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The repertoire method: Basic ideas

Let the recursion scheme

g(0) = α ,
g(n+1) = Φ(g(n))+Ψ(n;β ,γ, . . .) for n ⩾ 0 .

have the following properties:

1 Φ is linear in g :
If g(n) = λ1g1(n)+λ2g2(n), then Φ(g(n)) = λ1Φ(g1(n))+λ2Φ(g2(n)).
No hypotheses are made on the dependence of g on n.

2 Ψ is linear in each of the m−1 parameters β ,γ, . . .
No hypotheses are made on the dependence of Ψ on n.

Then the whole system is linear in the parameters α,β ,γ, . . .
We can then look for a general solution of the form

g(n) = αA(n)+βB(n)+ γC(n)+ . . .



The repertoire method: Description

Suppose we have a repertoire of m pairs of the form ((αi ,βi ,γi , . . .),gi (n)) satisfying
the following conditions:

1 For every i = 1,2, . . . ,m, gi (n) is the solution of the system corresponding to the
values α = αi ,β = βi ,γ = γi , . . .

2 The m m-tuples (αi ,βi ,γi , . . .) are linearly independent.

Then the functions A(n),B(n),C(n), . . . are uniquely determined.
The reason is that, for every �xed n,

α1A(n) +β1B(n) +γ1C(n) + . . . = g1(n)
...

...
αmA(n) +βmB(n) +γmC(n) + . . . = gm(n)

is a system of m linear equations in the m unknowns A(n),B(n),C(n), . . . whose
coe�cients matrix is invertible.



The repertoire method for recursive data types: Setting

Assume that a certain recursive data type S has:

�nitely many base cases b1, . . . ,bk ;

�nitely many constructors, which we may assume to have all the same number
m of arguments:

u1, . . . ,ur : S
m→ S .

Consider a recursion of the following form:

g(bi ) = αi for i = 1, . . . ,k ;
g(uj (x1, . . . ,xm)) = Φj (g(x1), . . . ,g(xm))+Ψj (n;βj ,1, . . . ,βj ,sj ) for every j = 1, . . . , r

where α1, . . . ,αk ,β1,1, . . . ,β1,s1 , . . . ,βr ,sr ∈ C and Φj : S
m→ C,Ψj : S

rj → C for every
j = 1, . . . , r . Assume that:

1 each one of Φ1, . . . ,Φk is linear in all of its arguments; and

2 each one of Ψ1, . . . ,Ψr is linear in each one of its arguments except at most n.

Then we could look for a generic solution of the recurrence of the following form:

A1, . . . ,Ak ,B1,1, . . . ,B1,s1 , . . . ,Br ,sr : S → C

such that the solution of the recurrence has the form:

g(x) =
k

∑
i=1

αiAi (x)+
r

∑
j=1

sj

∑
ℓ=1

βj ,ℓBj ,ℓ(x) for every x ∈ S .



The repertoire method for recursive data types: Description

Theorem

Given the system in the previous slide, let p = k+∑
r
j=1 sj be the total number of

parameters. Assume we have a repertoire of p pairs of the form:(
(α1,i , . . . ,αk,i ,β1,1,i , . . . ,βr ,sr ,i ),gi (x)

)
with the following properties:

1 For every i = 1, . . . ,p, gi is the solution corresponding to the choice of
parameters:

α1 = α1,i , . . . ,αk = αk,i ,β1,1 = β1,1,i , . . . ,βr ,sr = βr ,sr ,i

2 The p p-tuples (α1,i , . . . ,αk,i ,β1,1,i , . . . ,βr ,sr ,i ) are linearly independent.

Then the p functions A1, . . . ,Ak ,B1,1, . . . ,Br ,sr : S → C are uniquely determined.

Reason why: For every x ∈ S , the p linear equations:

α1,1A1(x)+ · · ·+αk,iAk (x)+β1,1,iB1,1(x)+ · · ·+βr ,sr ,iBr ,sR (x) = gi (x) , i = 1, . . . ,p

in the p unknowns A1(x), . . . ,Ak (x),B1,1(x), . . . ,Br ,sr (x) form a system that has a
nonsingular matrix of coe�cients.
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Binary representation of generalized Josephus function

De�nition

The generalized Josephus function (GJ-function) is de�ned for α,β0,β1 as follows:

f (1) = α

f (2n+ j) = 2f (n)+βj for j = 0,1 and n > 0 .

We obtain the de�nition used before if to select β0 = β and β1 = γ.



Binary representation of generalized Josephus function (2)

Case A: Argument is even

If 2n= 2m+ ℓ, then the binary notation is

2n= (bmbm−1 . . .b1b0)2

or
2n= bm2

m+bm−12
m−1+ . . .+b12+b0

where bi ∈ {0,1}, b0 = 0 and bm = 1.

