(-2)^2} = a_0 + 2a_1 + 2a_2$.

We can decrease our worries about notation by using the *lverson brackets*:

- [True] = 1 and [False] = 0;
- if a is infinite or undefined, then $a \cdot [False] = 0$.

Then we can write:

$$\sum_{k\in K} \mathsf{a}_k = \sum_k \mathsf{a}_k \, [k\in K]$$

or more generally:

$$\sum_{k\in\mathbb{Z}|P(k)\}}a_k=\sum_ka_k\left[P(k)\right]$$

where P is a property of (some) integers. For example:

$$\sum_{\{k \in \mathbb{Z} | k \text{ is prime}\}} \frac{1}{k} = \sum_{p} \frac{1}{p} [p \text{ is prime}]$$

Next section

Intermezzo: The repertoire method

- 2 Binary representation of generalized Josephus function
- 3 Sequences
- 4 Notations for sums

5 Sums and Recurrences

- The repertoire method
- Perturbation method
- Reduction to known solutions
- Summation factors
- Efficiency of the Quicksort algorithm
- Integrals

6 Manipulation of Sums

Sums and Recurrences

A sum of the form $S_n = \sum_{k=0}^n a_k$ can be presented in recursive form:

$$S_0 = a_0;$$

$$S_n = S_{n-1} + a_n \text{ for every } n \ge 1$$

that is, as the solution of a first-order recurrence.

Next subsection

Intermezzo: The repertoire method

- 2 Binary representation of generalized Josephus function
- 3 Sequences
- 4 Notations for sums
- 5 Sums and Recurrences
 - The repertoire method
 - Perturbation method
 - Reduction to known solutions
 - Summation factors
 - Efficiency of the Quicksort algorithm
 - Integrals

6 Manipulation of Sums

Recalling the repertoire method

Given

$$g(0) = \alpha_1$$

$$g(n) = \Phi(g(n-1)) + \Psi_n(\alpha_2, \dots, \alpha_k) \text{ for every } n > 0.$$

where Φ and Ψ_n are linear.

- Suppose we have k (k+1)-tuples $(g_i; \alpha_{i,1}, \alpha_{i,2}, \dots, \alpha_{i,k})$ such that:
 - $\begin{array}{l} \textbf{I} \quad g_i(0) = \alpha_{i,1} \text{ and } g_i(n) = \Phi(g_i(n-1)) + \Psi_n(\alpha_{i,2}, \dots, \alpha_{i,k}) \text{ for every} \\ i \in [1:k]; \end{array}$
 - 2 the k k-tuples $(\alpha_{i,1}, \alpha_{i,2}, \dots, \alpha_{i,k})$ are linearly independent.
- Then the recurrence has a solution in closed form:

$$g(n) = \alpha_1 A_1(n) + \alpha_2 A_2(n) + \ldots + \alpha_k A_k(n)$$

where the functions $A_1(n), A_2(n), \ldots, A_k(n)$ can be determined from the system of equations:

$$\alpha_{1,1}A_1(n) + \alpha_{1,2}A_2(n) + \ldots + \alpha_{1,k}A_k(n) = g_1(n)$$

$$\vdots$$

$$\alpha_{k,1}A_1(n) + \alpha_{k,2}A_2(n) + \ldots + \alpha_{k,k}A_k(n) = g_k(n)$$

The arithmetic sequence of initial term a and common difference b is the sequence $\langle a_n \rangle$ defined by:

$$a_n = a + b \cdot n$$
 for every $n \ge 0$

Then the sum $S_n = \sum_{k=0}^n a_n$ is the solution of the recurrence:

$$S_0 = a$$

 $S_n = S_{n-1} + a + bn$ for every $n \ge 1$

Everything is linear here, so we can safely apply the repertoire method to the family of recurrences:

$$R_0 = \alpha$$

$$R_n = R_{n-1} + \beta + \gamma n \text{ for every } n \ge 1$$

Then S_n is the solution corresponding to $\alpha = a$, $\beta = a$, $\gamma = b$.

