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Next section

The repertoire method
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The repertoire method: Basic ideas

Let the recursion scheme

g(0)
g(n+1)

= a,
= ®(g(n))+V(nmpB,y,...) for n>0.
have the following properties:

® is linear in g:

If g(n) = 2181(n) +A282(n), then ®(g(n)) = A1 P(g1(n)) + 2% (g2(n)).
No hypotheses are made on the dependence of g on n.

WV is linear in each of the m—1 parameters 3,7,...
No hypotheses are made on the dependence of W on n.

Then the whole system is linear in the parameters a,f3,7,...
We can then look for a general solution of the form

g(n) = aA(n)+BB(n)+yC(n)+...
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The repertoire method: Description

Suppose we have a repertoire of m pairs of the form ((o;,B:,7;,--.),&gi(n)) satisfying
the following conditions:

For every i =1,2,...,m, g;(n) is the solution of the system corresponding to the
values o = ai’ﬁ :ﬁi:Y:'}’i:--'
The m m-tuples (a;,B;,%;,-..) are linearly independent.

Then the functions A(n), B(n),C(n),... are uniquely determined.
The reason is that, for every fixed n,

uA(n)  +pB(n)  +nC(n) +... g1(n)

amA(n)  +BmB(n)  +mC(n) +... )

is a system of m linear equations in the m unknowns A(n), B(n), C(n),... whose
coefficients matrix is invertible.
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Next section

Binary representation of generalized Josephus function
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Binary representation of generalized Josephus function

The generalized Josephus function (GJ-function) is defined
for a, Bo, B1 as follows:

fll) = «
f(2n+j) = 2f(n)+B; forj=0,1and n>0.

We obtain the definition used before if to select fo = and B = 7.
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Binary representation of generalized Josephus function (2)

Case A: Argument is even

If 2n = 2" 4/, then the binary notation is

2n = (bmbm-1...b1bo)2

or
2n = b2 4 by 121 £ b2+ by

where b; € {0,1}, bp =0 and b, =1.

Hence
n= bmzrni1 G bm712m72 +...+ b2+ by

or
n—= (bmbm,1 ...b1)2
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Binary representation of generalized Josephus function (3)

Case B: Argument is odd

If 2n+1=2™M+/, then the binary notation is
2n+1 Z(bmbm,:[...blbo)z
or
2n+1=bm2" +bn 12" " +...+ b12+ by
where b; € {0,1}, bp =1 and b, =1.

We get
= 2n4+1 = b2+ bm 12" 1. 4+ b2+1

2n bm2™ 4+ bp_12™ 4 4 by2
n bm2™ £ by 12T 2+ b2+ by

or
n=(bmbm_1...b1)2
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Binary representation of generalized Josephus function (3)

Case B: Argument is odd

If 2n+1=2™+/, then the binary notation is

2n+1 =(bmbm,1...b1b0)2
or
2n+1=bm2™ + bm_12" 1+ ...+ 512+ bo
where b; € {0,1}, bp =1 and b, =1.

We get
2 2n4+1 = bp2™+ by 12" . 4 by241
2n bm2™ + bpm12™ 1+ b2

bm2™ 4 bm_12™ 2 ...+ b2+ by

n

Same results for cases A and B indicates that we don’t need to consider even
and odd cases separately.
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Binary representation of generalized Josephus function (4)

Let's evaluate:

f((bmsbm-1,-..,b1,b0)2) = 2f((bm;bm-1,-.-,b1)2)+ Bp,
2'(2f((bm7bm*1""7b2)2)+Bb1)+ﬁbo
= 4f((bm,bmfl,...,b2)2)+2ﬁb1+ﬁb°

= F((bm)2)2™ +Bbp 2™ 1.+ Boy 2+ Boo
= f(1)2"+ B, 1 2™ ..+ By 2+ Bry
= 02"+ By, 2" .+ By 2+ Bog s

where

_[Bi, ifb=1
ﬁbf‘{ﬁo if ;=10
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Binary representation of generalized Josephus function (4)

Let's evaluate:

f((bmsbm-1,-..,b1,b0)2) = 2f((bm;bm-1,-.-,b1)2)+ Bp,
2'(2f((bm7bm*1""7b2)2)+Bb1)+ﬁbo
= 4f((bm,bmfl,...,b2)2)+2ﬁb1+ﬁb°

