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The repertoire method: Basic ideas

Let the recursion scheme

g(0) = α ,
g(n+1) = Φ(g(n)) + Ψ(n;β ,γ, . . .) for n ≥ 0 .

have the following properties:

1 Φ is linear in g :
If g(n) = λ1g1(n) + λ2g2(n), then Φ(g(n)) = λ1Φ(g1(n)) + λ2Φ(g2(n)).
No hypotheses are made on the dependence of g on n.

2 Ψ is linear in each of the m−1 parameters β ,γ, . . .
No hypotheses are made on the dependence of Ψ on n.

Then the whole system is linear in the parameters α,β ,γ, . . .
We can then look for a general solution of the form

g(n) = αA(n) + βB(n) + γC(n) + . . .



The repertoire method: Description

Suppose we have a repertoire of m pairs of the form ((αi ,βi ,γi , . . .),gi (n)) satisfying
the following conditions:

1 For every i = 1,2, . . . ,m, gi (n) is the solution of the system corresponding to the
values α = αi ,β = βi ,γ = γi , . . .

2 The m m-tuples (αi ,βi ,γi , . . .) are linearly independent.

Then the functions A(n),B(n),C(n), . . . are uniquely determined.
The reason is that, for every �xed n,

α1A(n) +β1B(n) +γ1C(n) + . . . = g1(n)
... =

...
αmA(n) +βmB(n) +γmC(n) + . . . = gm(n)

is a system of m linear equations in the m unknowns A(n),B(n),C(n), . . . whose
coe�cients matrix is invertible.
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Binary representation of generalized Josephus function

De�nition

The generalized Josephus function (GJ-function) is de�ned

for α,β0,β1 as follows:

f (1) = α

f (2n+ j) = 2f (n) + βj for j = 0,1 and n > 0 .

We obtain the de�nition used before if to select β0 = β and β1 = γ.



Binary representation of generalized Josephus function (2)

Case A: Argument is even

If 2n = 2m + `, then the binary notation is

2n = (bmbm−1 . . .b1b0)2

or
2n = bm2

m +bm−12
m−1 + . . .+b12+b0

where bi ∈ {0,1}, b0 = 0 and bm = 1.

Hence
n = bm2

m−1 +bm−12
m−2 + . . .+b22+b1

or
n = (bmbm−1 . . .b1)2



Binary representation of generalized Josephus function (3)

Case B: Argument is odd

If 2n+1 = 2m + `, then the binary notation is

2n+1 = (bmbm−1 . . .b1b0)2

or
2n+1 = bm2

m +bm−12
m−1 + . . .+b12+b0

where bi ∈ {0,1}, b0 = 1 and bm = 1.

We get
2n+1 = bm2

m +bm−12
m−1 + . . .+b12+1

2n = bm2
m +bm−12

m−1 + . . .+b12

n = bm2
m−1 +bm−12

m−2 + . . .+b22+b1

or
n = (bmbm−1 . . .b1)2



Binary representation of generalized Josephus function (3)

Case B: Argument is odd

If 2n+1 = 2m + `, then the binary notation is

2n+1 = (bmbm−1 . . .b1b0)2

or
2n+1 = bm2

m +bm−12
m−1 + . . .+b12+b0

where bi ∈ {0,1}, b0 = 1 and bm = 1.

We get
2n+1 = bm2

m +bm−12
m−1 + . . .+b12+1

2n = bm2
m +bm−12

m−1 + . . .+b12

n = bm2
m−1 +bm−12

m−2 + . . .+b22+b1

Same results for cases A and B indicates that we don't need to consider even
and odd cases separately.



Binary representation of generalized Josephus function (4)

Let's evaluate:

f ((bm,bm−1, . . . ,b1,b0)2) = 2f ((bm,bm−1, . . . ,b1)2) + βb0

= 2 · (2f ((bm,bm−1, . . . ,b2)2) + βb1 ) + βb0

= 4f ((bm,bm−1, . . . ,b2)2) +2βb1 + βb0

=
...