Hence
n= bm2

m−1+bm−12
m−2+ . . .+b22+b1

or
n= (bmbm−1 . . .b1)2



Binary representation of generalized Josephus function (3)

Case B: Argument is odd

If 2n+1= 2m+ ℓ, then the binary notation is

2n+1= (bmbm−1 . . .b1b0)2

or
2n+1= bm2

m+bm−12
m−1+ . . .+b12+b0

where bi ∈ {0,1}, b0 = 1 and bm = 1.

We get
2n+1 = bm2

m+bm−12
m−1+ . . .+b12+1

2n = bm2
m+bm−12

m−1+ . . .+b12

n = bm2
m−1+bm−12

m−2+ . . .+b22+b1

or
n= (bmbm−1 . . .b1)2



Binary representation of generalized Josephus function (3)

Case B: Argument is odd

If 2n+1= 2m+ ℓ, then the binary notation is

2n+1= (bmbm−1 . . .b1b0)2

or
2n+1= bm2

m+bm−12
m−1+ . . .+b12+b0

where bi ∈ {0,1}, b0 = 1 and bm = 1.

We get
2n+1 = bm2

m+bm−12
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2n = bm2
m+bm−12
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n = bm2
m−1+bm−12

m−2+ . . .+b22+b1

As the results for cases A and B are similar, we don't need to consider even and odd
cases separately!



Binary representation of generalized Josephus function (4)

Let's evaluate:

f ((bm,bm−1, . . . ,b1,b0)2) = 2f ((bm,bm−1, . . . ,b1)2)+βb0

= 2 · (2f ((bm,bm−1, . . . ,b2)2)+βb1 )+βb0

= 4f ((bm,bm−1, . . . ,b2)2)+2βb1 +βb0

=
...

= f ((bm)2)2
m+βbm−12

m−1+ . . .+βb12+βb0

= f (1)2m+βbm−12
m−1+ . . .+βb12+βb0

= α2m+βbm−12
m−1+ . . .+βb12+βb0 ,

where

βbj =

{
β1, if bj = 1
β0 if bj = 0

f ((bmbm−1 . . .b1b0)2) = (αβbm−1βbm−2 . . .βb1βb0 )2



Binary representation of generalized Josephus function (4)

Let's evaluate:

f ((bm,bm−1, . . . ,b1,b0)2) = 2f ((bm,bm−1, . . . ,b1)2)+βb0

= 2 · (2f ((bm,bm−1, . . . ,b2)2)+βb1 )+βb0

= 4f ((bm,bm−1, . . . ,b2)2)+2βb1 +βb0

=
...

= f ((bm)2)2
m+βbm−12

m−1+ . . .+βb12+βb0

= f (1)2m+βbm−12
m−1+ . . .+βb12+βb0

= α2m+βbm−12
m−1+ . . .+βb12+βb0 ,

where

βbj =

{
β1, if bj = 1
β0 if bj = 0

f ((bmbm−1 . . .b1b0)2) = (αβbm−1βbm−2 . . .βb1βb0 )2



Example

Original Josephus function: α = 1, β0 =−1, β1 = 1 i.e.

f (1) = 1

f (2n) = 2f (n)−1
f (2n+1) = 2f (n)+1

Compute

f ((bmbm−1 . . .b1b0)2) = (αβbm−1βbm−2 . . .βb1βb0 )2

f (100) = f ((1100100)2) = (1,1,−1,−1,1,−1,−1)2
= 64+32−16−8+4−2−1= 73



Generalized Josephus function: Multiple bases

Let c,d ⩾ 2 be integers.
Consider the following recurrence:

f (j) = αj for 1⩽ j < d ;
f (dn+ j) = cf (n)+βj for 0⩽ j < d and n ⩾ 1 .

How can we compute f (n) for an arbitrary positive integer n, without having to go
through the entire iterative process?



Multiple bases representation

We can actually use the same technique!

Let (bmbm−1 . . .b1b0)d be the base-d writing of n. Then bm ̸= 0 and:

f ((bm,bm−1, . . . ,b1,b0)d ) = cf ((bm,bm−1, . . . ,b1)d )+βb0

= c · (cf ((bm,bm−1, . . . ,b2)d )+βb1 )+βb0

= c2f ((bm,bm−1, . . . ,b2)d )+cβb1 +βb0

=
...

= cm · f (bm)+cm−1βbm−1 + . . .+cβb1 +βb0

= cmαbm +cm−1βbm−1 + . . .+cβb1 +βb0



Multiple bases representation

We can actually use the same technique!