Evaluating the first terms gives:

$$R_{0} = \alpha$$

$$R_{1} = \alpha + \beta + \gamma$$

$$R_{2} = \alpha + \beta + \gamma + (\beta + 2\gamma) = \alpha + 2\beta + 3\gamma$$

$$R_{3} = \alpha + 2\beta + 3\gamma + (\beta + 3\gamma) = \alpha + 3\beta + 6\gamma$$

There seem to be a constant term, a linear term, and something which resemble the triangular numbers.

So we apply the repertoire method with the following test functions:

1
$$R_n = 1$$
 for all n

2
$$R_n = n$$
 for all n

3
$$R_n = n^2$$
 for all n

Lemma 1

A(n) = 1 for every $n \in \mathbb{N}$.

Proof: With the choice $R_n = 1$ for every $n \ge 0$, the recurrence becomes:

$$1 = \alpha$$

$$1 = 1 + \beta + \gamma n \text{ for every } n \ge 1$$

This is only possible if $\alpha = 1$, $\beta = \gamma = 0$. We have proved that:

The particular solution $R_n = 1$ corresponds to the triple $(\alpha, \beta, \gamma) = (1, 0, 0)$ which is equivalent to Lemma 1.

Lemma 1

B(n) = n for every $n \in \mathbb{N}$.

Proof: With the choice $R_n = n$ for every $n \ge 0$, the recurrence becomes:

$$0 = \alpha$$

$$n = n - 1 + \beta + \gamma n \text{ for every } n \ge 1$$

This is only possible if lpha= 0, eta= 1, $\gamma=$ 0. We have proved that:

The particular solution $R_n = n$ corresponds to the triple $(\alpha, \beta, \gamma) = (0, 1, 0)$ which is equivalent to Lemma 2.

Repertoire method: case 3

Lemma 3

$$C(n)=rac{n(n+1)}{2}$$
 for every $n\in\mathbb{N}.$

Proof: With the choice $R_n = n^2$ for every $n \ge 0$, the recurrence becomes:

$$0 = \alpha$$

$$n^2 = (n-1)^2 + \beta + \gamma n \text{ for every } n \ge 1$$

As $(n-1)^2 = n^2 - 2n + 1$, this is only possible if $\alpha = 0, \ \beta = -1, \ \gamma = 2$. We have proved that:

The particular solution $R_n=1$ corresponds to the triple $(lpha,eta,\gamma)=(0,-1,2)$ that is,

$$-B(n)+2C(n)=n^2$$

As we know that B(n) = n, we can solve for C(n) and obtain the thesis of Lemma 3.

According to Lemma 1, 2, 3, we get:

1 $R_n = 1$ for all n \Longrightarrow A(n) = 12 $R_n = n$ for all n \Longrightarrow B(n) = n3 $R_n = n^2$ for all n \Longrightarrow $C(n) = \frac{n^2 + n}{2}$

Hence,

$$R_n = \alpha + n\beta + \left(\frac{n^2 + n}{2}\right)\gamma$$

For lpha=eta=a and $\gamma=b$ we get:

$$S_n = \sum_{k=0}^n (a+bk) = (n+1)a + \frac{n(n+1)}{2}b$$

Next subsection

Intermezzo: The repertoire method

- 2 Binary representation of generalized Josephus function
- 3 Sequences
- 4 Notations for sums
- 5 Sums and Recurrences
 - The repertoire method
 - Perturbation method
 - Reduction to known solutions
 - Summation factors
 - Efficiency of the Quicksort algorithm
 - Integrals

6 Manipulation of Sums

Perturbation method

To find a closed form for $\overline{S_n = \sum_{0 \leq k \leq n} a_k}$:

1 Rewrite S_{n+1} by isolating the first and the last term:

$$S_n + a_{n+1} = a_0 + \sum_{1 \le k \le n+1} a_k$$

= $a_0 + \sum_{1 \le k+1 \le n+1} a_{k+1}$
= $a_0 + \sum_{0 \le k \le n} a_{k+1}$

Work on the sum on the right and express it as a function of S_n.
 Solve with respect to S_n.