= F((bm)2)2™ +Bbp 2™ 1.+ Boy 2+ Boo
= F(1)2" 4+ B, 42"+ A+ By 2+ Bro
= Q2" +Bp, 12"+ ...+ Boy 2+ Bro

where

_[Bi, ifb=1
ﬁbf‘{ﬁo if ;=10

f((bmbm-1-..b1b0)2) = (0Bby, 4 Bbm 2 - - By Bro)2 E(L:H



Example

Original Josephus function: a =1, fop=-1, f1 =1 i.e.

fr)y = 1
f(2n) = 2f(n)—1
f(2n+1) = 2f(n)+1

f((bmbm-1-..b1b0)2) = (0Bby, 4 Bbm 2 - - By Bho)2

£(100) = £((1100100)5) (1,1,-1,-1,1,-1,-1),

64+32-16-8+4-2-1=73
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Generalized Josephus function: Multiple bases

Let c,d > 2 be integers.
Consider the following recurrent problem:

fG) = o forl<j<d;
f(dn+j) = cf(n)+p; for0<j<dandn>1.

How can we compute f(n) for an arbitrary positive integer n, without having to go
through the entire iterative process?
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Multiple bases representation

We can actually use the same technique!

Let (bmbm—-1...b1bg)g be the base-d writing of n. Then by, # 0 and:

f((bm;bm-1,-..,b1,b0)q) cf ((bm, bm—1,---,b1)d) + Bpy
c-(cf((bm,bm-1,--.,b2)a) + By ) + Bbo

= PF((bm,bm-1,-...b2)a) + Bpy + Beo

= " f(bm)+c Bhy, 1+t By + Bro
= "0, +c" By, 4 +...+ Py +Bho
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Multiple bases representation

We can actually use the same technique!

Let (bmbm-1...b1bo)g be the base-d writing of n. Then b, # 0 and:

f((bm;bm-1,-..,b1,b0)q) cf ((bm, bm—1,-..,b1)d) + Bog

= c'(Cf((blmbm*17"'7b2)d)+ﬁb1)+ﬁbo
= 2f((bmsbm-1,--,b2)d) + Bby + Boe

= " f(bm)+ " Py, g+t oy +Bro
= c’"(xbm +Cm_1ﬁbm71 +~~~+Cl3b1 +Bbo

With a slight abuse of notation: (the f8;'s need not be base-c digits)

f((bmbm-1-..b1b0)a) = (0, Bby,_g By - Bby Bbo )
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Multiple bases representation

We can actually use the same technique!

Let (bmbm-1...b1bo)g be the base-d writing of n. Then b, # 0 and:

f((bm,bmfl,..‘,bl,bo)d) Cf((bm,bmfl,‘..,bl)d) +Bb°
= c'(Cf((blmbm*17"'7b2)d)+ﬁb1)+ﬁbo

= 2f((bm:bm—1.---b2)d) + By + B

= " f(bm)+ " Py, g+t oy +Bro
= c’"(xbm +Cm_1ﬁbm71 +~~~+Cl3b1 +Bbo

Or, more precisely:

f((bmbm,1 .. blb())d) = p(C) where p(X) e amem +ﬁbm71Xm71 +... -l-ﬁblx-i-ﬁbo
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Next section

Sequences
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Sequences

Definition
A sequence of elements of a set A is a function f : N — A, where N
is the set of natural numbers.
Notations used:
m f = (a,), where we denote a, = f(n);
® {an}nen;

m (ag,a1,a2,a3,...):
ap is called the nth term of the sequence f
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Sequences

Definition
A sequence of elements of a set A is a function f : N — A, where N
is the set of natural numbers.

Notations used:
m f = (a,), where we denote a, = f(n);
® {an}nen;
m (ap,a1,az,as,...).

ap is called the nth term of the sequence f

R N @

"6°6°20° 15" ' (n+1)(n+2)’
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Sequences

Definition
A sequence of elements of a set A is a function f: N — A, where N
is the set of natural numbers.
Notations used:
m f = (a,), where we denote a, = f(n);

m {an}nen;
m (ap,a1,a,a3,...).
ap is called the nth term of the sequence f

Notation

n

) = e Dm+2)

n

T+ D)(n+2)
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Sets of indices

m Default assumption: N.

m Actually, any countably infinite set can be used as an index
set. Examples:

Zt=N-{0} ~N.