Let (bmbm−1 . . .b1b0)d be the base-d writing of n. Then bm ̸= 0 and:

f ((bm,bm−1, . . . ,b1,b0)d ) = cf ((bm,bm−1, . . . ,b1)d )+βb0

= c · (cf ((bm,bm−1, . . . ,b2)d )+βb1 )+βb0

= c2f ((bm,bm−1, . . . ,b2)d )+cβb1 +βb0

=
...

= cm · f (bm)+cm−1βbm−1 + . . .+cβb1 +βb0

= cmαbm +cm−1βbm−1 + . . .+cβb1 +βb0

With a slight abuse of notation: (the βi 's need not be base-c digits)

f ((bmbm−1 . . .b1b0)d ) = (αbmβbm−1βbm−2 . . .βb1βb0 )c



Multiple bases representation

We can actually use the same technique!

Let (bmbm−1 . . .b1b0)d be the base-d writing of n. Then bm ̸= 0 and:

f ((bm,bm−1, . . . ,b1,b0)d ) = cf ((bm,bm−1, . . . ,b1)d )+βb0

= c · (cf ((bm,bm−1, . . . ,b2)d )+βb1 )+βb0

= c2f ((bm,bm−1, . . . ,b2)d )+cβb1 +βb0

=
...

= cm · f (bm)+cm−1βbm−1 + . . .+cβb1 +βb0

= cmαbm +cm−1βbm−1 + . . .+cβb1 +βb0

Or, more precisely:

f ((bmbm−1 . . .b1b0)d ) = p(c) where p(x) = αbmx
m+βbm−1x

m−1+ . . .+βb1x+βb0
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Sequences

De�nition

A sequence of elements of a set A is a function f : N→ A, where N is the set of
natural numbers.

Notations used:

f = ⟨an⟩, where we denote an = f (n);

{an}n∈N;
⟨a0,a1,a2,a3, . . .⟩.

an is called the nth term of the sequence f



Sequences

De�nition

A sequence of elements of a set A is a function f : N→ A, where N is the set of
natural numbers.

Notations used:

f = ⟨an⟩, where we denote an = f (n);

{an}n∈N;
⟨a0,a1,a2,a3, . . .⟩.

an is called the nth term of the sequence f

Example

a0 = 0, a1 =
1

2 ·3
, a2 =

2

3 ·4
, a3 =

3

4 ·5
, · · ·

or 〈
0,

1

6
,
1

6
,
3

20
,
2

15
, · · · , n

(n+1)(n+2)
, · · ·
〉



Sequences

De�nition

A sequence of elements of a set A is a function f : N→ A, where N is the set of
natural numbers.

Notations used:

f = ⟨an⟩, where we denote an = f (n);

{an}n∈N;
⟨a0,a1,a2,a3, . . .⟩.

an is called the nth term of the sequence f

Notation

f (n) =
n

(n+1)(n+2)

or
an =

n

(n+1)(n+2)



Sets of indices

Default assumption: N.

Actually, any countably in�nite set can be used as an index set. Examples:

Z+ = N−{0} ∼ N.
N\K , where K ⊆ N is �nite.
The set Z of relative integers.
{1,3,5,7, . . .}= Odd.
{0,2,4,6, . . .}= Even.
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Sets of indices

Default assumption: N.

Actually, any countably in�nite set can be used as an index set. Examples:

Z+ = N−{0} ∼ N.
N\K , where K ⊆ N is �nite.
The set Z of relative integers.
{1,3,5,7, . . .}= Odd.
{0,2,4,6, . . .}= Even.

The writing A∼ B denotes that sets A and B are of the same cardinality.

For �nite sets, |A| is the number of elements of A.

In general, A and B are said to have the same cardinality if there exists a
bijection between the two.
We then write A∼ B, or |A|= |B|

(See http://www.mathsisfun.com/sets/injective-surjective-bijective.html

for detailed explanation)

http://www.mathsisfun.com/sets/injective-surjective-bijective.html 


Finite sequences

A �nite sequence of elements of a set A is a function f : K → A,
where K is set a �nite subset of natural numbers

For example: f : {1,2,3,4, · · · ,n}→ A, n ∈ N

Special case: n= 0, i.e. empty sequence: f ( /0) = e



Domain of a sequence

In general, we might be dealing with partial functions:

Although a generic formula might be given, such formula might not be
applicable in some cases.

For example, the function f : N→ R whose rule is:

an =
n

(n−2)(n−5)

is not de�ned for n= 2 and for n= 5.

We de�ne the domain of a function f : A→ B as the subset D of A where f is
de�ned.