Example 2: geometric sequence

Geometric sequence: $a_n = ax^n, x \neq 1$

Recurrence equation for the sum $S_n = a_0 + a_1 + a_2 + \dots + a_n = \sum_{0 \le k \le n} a_k x^k$:

$$S_0 = a$$

$$S_n = S_{n-1} + ax^n, \text{ for } n > 0.$$

Geometric sequence: $a_n = ax^n, x \neq 1$

Recurrence equation for the sum $S_n = a_0 + a_1 + a_2 + \dots + a_n = \sum_{0 \le k \le n} a x^k$.

$$S_0 = a$$

$$S_n = S_{n-1} + ax^n, \text{ for } n > 0.$$

Splitting off the first term gives

$$S_n + a_{n+1} = a_0 + \sum_{0 \le k \le n} a_{k+1}$$
$$= a + \sum_{0 \le k \le n} a_k x^{k+1}$$
$$= a + x \sum_{0 \le k \le n} a_k x^k$$
$$= a + x S_n$$

Geometric sequence: $a_n = ax^n, x \neq 1$

Recurrence equation for the sum $S_n = a_0 + a_1 + a_2 + \dots + a_n = \sum_{0 \le k \le n} a x^k$

$$S_0 = a$$

$$S_n = S_{n-1} + ax^n, \text{ for } n > 0.$$

From this we obtain the equality:

$$S_n + ax^{n+1} = a + xS_n,$$

that is $(1-x)S_n = a - ax^{n+1}$.

• As $x \neq 1$ we can divide and obtain:

$$S_n = a \cdot \frac{1 - x^{n+1}}{1 - x}$$

Example 3: When perturbation doesn't work

Compute:
$$S_n = \sum_{k=0}^n k^2$$
.
1 Perturb the sum:
 $S_n + (n+1)^2 = 0 + \sum_{k=1}^{n+1} k^2$

Um ... that shifted k^2 sounds bad ...

Example 3: When perturbation doesn't work

Compute:
$$S_n = \sum_{k=0}^n k^2$$

Perturb the sum:

$$S_n + (n+1)^2 = 0 + \sum_{k=1}^{n+1} k^2$$

Um ... that shifted k^2 sounds bad

2 Rewrite the right-hand side so that it depends on S_n :

$$\sum_{k=1}^{n} k^{2} = \sum_{k=0}^{n} (k+1)^{2}$$

$$= \sum_{k=0}^{n} (k^{2}+2k+1)$$

$$= S_{n} + \sum_{k=0}^{n} (2k+1)$$

$$= S_{n} + 2\frac{n(n+1)}{2} + n + 1$$

Example 3: When perturbation doesn't work

Compute:
$$S_n = \sum_{k=0}^n k^2$$
.
1 Perturb the sum:

$$S_n + (n+1)^2 = 0 + \sum_{k=1}^{n+1} k^2$$

Um ... that shifted k^2 sounds bad ...

2 Rewrite the right-hand side so that it depends on S_n :

$$\sum_{k=1}^{n+1} k^2 = S_n + 2 \frac{n(n+1)}{2} + n + 1$$

3 Solve with respect to S_n :

$$S_n + (n+1)^2 = S_n + (n+1) + 2 \frac{n(n+1)}{2}$$

(n+1)² = (n+1) + n(n+1)

which is true, but where is S_n ?

... try perturbing *another* sum!

In addition to
$$S_n$$
, consider the sum: $T_n = \sum_{k=0}^n k^3$.

Perturb
$$T_n$$

$$T_n + (n+1)^3 = 0 + \sum_{k=1}^{n+1} k^3$$

... try perturbing *another* sum!

In addition to S_n , consider the sum: $T_n = \sum_{k=0}^n k^3$.

1 Perturb T_n:

$$T_n + (n+1)^3 = 0 + \sum_{k=1}^{n+1} k^3$$

2 Rewrite the right-hand side so that it depends on T_n and on S_n :

$$\sum_{k=1}^{n+1} k^3 = \sum_{k=0}^n (k+1)^3$$
$$= \sum_{k=0}^n (k^3 + 3k^2 + 3k + 1)$$
$$= T_n + 3S_n + \sum_{k=0}^n (3k+1)$$

... try perturbing *another* sum!