N\ K, where K C N is finite.

The set Z of relative integers.

{1,3,5,7,...} = Odd.

m {0,2,4,6,...} =Even.
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Sets of indices

m Default assumption: N.

m Actually, any countably infinite set can be used as an index
set. Examples:

Zt=N-{0} ~N.

N\ K, where K C N is finite.

The set Z of relative integers.

{1,3,5,7,...} = Odd.

m {0,2,4,6,...} =Even.
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Sets of indices

m Default assumption: N.

m Actually, any countably infinite set can be used as an index
set. Examples:

Z+ =N-{0} ~N.

N\ K, where K C N is finite.

The set Z of relative integers.

{1,3,5,7,...} = Odd.

{0,2,4,6,...} = Even.

The writing A ~ B denotes that sets A and B are of the same
cardinality.

m For finite sets, |A| is the number of elements of A.

m In general, A and B are said to have the same cardinality if
there exists a bijection between the two.
We then write A~ B, or |A| =|B]|

(See http://www.mathsisfun.com/sets/injective-surjective- bijective.html ;EEH
for detailed explanation)


http://www.mathsisfun.com/sets/injective-surjective-bijective.html 

Finite sequences

m A finite sequence of elements of a set A is a function
f:K—=A,
where K is set a finite subset of natural numbers

For example: f:{1,2,3,4,--- .n} - A neN

Special case: n=0, i.e. empty sequence: f(0) =e
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Domain of the sequence

f:T—A

=25

The domain of fis T =N—-{2,5}.
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Next section

Notations for sums
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Notation

For a finite set K ={1,2,--- ,m} =[1: m| (a slice of N) and a
sequence (a,) we write:

m
k=ai+a+-+am
k=1

This specific writing takes into account the order of summation.
Other writings, in which the order is less or not important, are:

Y ac Y ac ) a ;ak

1<k<m ke[l:m] keK
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Warmup: What does this notation mean?
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Warmup: What does this notation mean?

Options:

Y40k =4+ 3+ G2+ a1+ Go = Lke(a32.1,0} Gk = Lh—o k-
This seems the sensible thing
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Warmup: What does this notation mean?

Options:

Y aGk=Gat+qG+q+aqg+q= Yke{a321,0) Gk = Yo k-
This seems the sensible thing—but:

Y a<k<o 9k = 0 also looks like a feasible interpretation
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Warmup: What does this notation mean?

Options:

Y aGk=Gat+qG+q+aqg+q= Yke{a321,0) Gk = Y40 k-
This seems the sensible thing—but:

Y a<k<o 9k = 0 also looks like a feasible interpretation—but:
If

n
Y =Y a— Y a,
k=m k<n k<m
(provided the two sums on the right-hand side exist finite)
then Y%, gk = Y k<o Gk — Lk<a Gk = —q1 — G2 — G3.

TAL
TECH



Warmup: Interpreting the X-notation

Compute ¥ ro<k<s) ak and Yioce<s) ake-
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Warmup: Interpreting the X-notation

Compute ¥ ro<k<s) ak and Yioce<s) ake-

{0< k<5}=1{0,1,2,3,4,5} :

thus, Z{O<k<5} dx =ap+ay+a+az+ag+as.
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Warmup: Interpreting the X-notation

Compute ¥ ro<k<s) ak and Yioce<s) ake-

{0< k<5}=1{0,1,2,3,4,5} :

thus, Z{O<k<5} dx =ap+ay+a+az+ag+as.

Second sum

{0<Kk?><5}={0,1,2
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Warmup: Interpreting the X-notation

Compute ¥ ro<k<s) ak and Yioce<s) ake-

{0< k<5}=1{0,1,2,3,4,5} :

thus, Z{O<k<5} dx =ap+ay+a+az+ag+as.

Second sum

{0< k<5 ={0,1,2,-1,-2} :

thus,
Z{ogk<5} a2 = dp2 +aj2+axpta e ta oz=a+ 2a1 +2ap.
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A universal writing

We can decrease our worries about notation by using the Iverson brackets:
m [True] =1 and [False] = 0;

m if ais infinite or undefined, then a- [False] = 0.