For example, the domain of our example function is D = N−{2,5}.
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Notation

For a �nite set K = {1,2, · · · ,m}= [1 :m] (a slice of N) and a sequence ⟨an⟩ we write:

m

∑
k=1

ak = a1+a2+ · · ·+am

This speci�c writing takes into account the order of summation.
Other writings, in which the order is less or not important, are:

∑
1⩽k⩽m

ak ; ∑
k∈[1:m]

ak ; ∑
k∈K

ak ; ∑
K

ak



Warmup: What does this notation mean?

0

∑
k=4

qk

Options:

1
0

∑
k=4

qk = q4+q3+q2+q1+q0 = ∑
k∈{4,3,2,1,0}

qk =
4

∑
k=0

qk

.
This seems the sensible thing�but it forgets the ordering, against our
convention from the previous slide. . .

2

∑
4⩽k⩽0

qk = 0

This also seems sensible�but it is counterintuitive. . .
3 But we might want to �sum from negative in�nity� instead1 in which case:

n

∑
k=m

qk = ∑
k⩽n

qk − ∑
k<m

qk ,

But then,
0

∑
k=4

qk = ∑
k⩽0

qk − ∑
k<4

qk =−q1−q2−q3. . .

1Not right now, though; we will do so in a future lecture.
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Warmup: Interpreting the Σ-notation

Compute ∑{0⩽k⩽5} ak and ∑{0⩽k2⩽5} ak2 .

First sum

{0⩽ k ⩽ 5}= {0,1,2,3,4,5} :

thus, ∑{0⩽k⩽5} ak = a0+a1+a2+a3+a4+a5.

Second sum

{0⩽ k2 ⩽ 5}= {0,1,2,−1,−2} :

thus, ∑{0⩽k⩽5} ak2 = a02 +a12 +a22+a(−1)2 +a(−2)2 = a0+2a1+2a2.
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Warmup: Interpreting the Σ-notation

Compute ∑{0⩽k⩽5} ak and ∑{0⩽k2⩽5} ak2 .

First sum

{0⩽ k ⩽ 5}= {0,1,2,3,4,5} :

thus, ∑{0⩽k⩽5} ak = a0+a1+a2+a3+a4+a5.

Second sum

{0⩽ k2 ⩽ 5}= {0,1,2,−1,−2} :

thus, ∑{0⩽k⩽5} ak2 = a02 +a12 +a22+a(−1)2 +a(−2)2 = a0+2a1+2a2.



A universal writing

We can decrease our worries about notation by using the Iverson brackets:

[True] = 1 and [False] = 0;

if a is in�nite or unde�ned, then a · [False] = 0.

Then we can write:

∑
k∈K

ak = ∑
k

ak [k ∈ K ]

or more generally:

∑
{k∈Z|P(k)}

ak = ∑
k

ak [P(k)]

where P is a property of (some) integers. For example:

∑
{k∈Z|k is prime}

1

k
= ∑

p

1

p
[p is prime]
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Sums and Recurrences

A sum of the form Sn = ∑
n
k=0 ak can be presented in recursive form:

S0 = a0 ;

Sn = Sn−1+an for every n ⩾ 1

that is, as the solution of a �rst-order recurrence.
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Recalling the repertoire method

Given

g(0) = α1

g(n) = Φ(g(n−1))+Ψn(α2, . . . ,αk ) for every n > 0 .

where Φ and Ψn are linear.

Suppose we have k (k+1)-tuples
(
gi ;αi ,1,αi ,2, . . . ,αi ,k

)
such that:

1 gi (0) = αi ,1 and gi (n) = Φ(gi (n−1))+Ψn(αi ,2, . . . ,αi ,k ) for every
i ∈ [1 : k];

2 the k k-tuples
(
αi ,1,αi ,2, . . . ,αi ,k

)
are linearly independent.

Then the recurrence has a solution in closed form:

g(n) = α1A1(n)+α2A2(n)+ . . .+αkAk (n)

where the functions A1(n),A2(n), . . . ,Ak (n) can be determined from the system
of equations:

α1,1A1(n)+α1,2A2(n)+ . . .+α1,kAk (n) = g1(n)

...

αk,1A1(n)+αk,2A2(n)+ . . .+αk,kAk (n) = gk (n)



Example 1: arithmetic sequence

The arithmetic sequence of initial term a and common di�erence b is the sequence
⟨an⟩ de�ned by:

an = a+b ·n for every n ⩾ 0

Then the sum Sn =
n

∑
k=0

an is the solution of the recurrence:

S0 = a

Sn = Sn−1+a+bn for every n ⩾ 1

Everything is linear here, so we can safely apply the repertoire method to the family of
recurrences:

R0 = α

Rn = Rn−1+β + γn for every n ⩾ 1

Then Sn is the solution corresponding to α = a , β = a , γ = b.