In addition to S_n , consider the sum: $T_n = \sum_{k=0}^n k^3$. 1 Perturb T_n : $T_n + (n+1)^3 = 0 + \sum_{k=1}^{n+1} k^3$

2 Rewrite the right-hand side so that it depends on T_n and on S_n :

$$\sum_{k=1}^{n+1} k^3 = T_n + 3S_n + \sum_{k=0}^n (3k+1)$$

3 Solve with respect to S_n:

$$n+1)^{3} = 3S_{n} + 3\frac{n(n+1)}{2} + n + 1$$

$$= 3S_{n} + (n+1)\left(\frac{3}{2}n + 1\right)$$

$$3S_{n} = (n+1)\left(n^{2} + 2n + 1 - \frac{3}{2}n - 1\right)$$

$$S_{n} = \frac{1}{3}(n+1)\left(n^{2} + \frac{n}{2}\right) = \frac{n(n+1)(2n+1)}{6}$$

Next subsection

Intermezzo: The repertoire method

- 2 Binary representation of generalized Josephus function
- 3 Sequences
- 4 Notations for sums
- 5 Sums and Recurrences
 - The repertoire method
 - Perturbation method
 - Reduction to known solutions
 - Summation factors
 - Efficiency of the Quicksort algorithm
 - Integrals

6 Manipulation of Sums

Example 3: Hanoi sequence

Consider again the Tower of Hanoi recurrence:

 $T_0 = 0$ $T_n = 2T_{n-1} + 1$

Example 3: Hanoi sequence

Consider again the Tower of Hanoi recurrence:

$$T_0 = 0$$
$$T_n = 2T_{n-1} + 1$$

This sequence can be transformed into a geometric sum using the following manipulations:

Divide both equalities by 2ⁿ:

$$T_0/2^0 = 0$$

 $T_n/2^n = T_{n-1}/2^{n-1} + 1/2^n$

Set $S_n = T_n/2^n$ to have:

$$S_0 = 0$$
$$S_n = S_{n-1} + 2^{-1}$$

This is almost the geometric sum with the parameters a = 1 and x = 1/2: Only the initial summand 1 is missing.

Example 3: Hanoi sequence

Consider again the Tower of Hanoi recurrence:

$$T_0 = 0$$
$$T_n = 2T_{n-1} + 1$$

This sequence can be transformed into a geometric sum using the following manipulations:

Divide both equalities by 2ⁿ:

$$T_0/2^0 = 0$$

 $T_n/2^n = T_{n-1}/2^{n-1} + 1/2^n$

• Set $S_n = T_n/2^n$ to have:

$$S_0 = 0$$
$$S_n = S_{n-1} + 2^{-n}$$

This is almost the geometric sum with the parameters a = 1 and x = 1/2: Only the initial summand 1 is missing.

Consider again the Tower of Hanoi recurrence:

$$T_0 = 0$$
$$T_n = 2 T_{n-1} + 1$$

Then $S_n = T_n/2^n$ satisfies:

$$S_n = \left(\sum_{k=0}^n \left(\frac{1}{2}\right)^n\right) - 1$$
$$= \frac{1 - (1/2)^{n+1}}{1 - 1/2} - 1$$
$$= 2 - 2^{-n} - 1 = 1 - 2^{-n}$$

We conclude:

$$T_n = 2^n S_n = 2^n - 1$$

Just the same result we have proven by means of induction!

Next subsection

Intermezzo: The repertoire method

- 2 Binary representation of generalized Josephus function
- 3 Sequences
- 4 Notations for sums

5 Sums and Recurrences

- The repertoire method
- Perturbation method
- Reduction to known solutions

Summation factors

- Efficiency of the Quicksort algorithm
- Integrals

6 Manipulation of Sums

We want to solve a linear recurrence of the form:

$$a_n T_n = b_n T_{n-1} + c_n$$
 for every $n > 0$

where:

- 1 $\langle a_n \rangle$, $\langle b_n \rangle$ and $\langle c_n \rangle$ are arbitrary sequences; and
- 2 for every n > 0, $a_n \neq 0$ and $b_n \neq 0$.

We also assume that the *initial value* T_0 is given.