= f ((bm)2)2m + βbm−12
m−1 + . . .+ βb12+ βb0

= f (1)2m + βbm−12
m−1 + . . .+ βb12+ βb0

= α2m + βbm−12
m−1 + . . .+ βb12+ βb0 ,

where

βbj =

{
β1, if bj = 1
β0 if bj = 0

f ((bmbm−1 . . .b1b0)2) = (αβbm−1βbm−2 . . .βb1βb0 )2
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Example

Original Josephus function: α = 1, β0 =−1, β1 = 1 i.e.

f (1) = 1

f (2n) = 2f (n)−1
f (2n+1) = 2f (n) +1

Compute

f ((bmbm−1 . . .b1b0)2) = (αβbm−1βbm−2 . . .βb1βb0 )2

f (100) = f ((1100100)2) = (1,1,−1,−1,1,−1,−1)2

= 64+32−16−8+4−2−1 = 73



Generalized Josephus function: Multiple bases

Let c,d > 2 be integers.
Consider the following recurrent problem:

f (j) = αj for 16 j < d ;
f (dn+ j) = cf (n) + βj for 06 j < d and n > 1 .

How can we compute f (n) for an arbitrary positive integer n, without having to go
through the entire iterative process?



Multiple bases representation

We can actually use the same technique!

Let (bmbm−1 . . .b1b0)d be the base-d writing of n. Then bm 6= 0 and:

f ((bm,bm−1, . . . ,b1,b0)d ) = cf ((bm,bm−1, . . . ,b1)d ) + βb0

= c · (cf ((bm,bm−1, . . . ,b2)d ) + βb1 ) + βb0

= c2f ((bm,bm−1, . . . ,b2)d ) +cβb1 + βb0

=
...

= cm · f (bm) +cm−1βbm−1 + . . .+cβb1 + βb0

= cmαbm +cm−1βbm−1 + . . .+cβb1 + βb0



Multiple bases representation

We can actually use the same technique!

Let (bmbm−1 . . .b1b0)d be the base-d writing of n. Then bm 6= 0 and:

f ((bm,bm−1, . . . ,b1,b0)d ) = cf ((bm,bm−1, . . . ,b1)d ) + βb0

= c · (cf ((bm,bm−1, . . . ,b2)d ) + βb1 ) + βb0

= c2f ((bm,bm−1, . . . ,b2)d ) +cβb1 + βb0

=
...

= cm · f (bm) +cm−1βbm−1 + . . .+cβb1 + βb0

= cmαbm +cm−1βbm−1 + . . .+cβb1 + βb0

With a slight abuse of notation: (the βi 's need not be base-c digits)

f ((bmbm−1 . . .b1b0)d ) = (αbmβbm−1βbm−2 . . .βb1βb0 )c



Multiple bases representation

We can actually use the same technique!

Let (bmbm−1 . . .b1b0)d be the base-d writing of n. Then bm 6= 0 and:

f ((bm,bm−1, . . . ,b1,b0)d ) = cf ((bm,bm−1, . . . ,b1)d ) + βb0

= c · (cf ((bm,bm−1, . . . ,b2)d ) + βb1 ) + βb0

= c2f ((bm,bm−1, . . . ,b2)d ) +cβb1 + βb0

=
...

= cm · f (bm) +cm−1βbm−1 + . . .+cβb1 + βb0

= cmαbm +cm−1βbm−1 + . . .+cβb1 + βb0

Or, more precisely:

f ((bmbm−1 . . .b1b0)d ) = p(c) where p(x) = αbmx
m + βbm−1x

m−1 + . . .+ βb1x + βb0
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Sequences

De�nition

A sequence of elements of a set A is a function f : N→ A, where N
is the set of natural numbers.

Notations used:
f = 〈an〉, where we denote an = f (n);

{an}n∈N;
〈a0,a1,a2,a3, . . .〉.

an is called the nth term of the sequence f



Sequences

De�nition

A sequence of elements of a set A is a function f : N→ A, where N
is the set of natural numbers.

Notations used:
f = 〈an〉, where we denote an = f (n);

{an}n∈N;
〈a0,a1,a2,a3, . . .〉.

an is called the nth term of the sequence f

Example

a0 = 0, a1 =
1

2 ·3
, a2 =

2

3 ·4
, a3 =

3

4 ·5
, · · ·

or 〈
0,

1

6
,
1

6
,
3

20
,
2

15
, · · · , n

(n+1)(n+2)
, · · ·

〉



Sequences

De�nition

A sequence of elements of a set A is a function f : N→ A, where N
is the set of natural numbers.