Evaluation of terms Rn = Rn−1+(β + γn)

Evaluating the �rst terms gives:

R0 = α

R1 = α +β + γ

R2 = α +β + γ +(β +2γ) = α +2β +3γ

R3 = α +2β +3γ +(β +3γ) = α +3β +6γ

There seem to be a constant term, a linear term, and something which resemble the
triangular numbers.
So we apply the repertoire method with the following test functions:

1 Rn = 1 for all n

2 Rn = n for all n

3 Rn = n2 for all n



Repertoire method: case 1

Lemma 1

A(n) = 1 for every n ∈ N.

Proof: With the choice Rn = 1 for every n ⩾ 0, the recurrence becomes:

1 = α

1 = 1+β + γn for every n ⩾ 1

This is only possible if α = 1, β = γ = 0. We have proved that:

The particular solution Rn = 1 corresponds to the triple (α,β ,γ) = (1,0,0)

which is equivalent to Lemma 1.



Repertoire method: case 2

Lemma 1

B(n) = n for every n ∈ N.

Proof: With the choice Rn = n for every n ⩾ 0, the recurrence becomes:

0 = α

n = n−1+β + γn for every n ⩾ 1

This is only possible if α = 0, β = 1, γ = 0. We have proved that:

The particular solution Rn = n corresponds to the triple (α,β ,γ) = (0,1,0)

which is equivalent to Lemma 2.



Repertoire method: case 3

Lemma 3

C(n) =
n(n+1)

2
for every n ∈ N.

Proof: With the choice Rn = n2 for every n ⩾ 0, the recurrence becomes:

0 = α

n2 = (n−1)2+β + γn for every n ⩾ 1

As (n−1)2 = n2−2n+1, this is only possible if α = 0, β =−1, γ = 2. We have
proved that:

The particular solution Rn = 1 corresponds to the triple (α,β ,γ) = (0,−1,2)

that is,
−B(n)+2C(n) = n2

As we know that B(n) = n, we can solve for C(n) and obtain the thesis of Lemma 3.



Repertoire method: summing up

According to Lemma 1, 2, 3, we get:

1 Rn = 1 for all n =⇒ A(n) = 1

2 Rn = n for all n =⇒ B(n) = n

3 Rn = n2 for all n =⇒ C(n) =
n2+n

2
Hence,

Rn = α +nβ +

(
n2+n

2

)
γ

For α = β = a and γ = b we get:

Sn =
n

∑
k=0

(a+bk) = (n+1)a+
n(n+1)

2
b
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Perturbation method

To �nd a closed form for Sn = ∑0⩽k⩽n ak :

1 Rewrite Sn+1 by isolating the �rst and the last term:

Sn+an+1 = a0+ ∑
1⩽k⩽n+1

ak

= a0+ ∑
1⩽k+1⩽n+1

ak+1

= a0+ ∑
0⩽k⩽n

ak+1

2 Work on the sum on the right and express it as a function of Sn.

3 Solve with respect to Sn.



Example 2: geometric sequence

Geometric sequence: an = axn,x ̸= 1

Recurrence equation for the sum Sn = a0+a1+a2+ · · ·+an = ∑0⩽k⩽n ax
k :

S0 = a

Sn = Sn−1+axn , for n > 0 .



Example 2: geometric sequence

Geometric sequence: an = axn,x ̸= 1

Recurrence equation for the sum Sn = a0+a1+a2+ · · ·+an = ∑0⩽k⩽n ax
k :

S0 = a

Sn = Sn−1+axn , for n > 0 .

Splitting o� the �rst term gives

Sn+an+1 = a0+ ∑
0⩽k⩽n

ak+1

= a+ ∑
0⩽k⩽n

axk+1

= a+x ∑
0⩽k⩽n

axk

= a+xSn



Example 2: geometric sequence

Geometric sequence: an = axn,x ̸= 1

Recurrence equation for the sum Sn = a0+a1+a2+ · · ·+an = ∑0⩽k⩽n ax
k :

S0 = a

Sn = Sn−1+axn , for n > 0 .

From this we obtain the equality:

Sn+axn+1 = a+xSn ,

that is: (1−x)Sn = a−axn+1.

As x ̸= 1 we can divide and obtain:

Sn = a · 1−xn+1

1−x



Example 3: When perturbation doesn't work . . .

Compute: Sn =
n

∑
k=0

k2.