The idea

Find a summation factor s_n satisfying the following property:

 $s_n b_n = s_{n-1} a_{n-1}$ for every $n \ge 1$

If a sequence $\langle s_n \rangle$ as in the previous slide exists, then:

$$1 \quad s_n a_n T_n = s_n b_n T_{n-1} + s_n c_n = s_{n-1} a_{n-1} T_{n-1} + s_n c_n$$

2 Set $S_n = s_n a_n T_n$ and rewrite the equation as:

$$S_0 = s_0 a_0 T_0$$
$$S_n = S_{n-1} + s_n c_n$$

3 This yields a *closed formula* for the solution:

$$T_n = \frac{1}{s_n a_n} \left(s_0 a_0 T_0 + \sum_{k=1}^n s_k c_k \right) = \frac{1}{s_n a_n} \left(s_1 b_1 T_0 + \sum_{k=1}^n s_k c_k \right) \text{ for every } n > 0$$

Finding a summation factor

Assuming that $b_n \neq 0$ for every *n*:

1 Set $s_0 = 1$ and also $a_0 = 1$.

2 Compute the next elements using the property $s_n b_n = s_{n-1} a_{n-1}$:

$$s_{1} = \frac{1}{b_{1}} = \frac{a_{0}}{b_{1}}$$

$$s_{2} = \frac{s_{1}a_{1}}{b_{2}} = \frac{a_{0}a_{1}}{b_{1}b_{2}}$$

$$s_{3} = \frac{s_{2}a_{2}}{b_{3}} = \frac{a_{0}a_{1}a_{2}}{b_{1}b_{2}b_{3}}$$

$$= \dots$$

$$s_{n} = \frac{s_{n-1}a_{n-1}}{b_{n}} = \frac{a_{0}a_{1}\cdots a_{n-1}}{b_{1}b_{2}\cdots b_{n}}$$

(To be proved by induction!)

The choice $a_n = c_n = 1$ and $b_n = 2$ gives the Hanoi Tower sequence.

Evaluate the summation factor:

$$s_n = \frac{s_{n-1}a_{n-1}}{b_n} = \frac{a_0a_1\cdots a_{n-1}}{b_1b_2\cdots b_n} = \frac{1}{2^n}$$

The solution is:

$$T_n = \frac{1}{s_n a_n} \left(s_1 b_1 T_0 + \sum_{k=1}^n s_k c_k \right) = 2^n \sum_{k=1}^n \frac{1}{2^k} = 2^n \left(1 - \frac{1}{2^n} \right) = 2^n - 1$$

Yet Another Example: Constant coefficients

Consider now the recurrence:

$$Z_n = aZ_{n-1} + b$$
 for every $n \ge 1$, $a \ne 1$

Taking $a_n = 1$, $b_n = a$ and $c_n = b$:

Evaluate summation factor:

$$s_n = \frac{s_{n-1}a_{n-1}}{b_n} = \frac{a_0a_1\dots a_{n-1}}{b_1b_2\dots b_n} = \frac{1}{a^n}$$

Apply the resolutive formula:

$$Z_n = \frac{1}{s_n a_n} \left(s_1 b_1 Z_0 + \sum_{k=1}^n s_k c_k \right) = a^n \left(Z_0 + b \sum_{k=1}^n \frac{1}{a^k} \right)$$

= $a^n Z_0 + b \sum_{k=1}^n a^{n-k}$
= $a^n Z_0 + b \sum_{k=0}^{n-1} a^k$ where the new k is the old $n - k$
= $a^n Z_0 + \frac{a^n - 1}{a - 1} b$

We could also have solved the recurrence by iteration:

$$Z_{n} = aZ_{n-1} + b$$

= $a^{2}Z_{n-2} + ab + b$
= $a^{3}Z_{n-3} + a^{2}b + ab + b$
= ...
= $a^{k}Z_{n-k} + (a^{k-1} + a^{k-2} + ... + 1)b$
= $a^{k}Z_{n-k} + \frac{a^{k} - 1}{a - 1}b$ (assuming $a \neq 1$)

We can do at most n iterations, so for k = n we get:

$$Z_n = a^n Z_{n-n} + \frac{a^n - 1}{a - 1} b = a^n Z_0 + \frac{a^n - 1}{a - 1} b$$

Next subsection

Intermezzo: The repertoire method

- 2 Binary representation of generalized Josephus function
- 3 Sequences
- 4 Notations for sums

5 Sums and Recurrences

- The repertoire method
- Perturbation method
- Reduction to known solutions
- Summation factors
- Efficiency of the Quicksort algorithm
- Integrals

The Quicksort algorithm (C.A.R. Hoare, 1959-1961)

Input: An array A with n elements, indexed from 1 to n.