Notations used:
f = 〈an〉, where we denote an = f (n);

{an}n∈N;
〈a0,a1,a2,a3, . . .〉.

an is called the nth term of the sequence f

Notation

f (n) =
n

(n+1)(n+2)

or
an =

n

(n+1)(n+2)



Sets of indices

Default assumption: N.
Actually, any countably in�nite set can be used as an index
set. Examples:

Z+ = N−{0} ∼ N.

N\K , where K ⊆ N is �nite.

The set Z of relative integers.

{1,3,5,7, . . .}= Odd.
{0,2,4,6, . . .}= Even.
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Sets of indices

Default assumption: N.
Actually, any countably in�nite set can be used as an index
set. Examples:

Z+ = N−{0} ∼ N.

N\K , where K ⊆ N is �nite.

The set Z of relative integers.

{1,3,5,7, . . .}= Odd.
{0,2,4,6, . . .}= Even.

The writing A∼ B denotes that sets A and B are of the same

cardinality.

For �nite sets, |A| is the number of elements of A.

In general, A and B are said to have the same cardinality if

there exists a bijection between the two.

We then write A∼ B , or |A|= |B|
(See http://www.mathsisfun.com/sets/injective-surjective- bijective.html

for detailed explanation)

http://www.mathsisfun.com/sets/injective-surjective-bijective.html 


Finite sequences

A �nite sequence of elements of a set A is a function

f : K → A,
where K is set a �nite subset of natural numbers

For example: f : {1,2,3,4, · · · ,n}→ A, n ∈ N

Special case: n = 0, i.e. empty sequence: f ( /0) = e



Domain of the sequence

f : T → A

an =
n

(n−2)(n−5)

The domain of f is T = N−{2,5}.
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Notation

For a �nite set K = {1,2, · · · ,m}= [1 : m] (a slice of N) and a

sequence 〈an〉 we write:

m

∑
k=1

ak = a1 +a2 + · · ·+am

This speci�c writing takes into account the order of summation.

Other writings, in which the order is less or not important, are:

∑
16k6m

ak ; ∑
k∈[1:m]

ak ; ∑
k∈K

ak ; ∑
K

ak



Warmup: What does this notation mean?

0

∑
k=4

qk

Options:

1 ∑
0
k=4 qk = q4 +q3 +q2 +q1 +q0 = ∑k∈{4,3,2,1,0} qk = ∑

4
k=0 qk .

This seems the sensible thing�but:

2 ∑46k60 qk = 0 also looks like a feasible interpretation�but:

3 If
n

∑
k=m

qk = ∑
k6n

qk − ∑
k<m

qk ,

(provided the two sums on the right-hand side exist �nite)

then ∑
0
k=4 qk = ∑k60 qk −∑k<4 qk =−q1−q2−q3.
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Warmup: Interpreting the Σ-notation

Compute ∑{06k65} ak and ∑{06k265} ak2 .

First sum

{06 k 6 5}= {0,1,2,3,4,5} :

thus, ∑{06k65} ak = a0 +a1 +a2 +a3 +a4 +a5.

Second sum

{06 k2 6 5}= {0,1,2,−1,−2} :

thus,

∑{06k65} ak2 = a02 +a12 +a22+a(−1)2 +a(−2)2 = a0 +2a1 +2a2.
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A universal writing

We can decrease our worries about notation by using the Iverson brackets:

[True] = 1 and [False] = 0;

if a is in�nite or unde�ned, then a · [False] = 0.

Then we can write:

∑
k∈K

ak = ∑
k

ak [k ∈ K ]

or more generally:

∑
k∈Z|P(k)

ak = ∑
k

ak [P(k)]

where P is a property of (some) integers. For example:

∑
k∈Z|k is prime

1

k
= ∑

p

1

p
[p is prime]
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Sums and Recurrences

A sum of the form Sn = ∑
n
k=0 ak can be presented in recursive form:

S0 = a0 ;

Sn = Sn−1 +an for every n ≥ 1

that is, as the solution of a �rst-order recurrence.
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Recalling the repertoire method

Given

g(0) = α1

g(n) = Φ(g(n−1)) + Ψn(α2, . . . ,αk ) for every n > 0 .

where Φ and Ψn are linear.