1 Perturb the sum:

Sn+(n+1)2 = 0+
n+1

∑
k=1

k2

Um . . . that shifted k2 sounds bad . . .



Example 3: When perturbation doesn't work . . .

Compute: Sn =
n

∑
k=0

k2.

1 Perturb the sum:

Sn+(n+1)2 = 0+
n+1

∑
k=1

k2

Um . . . that shifted k2 sounds bad . . .

2 Rewrite the right-hand side so that it depends on Sn:

n+1

∑
k=1

k2 =
n

∑
k=0

(k+1)2

=
n

∑
k=0

(k2+2k+1)

= Sn+
n

∑
k=0

(2k+1)

= Sn+2
n(n+1)

2
+n+1



Example 3: When perturbation doesn't work . . .

Compute: Sn =
n

∑
k=0

k2.

1 Perturb the sum:

Sn+(n+1)2 = 0+
n+1

∑
k=1

k2

Um . . . that shifted k2 sounds bad . . .

2 Rewrite the right-hand side so that it depends on Sn:

n+1

∑
k=1

k2 = Sn+2
n(n+1)

2
+n+1

3 Solve with respect to Sn:

Sn+(n+1)2 = Sn+(n+1)+2
n(n+1)

2

(n+1)2 = (n+1)+n(n+1)

. . . which is true, but where is Sn?



. . . try perturbing another sum!

In addition to Sn, consider the sum: Tn =
n

∑
k=0

k3.

1 Perturb Tn:

Tn+(n+1)3 = 0+
n+1

∑
k=1

k3



. . . try perturbing another sum!

In addition to Sn, consider the sum: Tn =
n

∑
k=0

k3.

1 Perturb Tn:

Tn+(n+1)3 = 0+
n+1

∑
k=1

k3

2 Rewrite the right-hand side so that it depends on Tn and on Sn:

n+1

∑
k=1

k3 =
n

∑
k=0

(k+1)3

=
n

∑
k=0

(k3+3k2+3k+1)

= Tn+3Sn+
n

∑
k=0

(3k+1)



. . . try perturbing another sum!

In addition to Sn, consider the sum: Tn =
n

∑
k=0

k3.

1 Perturb Tn:

Tn+(n+1)3 = 0+
n+1

∑
k=1

k3

2 Rewrite the right-hand side so that it depends on Tn and on Sn:

n+1

∑
k=1

k3 = Tn+3Sn+
n

∑
k=0

(3k+1)

3 Solve with respect to Sn:

(n+1)3 = 3Sn+3
n(n+1)

2
+n+1

= 3Sn+(n+1)

(
3

2
n+1

)
3Sn = (n+1)

(
n2+2n+1− 3

2
n−1

)
Sn =

1

3
(n+1)

(
n2+

n

2

)
=

n(n+1)(2n+1)

6
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Example 3: Hanoi sequence

Consider again the Tower of Hanoi recurrence:

T0 = 0

Tn = 2Tn−1+1



Example 3: Hanoi sequence

Consider again the Tower of Hanoi recurrence:

T0 = 0

Tn = 2Tn−1+1

This sequence can be transformed into a geometric sum using the following
manipulations:

Divide both equalities by 2n:

T0/2
0 = 0

Tn/2
n = Tn−1/2

n−1+1/2n

Set Sn = Tn/2
n to have:

S0 = 0

Sn = Sn−1+2−n

This is almost the geometric sum with the parameters a= 1 and x = 1/2:
Only the initial summand 1 is missing.



Example 3: Hanoi sequence

Consider again the Tower of Hanoi recurrence:

T0 = 0

Tn = 2Tn−1+1

This sequence can be transformed into a geometric sum using the following
manipulations:

Divide both equalities by 2n:

T0/2
0 = 0

Tn/2
n = Tn−1/2

n−1+1/2n

Set Sn = Tn/2
n to have:

S0 = 0

Sn = Sn−1+2−n

This is almost the geometric sum with the parameters a= 1 and x = 1/2:
Only the initial summand 1 is missing.



Example 3: Hanoi sequence

Consider again the Tower of Hanoi recurrence:

T0 = 0

Tn = 2Tn−1+1

Then Sn = Tn/2
n satis�es:

Sn =

(
n

∑
k=0

(
1

2

)n
)
−1

=
1− (1/2)n+1

1−1/2
−1

= 2−2−n−1= 1−2−n

We conclude:
Tn = 2nSn = 2n−1

Just the same result we have proven by means of induction!
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Summation factor: Idea

We want to solve a linear recurrence of the form:

anTn = bnTn−1+cn for every n > 0

where:

1 ⟨an⟩, ⟨bn⟩ and ⟨cn⟩ are arbitrary sequences; and

2 for every n > 0, an ̸= 0 and bn ̸= 0.