- 1 If n = 0 then return.
- 2 Choose a pivot p = A[k] for a suitable $k \in [1:n]$.
- 3 Initialize $i \leftarrow 0, j \leftarrow n+1$.

4 Do forever:

- 1 Do $i \leftarrow i+1$ while $i \leq n$ and $A[i] \leq p$.
- 2 Do $j \leftarrow j-1$ while $j \ge 1$ and A[j] > p.
- 3 If $i \ge j$ break.
- 4 Swap A[i] with A[j].

5 Call Quicksort recursively on the subarrays A[1:k-1] and A[k+1:n]. Output: the array A with elements sorted.

Example: A run of Quicksort

TAL TECH

How Quicksort earned its name

Quicksort uses the pivot to subdivide the array into "small" and "large" elements.

- This subdivision may be rough, but after it has been done, no "small" object will be compared with any "large" object ever again.
- This suggests very good performance in the average case.

Let C_n be the average number of comparisons made by Quicksort to sort an array of $n \ge 1$ elements.

- Each element is compared with the pivot except A[k], which is the pivot.
- Each one of the *n* elements could be the pivor.
- The recursive call will work on an array of size *k*−1 and one of size *n*−*k*, for a total of *n*−1 objects.

We conclude:

$$C_0 = 0$$

$$C_n = n+1+\frac{2}{n}\sum_{k=0}^{n-1}C_k \text{ for every } n \ge 1$$

Efficiency of Quicksort: Rewriting the recurrence

Multiplying by n gives:

$$nC_n = n^2 + n + 2\sum_{k=0}^{n-1} C_k$$

We still cannot apply the summation factor method.

• However, if we write the recurrence for n-1:

$$(n-1)C_{n-1} = (n-1)^2 + (n-1) + 2\sum_{k=0}^{n-2} C_k$$

and subtract from the original, we obtain:

$$nC_{n} - (n-1)C_{n-1} = n^{2} + n + 2C_{n-1} - (n-1)^{2} - (n-1)$$

$$nC_{n} - nC_{n-1} + C_{n-1} = n^{2} + n + 2C_{n-1} - n^{2} + 2n - 1 - n + 1$$

$$nC_{n} - nC_{n-1} = C_{n-1} + 2n$$

$$nC_{n} = (n+1)C_{n-1} + 2n$$

The last recurrence can be solved with a summation factor.

Efficiency of Quicksort: Summation factor in action

Let's solve the recurrence $nC_n = (n+1)C_{n-1} + 2n$ with a summation factor:

• We have $a_n = n$, $b_n = n+1$, and $c_n = 2n$, so:

$$s_n = \frac{a_1 a_2 \cdots a_{n-1}}{b_2 b_3 \cdots b_n} = \frac{1 \cdot 2 \cdots (n-1)}{3 \cdot 4 \cdots (n+1)} = \frac{2}{n(n+1)}$$

We plug into the formula and obtain:

$$C_{n} = \frac{1}{s_{n}a_{n}} \left(s_{1}b_{1}C_{0} + \sum_{k=1}^{n} s_{k}c_{k} \right)$$

= $\frac{n+1}{2} \sum_{k=1}^{n} \frac{4k}{k(k+1)}$
= $2(n+1) \sum_{k=1}^{n} \frac{1}{k+1} = 2(n+1) \left(\sum_{k=1}^{n} \frac{1}{k} + \frac{1}{n+1} - 1 \right)$
= $2(n+1)H_{n} - 2n$

where $H_n = 1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{n} \approx \ln n$ is the *n*th harmonic number.