Z ak:Zak[kEK]

kekK k

Then we can write:

or more generally:

Y a=Y al[P(k)]
P

keZ|P(k)

where P is a property of (some) integers. For example:
1 1.
Z — = Z — [p is prime]
p P

k€EZ|k is prime
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Next section

Sums and Recurrences
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Sums and Recurrences

A sum of the form S, =Y }_ ax can be presented in recursive form:

So = ao;
S, = S, 1+a, foreveryn>1

that is, as the solution of a first-order recurrence.
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Next subsection

Sums and Recurrences
m The repertoire method
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Recalling the repertoire method

m Given
g(0) = o
g(n) = &(g(n—1))+WV,(02,...,0) foreveryn>0.
where ® and VW, are linear.
m Suppose we have k (k+1)-tuples (g,-;a,-vl,(x,-vz,...,a,-,k) such that:
g,(O) =01 and g,-(n) = CD(g,-(n = 1)) +\I1n(a,-,2, oo .,(X,',k) for
every i € [1: k],
the k k-tuples (1,0 2,...,0; ) are linearly independent.
m Then the recurrence has a solution in closed form:

g(n) = a1 Ar(n)+ a2 Az (n) + ...+ o Ar(n)

where the functions A1 (n),A2(n),...,Ax(n) can be determined from the system
of equations:

011A1(n) + 01 2A2(n)+ ...+ 0 kAx(n) = g1(n)

ak1AL(n) + ok 2A2(n) + ... + ok kAk(n) = gk(n) ;é(L:H



Example 1: arithmetic sequence

Arithmetic sequence: a, = a+ bn

Recurrence equation for the sum S, =ag+a; +a>+---+an:

Soza
Sp=Sn-1+(a+bn), for n>0.
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Example 1: arithmetic sequence

Arithmetic sequence: a, = a+ bn

Recurrence equation for the sum S, =ag+a; +a>+---+an:

Soza
Sp=Sn-1+(a+bn), for n>0.

Let's find a closed form for a bit more general recurrent equation:

R():OC
Ry=Rn-1+(B+7yn), forn>0.
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Evaluation of terms R, = R,—1 + (3 + yn)

R():OC

Ri=a+B+y
Ro=a+B+y+(B+2y)=a+2B+3y
Rz =o+2B+3y+(B+3y)=a+3B+6y

R, =A(n)a+ B(n)B+ C(n)y
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Evaluation of terms R, = R,—1 + (3 + yn)

R():OC

Ri=a+B+y
Ro=a+B+y+(B+2y)=a+2B+3y
Rz =o+2B+3y+(B+3y)=a+3B+6y

R, =A(n)a+ B(n)B+ C(n)y

A(n),B(n),C(n) can be evaluated using repertoire method:

we will consider three cases
R,=1 for all n
R, =n for all n TAL
R, = n? for all n TECH



Repertoire method: case 1

Lemma 1: A(n) =1 forall n

El=Ry=«

m From R, = R,_1+ (B + vn) follows that 1 =1+ (B + yn).
This must be true for every n€ N, so f=7y=0

Hence
1=A(n)-1+B(n)-04+C(n)-0
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Repertoire method: case 2

Lemma 2: B(n)=n for all n

lOCZRoZO

m From R, = R,_1+ (B + yn) follows that n=(n—1)+ (B + yn).
le. 1=B+vyn.
This must be true for every n€N, so f =1 and y=0

Hence
n=A(n)-04+B(n)-1+C(n)-0
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Repertoire method: case 3

Lemma 3: C(n) = % for all n

= o=Ry=0?=0.

m Equation R, = R,—1+ (B + yn) can be rewritten as:
mn?=(n—-1)2+B+vyn.
mn>=n>-2n+1+B+7yn.

m 0=(1+p)+n(y—2).