We also assume that the initial value T0 is given.

The idea

Find a summation factor sn satisfying the following property:

snbn = sn−1an−1 for every n ⩾ 1



Summation factor: Realization

If a sequence ⟨sn⟩ as in the previous slide exists, then:

1 snanTn = snbnTn−1+ sncn = sn−1an−1Tn−1+ sncn.

2 Set Sn = snanTn and rewrite the equation as:

S0 = s0a0T0

Sn = Sn−1+ sncn

3 This yields a closed formula for the solution:

Tn =
1

snan

(
s0a0T0+

n

∑
k=1

skck

)
=

1

snan

(
s1b1T0+

n

∑
k=1

skck

)
for every n > 0



Finding a summation factor

Assuming that bn ̸= 0 for every n:

1 Set s0 = 1 and also a0 = 1.

2 Compute the next elements using the property snbn = sn−1an−1:

s1 =
1

b1
=

a0
b1

s2 =
s1a1
b2

=
a0a1
b1b2

s3 =
s2a2
b3

=
a0a1a2
b1b2b3

= . . .

sn =
sn−1an−1

bn
=

a0a1 · · ·an−1
b1b2 · · ·bn

(To be proved by induction!)



Example: Hanoi tower again

The choice an = cn = 1 and bn = 2 gives the Hanoi Tower sequence.

Evaluate the summation factor:

sn =
sn−1an−1

bn
=

a0a1 · · ·an−1
b1b2 · · ·bn

=
1

2n

The solution is:

Tn =
1

snan

(
s1b1T0+

n

∑
k=1

skck

)
= 2n

n

∑
k=1

1

2k
= 2n

(
1− 1

2n

)
= 2n−1



Yet Another Example: Constant coe�cients

Consider now the recurrence:

Zn = aZn−1+b for every n ⩾ 1 , a ̸= 1

Taking an = 1, bn = a and cn = b:

Evaluate summation factor:

sn =
sn−1an−1

bn
=

a0a1 . . .an−1
b1b2 . . .bn

=
1

an

Apply the resolutive formula:

Zn =
1

snan

(
s1b1Z0+

n

∑
k=1

skck

)
= an

(
Z0+b

n

∑
k=1

1

ak

)

= anZ0+b
n

∑
k=1

an−k

= anZ0+b
n−1

∑
k=0

ak where the new k is the old n−k

= anZ0+
an−1
a−1

b



Yet Another Example: Check up on results

We could also have solved the recurrence by iteration:

Zn = aZn−1+b

= a2Zn−2+ab+b

= a3Zn−3+a2b+ab+b

= · · ·
= akZn−k +(ak−1+ak−2+ . . .+1)b

= akZn−k +
ak −1
a−1

b (assuming a ̸= 1)

We can do at most n iterations, so for k = n we get:

Zn = anZn−n+
an−1
a−1

b = anZ0+
an−1
a−1

b
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The Quicksort algorithm (C.A.R. Hoare, 1959-1961)

Input: An array A with n elements, indexed from 1 to n.

1 If n= 0 then return.

2 Choose a pivot p = A[k] for a suitable k ∈ [1 : n].

3 Initialize i ← 0, j ← n+1.

4 Do forever:

1 Do i ← i+1 while i ⩽ n and A[i ]⩽ p.
2 Do j ← j−1 while j ⩾ 1 and A[j]> p.
3 If i ⩾ j : break.
4 Swap A[i ] with A[j].

5 Call Quicksort recursively on the subarrays A [1 : k−1] and A [k+1 : n].

Output: the array A with elements sorted.



Example: A run of Quicksort



How Quicksort earned its name

Quicksort uses the pivot to subdivide the array into �small� and �large� elements.

This subdivision may be rough, but after it has been done, no �small� object will
be compared with any �large� object ever again.

This suggests very good performance in the average case.

Let Cn be the average number of comparisons made by Quicksort to sort an array of
n ⩾ 1 elements.

Each element is compared with the pivot except A[k], which is the pivot.

Each one of the n elements could be the pivor.

The recursive call will work on an array of size k−1 and one of size n−k, for a
total of n−1 objects.

We conclude:

C0 = 0

Cn = n+1+
2

n

n−1

∑
k=0

Ck for every n ⩾ 1



E�ciency of Quicksort: Rewriting the recurrence

Multiplying by n gives:

nCn = n2+n+2
n−1

∑
k=0

Ck

We still cannot apply the summation factor method.