Next subsection

Intermezzo: The repertoire method

- 2 Binary representation of generalized Josephus function
- 3 Sequences
- 4 Notations for sums

5 Sums and Recurrences

- The repertoire method
- Perturbation method
- Reduction to known solutions
- Summation factors
- Efficiency of the Quicksort algorithm
- Integrals

6 Manipulation of Sums

A basic **con**tinuous method for dis**crete** mathematics

To compute a sum of the form $S_n = \sum_{k=1}^n a_k$:

Choose a continuous function f(x) such that f(k) = ak for every k > 0 integer.
 Identify the sequence (ak) with the staircase function

$$\mathsf{a}(x) = \sum_{k \geqslant 1} \mathsf{a}_k \left[k - 1 < x \leqslant k
ight]$$

3 Determine an error term *E_n* such that:

$$S_n = \int_0^n f(x) \, dx + E_n \text{ for every } n \ge 1$$

4 Express E_n itself as a sum:

$$E_n = \sum_{k=1}^n \left(a_k - \int_{k-1}^k f(x) dx\right)$$

5 Use a closed form for E_n to determine a closed form for S_n .

Example: Sum of perfect squares

Example: $\Box_n = \sum_{0 \leq k \leq n} k^2$ for $n \geq 0$

$$\int_0^n x^2 dx = \frac{n^3}{3} \tag{1}$$

$$\Box_n = \int_0^n x^2 \, dx + E_n \tag{2}$$

$$E_n = \sum_{k=1}^n \left(k^2 - \int_{k-1}^k x^2 \, dx \right) \quad (3)$$

Example: $\Box_n = \sum_{0 \leq k \leq n} k^2$ for $n \geq 0$

Evaluate (3):

$$E_n = \sum_{k=1}^n \left(k^2 - \int_{k-1}^k x^2 \, dx \right)$$
$$= \sum_{k=1}^n \left(k^2 - \frac{k^3 - (k-1)^3}{3} \right)$$
$$= \sum_{k=1}^n \left(k - \frac{1}{3} \right)$$
$$= \frac{(n+1)n}{2} - \frac{n}{3} = \frac{3n^2 + n}{6}.$$

Finally, from (2) and (1) we get :

$$\Box_n = \frac{n^3}{3} + \frac{3n^2 + n}{6} = \frac{n(n+1)(2n+1)}{6}$$

Next section

Intermezzo: The repertoire method

- 2 Binary representation of generalized Josephus function
- 3 Sequences
- 4 Notations for sums
- 5 Sums and Recurrences
 - The repertoire method
 - Perturbation method
 - Reduction to known solutions
 - Summation factors
 - Efficiency of the Quicksort algorithm
 - Integrals

For every finite set K and permutation p(k) of K:

Distributive law:

$$\sum_{k\in K} ca_k = c\sum_{k\in K} a_k$$

Associative law:

$$\sum_{k\in K}(\mathsf{a}_k+b_k)=\sum_{k\in K}\mathsf{a}_k+\sum_{k\in K}b_k$$

Commutative law:

$$\sum_{k\in K} a_k = \sum_{p(k)\in K} a_{p(k)}$$

All of the above work $\underline{because}$ the summands are nonzero at most finitely many times. (More on this later.)

Example: Arithmetic progressions

Let's compute again:

$$S = \sum_{0 \leqslant k \leqslant n} (a + bk)$$

$$S = \sum_{0 \le n-k \le n} (a+b(n-k)) \text{ by commutativity}$$

=
$$\sum_{0 \le k \le n} (a+bn-bk) \text{ because } [0 \le k \le n] = [0 \le n-k \le n]$$

$$2S = \sum_{0 \le k \le n} ((a+bk)+(a+bn-bk)) \text{ by associativity}$$

=
$$\sum_{0 \le k \le n} (2a+bn)$$

$$2S = (2a+bn) \sum_{0 \le k \le n} 1 \text{ by distributivity}$$

=
$$(2a+bn)(n+1)$$

Again, but only using basic properties:

$$S = (n+1)a + \frac{n(n+1)}{2}b$$

The Inclusion-Exclusion Principle

For any two finite sets K and K':

$$\sum_{k \in K} a_k + \sum_{k \in K'} a_k = \sum_{k \in K \cup K'} a_k + \sum_{k \in K \cap K'} a_k$$

Examples:

1 For
$$1 \le m \le n$$
:

$$\sum_{k=1}^{m} a_k + \sum_{k=m}^{n} a_k = a_m + \sum_{k=1}^{n} a_k$$
2 For $n \ge 0$:

$$\sum_{0 \le k \le n} a_k = a_0 + \sum_{1 \le k \le n} a_k$$
3 For $n \ge 0$:

$$S_n + a_{n+1} = a_0 + \sum_{0 \le k \le n} a_{k+1}$$

that is, we recover the perturbation method!