This must be true for every n€ N, so f =—1 and y=2.
Hence:

n® = A(n)-0+B(n)-(~=1)+C(n)-2
= —n+2C(n) by Lemma 2

U raL
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Repertoire method: summing up

According to Lemma 1, 2, 3, we get:

R, =1 for all n = A(n)=1
R, =nfor all n = B(n)=n
2
E R,=n?foralln === C(n):n;_n
Hence,

2
Rn:a+nﬁ+(n ;_n)’}’

For o =8 = a and y= b we get:

n(n+1)

b
2

Sn= i(a—i—bk) =(n+1)a+
k=0
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Next subsection

Sums and Recurrences

m Perturbation method
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Perturbation method

To find a closed form for S, = Yo/«
Rewrite S,11 by splitting off first and last term:
Sp+any1 =ao+ Z ak

1<k<n+1

=aop+ Z Ak+1
1<k+1<n+1

=a0+ Y, a1
0<k<n

Work on the sum on the right and express it as a function of S,.
Solve with respect to S,,.
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Example 2: geometric sequence

Geometric sequence: a, = ax",x #1

Recurrence equation for the sum S, =ag+ai+ax+---+a,= Zogké,,axk:

S()Ia
S, =Sp-1+ax", forn>0.
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Example 2: geometric sequence

Geometric sequence: a, = ax",x #1

Recurrence equation for the sum S, =ag+a1+ax+---+a, = Zogkg,,axk:

fh =a
S, =S, 1+ax", forn>0.

m Splitting off the first term gives

sn +ant+1 = ao+ Z ak+1
0<k<n

=a+ Z axkt1

0<k<n

a+x Z axk
0<k<n

a+xS,
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Example 2: geometric sequence

Geometric sequence: a, = ax",x #1

Recurrence equation for the sum S, =ag+a1+ax+---+a,= Zogk@ax“:

S()Za
S, =S, 1+ax", forn>0.

m From this we obtain the equality:
Sp+ax" = a+xS,,
that is: (1 —x)S, =a—ax"*1,
m As x #1 we can divide and obtain:

1—xnt1
G =g

1—x
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Example 3: When perturbation doesn’t work . ..

Compute: S, =Y7_o k2.
Perturb the sum:
n+1
Snt(n+1)>=0+ Y K
k=1

Um ...that shifted k2 sounds bad ...
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Example 3: When perturbation doesn’t work . ..

Compute: S, =Y7_o k2.

Perturb the sum:
n+1
Snt+(n+1)2=0+ ) K*
k=1
Um . ..that shifted k2 sounds bad ...
Rewrite the right-hand side so that it depends on S,:

n+1 n
Y o= Y (k+1)?
k=1 k=0
n
= Y (K¥+2k+1)
k=0
n
= S,+ Y (2k+1)
k=0
— 5n+2”("2+1)+n+1
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Example 3: When perturbation doesn’t work . ..

Compute: S, =Y7_o k2.

Perturb the sum:
n+1
Snt(n+1)2=0+ Y K*
k=1
Um ...that shifted k2 sounds bad ...
Rewrite the right-hand side so that it depends on S:

n+1 n(nJrl)

Y k¥ = S,+2——"+n+1
=1

Solve with respect to S,:

S"+(n+1)2 w

(n+1)?

Snt+(n+1)+2

(n+1)+n(n+1)

.. which is true, but where is S,?
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... try perturbing another sum!

In addition to S,, consider the sum: T,=Y7_g k3.
Perturb T,:
n+1
To+(n+1)*=0+Y £
k=1
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.try perturbing another sum!

In addition to S,, consider the sum: T, =Y}_, k3.

Perturb T,:
n+1

To+(n+1)*=0+Y £
k=1

Rewrite the right-hand side so that it depends on T, and on S,:

n+1 n
Y o= Y (k+1)?
k=1 k=0
n
= Y (K®+3Kk*+3k+1)
k=0
n
= T,+3S,+ Y (3k+1)
k=0

TAL
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.try perturbing another sum!

In addition to S, consider the sum: T, =Y]_, k3.

Perturb T,:
n+1
To+(n+1)*=0+ Y £
k=1

Rewrite the right-hand side so that it depends on T, and on S,:

n+1 n
Y = T43S,+ Y (3k+1)
k=0
Solve with respect to S,:
(n+1?® = 35, +3”("+1) n+1
= 3S,+(n+1) <7n+1>
> 3
3S, = (n+1)(n +2n+1—§n—1
1 n n(n+1)(2n+1)
Sp = =(+1)(mrP+z)=—"T2" " TAL
3 ( 2) 6 TECH
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