Suppose we have k (k +1)-tuples
(
gi ;αi ,1,αi ,2, . . . ,αi ,k

)
such that:

1 gi (0) = αi ,1 and gi (n) = Φ(gi (n−1)) + Ψn(αi ,2, . . . ,αi ,k) for

every i ∈ [1 : k];
2 the k k-tuples

(
αi ,1,αi ,2, . . . ,αi ,k

)
are linearly independent.

Then the recurrence has a solution in closed form:

g(n) = α1A1(n) + α2A2(n) + . . .+ αkAk (n)

where the functions A1(n),A2(n), . . . ,Ak (n) can be determined from the system
of equations:

α1,1A1(n) + α1,2A2(n) + . . .+ α1,kAk (n) = g1(n)

...

αk,1A1(n) + αk,2A2(n) + . . .+ αk,kAk (n) = gk (n)



Example 1: arithmetic sequence

Arithmetic sequence: an = a+bn

Recurrence equation for the sum Sn = a0 +a1 +a2 + · · ·+an:

S0 = a

Sn = Sn−1 + (a+bn) , for n > 0 .

Let's �nd a closed form for a bit more general recurrent equation:

R0 = α

Rn = Rn−1 + (β + γn) , for n > 0 .
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Recurrence equation for the sum Sn = a0 +a1 +a2 + · · ·+an:

S0 = a

Sn = Sn−1 + (a+bn) , for n > 0 .

Let's �nd a closed form for a bit more general recurrent equation:
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Evaluation of terms Rn = Rn−1 + (β + γn)

R0 = α

R1 = α + β + γ

R2 = α + β + γ + (β +2γ) = α +2β +3γ

R3 = α +2β +3γ + (β +3γ) = α +3β +6γ

Observation

Rn = A(n)α +B(n)β +C (n)γ

A(n),B(n),C(n) can be evaluated using repertoire method:
we will consider three cases

1 Rn = 1 for all n

2 Rn = n for all n

3 Rn = n2 for all n



Evaluation of terms Rn = Rn−1 + (β + γn)

R0 = α

R1 = α + β + γ

R2 = α + β + γ + (β +2γ) = α +2β +3γ

R3 = α +2β +3γ + (β +3γ) = α +3β +6γ

Observation

Rn = A(n)α +B(n)β +C (n)γ

A(n),B(n),C(n) can be evaluated using repertoire method:
we will consider three cases

1 Rn = 1 for all n

2 Rn = n for all n
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Repertoire method: case 1

Lemma 1: A(n) = 1 for all n

1 = R0 = α

From Rn = Rn−1 + (β + γn) follows that 1 = 1+ (β + γn).
This must be true for every n ∈ N, so β = γ = 0

Hence

1 = A(n) ·1+B(n) ·0+C (n) ·0



Repertoire method: case 2

Lemma 2: B(n) = n for all n

α = R0 = 0

From Rn = Rn−1 + (β +γn) follows that n = (n−1) + (β +γn).
I.e. 1 = β + γn.
This must be true for every n ∈ N, so β = 1 and γ = 0

Hence

n = A(n) ·0+B(n) ·1+C (n) ·0



Repertoire method: case 3

Lemma 3: C (n) = n2+n
2 for all n

α = R0 = 02 = 0.

Equation Rn = Rn−1 + (β + γn) can be rewritten as:

n2 = (n−1)2 + β + γn.
n2 = n2−2n+1+ β + γn.
0 = (1+ β ) +n(γ−2).

This must be true for every n ∈ N, so β =−1 and γ = 2.