However, if we write the recurrence for n−1:

(n−1)Cn−1 = (n−1)2+(n−1)+2
n−2

∑
k=0

Ck

and subtract from the original, we obtain:

nCn− (n−1)Cn−1 = n2+n+2Cn−1− (n−1)2− (n−1)
nCn−nCn−1+Cn−1 = n2+n+2Cn−1−n2+2n−1−n+1

nCn−nCn−1 = Cn−1+2n

nCn = (n+1)Cn−1+2n

The last recurrence can be solved with a summation factor.



E�ciency of Quicksort: Summation factor in action

Let's solve the recurrence nCn = (n+1)Cn−1+2n with a summation factor:

We have an = n, bn = n+1, and cn = 2n, so:

sn =
a1a2 · · ·an−1
b2b3 · · ·bn

=
1 ·2 · · ·(n−1)
3 ·4 · · ·(n+1)

=
2

n(n+1)

We plug into the formula and obtain:

Cn =
1

snan

(
s1b1C0+

n

∑
k=1

skck

)

=
n+1

2

n

∑
k=1

4k

k(k+1)

= 2(n+1)
n

∑
k=1

1

k+1
= 2(n+1)

(
n

∑
k=1

1

k
+

1

n+1
−1

)
= 2(n+1)Hn−2n

where Hn = 1+
1

2
+

1

3
+ . . .+

1

n
≈ lnn is the nth harmonic number.
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A basic continuous method for discrete mathematics

To compute a sum of the form Sn =
n

∑
k=1

ak :

1 Choose a continuous function f (x) such that f (k) = ak for every k > 0 integer.

2 Identify the sequence ⟨ak ⟩ with the staircase function

a(x) = ∑
k⩾1

ak [k−1< x ⩽ k]

3 Determine an error term En such that:

Sn =
∫ n

0
f (x)dx+En for every n ⩾ 1

4 Express En itself as a sum:

En =
n

∑
k=1

(
ak −

∫ k

k−1
f (x)dx

)

5 Use a closed form for En to determine a closed form for Sn.



Example: Sum of perfect squares

Example:□n = ∑0⩽k⩽n k
2 for n ⩾ 0

∫ n

0
x2 dx =

n3

3
(1)

□n =
∫ n

0
x2 dx+En (2)

En =
n

∑
k=1

(
k2−

∫ k

k−1
x2 dx

)
(3)



Example: Sum of perfect squares

Example:□n = ∑0⩽k⩽n k
2 for n ⩾ 0

Evaluate (3):

En =
n

∑
k=1

(
k2−

∫ k

k−1
x2 dx

)
=

n

∑
k=1

(
k2− k3− (k−1)3

3

)
=

n

∑
k=1

(
k− 1

3

)
=

(n+1)n

2
− n

3
=

3n2+n

6
.

Finally, from (2) and (1) we get :

□n =
n3

3
+

3n2+n

6
=

n(n+1)(2n+1)

6
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Manipulation of Sums

For every �nite set K and permutation p(k) of K :

Distributive law:

∑
k∈K

cak = c ∑
k∈K

ak

Associative law:

∑
k∈K

(ak +bk ) = ∑
k∈K

ak + ∑
k∈K

bk

Commutative law:

∑
k∈K

ak = ∑
p(k)∈K

ap(k)

All of the above work because the summands are nonzero at most �nitely many times.
(More on this later.)



Example: Arithmetic progressions

Let's compute again:
S = ∑

0⩽k⩽n

(a+bk)

S = ∑
0⩽n−k⩽n

(a+b(n−k)) by commutativity

= ∑
0⩽k⩽n

(a+bn−bk) because [0⩽ k ⩽ n] = [0⩽ n−k ⩽ n]

2S = ∑
0⩽k⩽n

((a+bk)+(a+bn−bk)) by associativity

= ∑
0⩽k⩽n

(2a+bn)

2S = (2a+bn) ∑
0⩽k⩽n

1 by distributivity

= (2a+bn)(n+1)

Again, but only using basic properties:

S = (n+1)a+
n(n+1)

2
b



Yet Another Useful Equality

The Inclusion-Exclusion Principle

For any two �nite sets K and K ′:

∑
k∈K

ak + ∑
k∈K ′

ak = ∑
k∈K∪K ′

ak + ∑
k∈K∩K ′

ak

Examples:

1 For 1⩽m ⩽ n:
m

∑
k=1

ak +
n

∑
k=m

ak = am+
n

∑
k=1

ak

2 For n ⩾ 0:

∑
0⩽k⩽n

ak = a0+ ∑
1⩽k⩽n

ak

3 For n ⩾ 0:
Sn+an+1 = a0+ ∑

0⩽k⩽n

ak+1

that is, we recover the perturbation method!
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