Hence:

n2 = A(n) ·0+B(n) · (−1) +C (n) ·2
= −n+2C (n) by Lemma 2



Repertoire method: summing up

According to Lemma 1, 2, 3, we get:

1 Rn = 1 for all n =⇒ A(n) = 1

2 Rn = n for all n =⇒ B(n) = n

3 Rn = n2 for all n =⇒ C(n) =
n2 +n

2
Hence,

Rn = α +nβ +

(
n2 +n

2

)
γ

For α = β = a and γ = b we get:

Sn =
n

∑
k=0

(a+bk) = (n+1)a+
n(n+1)

2
b
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Perturbation method

To �nd a closed form for Sn = ∑06k6n ak :

1 Rewrite Sn+1 by splitting o� �rst and last term:

Sn +an+1 = a0 + ∑
16k6n+1

ak

= a0 + ∑
16k+16n+1

ak+1

= a0 + ∑
06k6n

ak+1

2 Work on the sum on the right and express it as a function of Sn.

3 Solve with respect to Sn.



Example 2: geometric sequence

Geometric sequence: an = axn,x 6= 1

Recurrence equation for the sum Sn = a0 +a1 +a2 + · · ·+an = ∑06k6n ax
k :

S0 = a

Sn = Sn−1 +axn , for n > 0 .
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Geometric sequence: an = axn,x 6= 1

Recurrence equation for the sum Sn = a0 +a1 +a2 + · · ·+an = ∑06k6n ax
k :

S0 = a

Sn = Sn−1 +axn , for n > 0 .

Splitting o� the �rst term gives

Sn +an+1 = a0 + ∑
06k6n

ak+1

= a+ ∑
06k6n

axk+1

= a+x ∑
06k6n

axk

= a+xSn



Example 2: geometric sequence

Geometric sequence: an = axn,x 6= 1

Recurrence equation for the sum Sn = a0 +a1 +a2 + · · ·+an = ∑06k6n ax
k :

S0 = a

Sn = Sn−1 +axn , for n > 0 .

From this we obtain the equality:

Sn +axn+1 = a+xSn ,

that is: (1−x)Sn = a−axn+1.

As x 6= 1 we can divide and obtain:

Sn = a · 1−xn+1

1−x



Example 3: When perturbation doesn't work . . .

Compute: Sn = ∑
n
k=0 k

2.

1 Perturb the sum:

Sn + (n+1)2 = 0+
n+1

∑
k=1

k2

Um . . . that shifted k2 sounds bad . . .
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1 Perturb the sum:

Sn + (n+1)2 = 0+
n+1

∑
k=1

k2

Um . . . that shifted k2 sounds bad . . .

2 Rewrite the right-hand side so that it depends on Sn:

n+1

∑
k=1

k2 =
n

∑
k=0

(k +1)2

=
n

∑
k=0

(k2 +2k +1)

= Sn +
n

∑
k=0

(2k +1)

= Sn +2
n(n+1)

2
+n+1



Example 3: When perturbation doesn't work . . .

Compute: Sn = ∑
n
k=0 k

2.

1 Perturb the sum:

Sn + (n+1)2 = 0+
n+1

∑
k=1

k2

Um . . . that shifted k2 sounds bad . . .

2 Rewrite the right-hand side so that it depends on Sn:

n+1

∑
k=1

k2 = Sn +2
n(n+1)

2
+n+1

3 Solve with respect to Sn:

Sn + (n+1)2 = Sn + (n+1) +2
n(n+1)

2

(n+1)2 = (n+1) +n(n+1)

. . . which is true, but where is Sn?



. . . try perturbing another sum!

In addition to Sn, consider the sum: Tn = ∑
n
k=0 k

3.

1 Perturb Tn:

Tn + (n+1)3 = 0+
n+1

∑
k=1

k3
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∑
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. . . try perturbing another sum!

In addition to Sn, consider the sum: Tn = ∑
n
k=0 k

3.

1 Perturb Tn:

Tn + (n+1)3 = 0+
n+1

∑
k=1

k3

2 Rewrite the right-hand side so that it depends on Tn and on Sn:

n+1

∑
k=1

k3 = Tn+3Sn +
n

∑
k=0

(3k +1)

3 Solve with respect to Sn:

(n+1)3 = 3Sn +3
n(n+1)

2
+n+1

= 3Sn + (n+1)

(
3

2
n+1

)
3Sn = (n+1)

(
n2 +2n+1− 3

2
n−1

)
Sn =

1

3
(n+1)

(
n2 +

n

2

)
=

n(n+1)(2n+1)
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