ITT9132 Concrete Mathematics

Lecture 3: 9 February 2021

Contents

1 The repertoire method

2 Binary representation of generalized Josephus function

3 Sequences

4 Notations for sums

5 Sums and Recurrences

- The repertoire method
- Perturbation method

Next section

1 The repertoire method

2 Binary representation of generalized Josephus function

3 Sequences

4 Notations for sums

5 Sums and Recurrences

- The repertoire method
- Perturbation method

The repertoire method: Basic ideas

Let the recursion scheme

$$
\begin{aligned}
g(0) & =\alpha \\
g(n+1) & =\Phi(g(n))+\Psi(n ; \beta, \gamma, \ldots) \quad \text { for } n \geq 0 .
\end{aligned}
$$

have the following properties:
1Φ is linear in g :
If $g(n)=\lambda_{1} g_{1}(n)+\lambda_{2} g_{2}(n)$, then $\Phi(g(n))=\lambda_{1} \Phi\left(g_{1}(n)\right)+\lambda_{2} \Phi\left(g_{2}(n)\right)$.
No hypotheses are made on the dependence of g on n.
2Ψ is linear in each of the $m-1$ parameters β, γ, \ldots
No hypotheses are made on the dependence of Ψ on n.
Then the whole system is linear in the parameters $\alpha, \beta, \gamma, \ldots$
We can then look for a general solution of the form

$$
g(n)=\alpha A(n)+\beta B(n)+\gamma C(n)+\ldots
$$

The repertoire method: Description

Suppose we have a repertoire of m pairs of the form $\left(\left(\alpha_{i}, \beta_{i}, \gamma_{i}, \ldots\right), g_{i}(n)\right)$ satisfying the following conditions:

1 For every $i=1,2, \ldots, m, g_{i}(n)$ is the solution of the system corresponding to the values $\alpha=\alpha_{i}, \beta=\beta_{i}, \gamma=\gamma_{i}, \ldots$
2 The m m-tuples $\left(\alpha_{i}, \beta_{i}, \gamma_{i}, \ldots\right)$ are linearly independent.
Then the functions $A(n), B(n), C(n), \ldots$ are uniquely determined.
The reason is that, for every fixed n,

$$
\begin{array}{lll}
\alpha_{1} A(n)+\beta_{1} B(n) & +\gamma_{1} C(n)+\ldots & =g_{1}(n) \\
\vdots & & \\
\alpha_{m} A(n)+\beta_{m} B(n)+\gamma_{m} C(n)+\ldots & =g_{m}(n)
\end{array}
$$

is a system of m linear equations in the m unknowns $A(n), B(n), C(n), \ldots$ whose coefficients matrix is invertible.

Next section

1 The repertoire method

2 Binary representation of generalized Josephus function

3 Sequences

4 Notations for sums

5 Sums and Recurrences
－The repertoire method
－Perturbation method

Binary representation of generalized Josephus function

Definition

The generalized Josephus function (GJ-function) is defined for $\alpha, \beta_{0}, \beta_{1}$ as follows:

$$
\begin{aligned}
f(1) & =\alpha \\
f(2 n+j) & =2 f(n)+\beta_{j} \text { for } j=0,1 \text { and } n>0
\end{aligned}
$$

We obtain the definition used before if to select $\beta_{0}=\beta$ and $\beta_{1}=\gamma$.

Binary representation of generalized Josephus function (2)

Case A: Argument is even

If $2 n=2^{m}+\ell$, then the binary notation is

$$
2 n=\left(b_{m} b_{m-1} \ldots b_{1} b_{0}\right)_{2}
$$

or

$$
2 n=b_{m} 2^{m}+b_{m-1} 2^{m-1}+\ldots+b_{1} 2+b_{0}
$$

where $b_{i} \in\{0,1\}, b_{0}=0$ and $b_{m}=1$.

Hence

$$
n=b_{m} 2^{m-1}+b_{m-1} 2^{m-2}+\ldots+b_{2} 2+b_{1}
$$

or

$$
n=\left(b_{m} b_{m-1} \ldots b_{1}\right)_{2}
$$

Binary representation of generalized Josephus function (3)

Case B: Argument is odd

If $2 n+1=2^{m}+\ell$, then the binary notation is

$$
2 n+1=\left(b_{m} b_{m-1} \ldots b_{1} b_{0}\right)_{2}
$$

or

$$
2 n+1=b_{m} 2^{m}+b_{m-1} 2^{m-1}+\ldots+b_{1} 2+b_{0}
$$

where $b_{i} \in\{0,1\}, b_{0}=1$ and $b_{m}=1$.

We get

$$
\begin{aligned}
2 n+1 & =b_{m} 2^{m}+b_{m-1} 2^{m-1}+\ldots+b_{1} 2+1 \\
2 n & =b_{m} 2^{m}+b_{m-1} 2^{m-1}+\ldots+b_{1} 2 \\
n & =b_{m} 2^{m-1}+b_{m-1} 2^{m-2}+\ldots+b_{2} 2+b_{1}
\end{aligned}
$$

or

$$
n=\left(b_{m} b_{m-1} \ldots b_{1}\right)_{2}
$$

Binary representation of generalized Josephus function (3)

Case B: Argument is odd

If $2 n+1=2^{m}+\ell$, then the binary notation is

$$
2 n+1=\left(b_{m} b_{m-1} \ldots b_{1} b_{0}\right)_{2}
$$

or

$$
2 n+1=b_{m} 2^{m}+b_{m-1} 2^{m-1}+\ldots+b_{1} 2+b_{0}
$$

where $b_{i} \in\{0,1\}, b_{0}=1$ and $b_{m}=1$.

We get

$$
\begin{aligned}
2 n+1 & =b_{m} 2^{m}+b_{m-1} 2^{m-1}+\ldots+b_{1} 2+1 \\
2 n & =b_{m} 2^{m}+b_{m-1} 2^{m-1}+\ldots+b_{1} 2 \\
n & =b_{m} 2^{m-1}+b_{m-1} 2^{m-2}+\ldots+b_{2} 2+b_{1}
\end{aligned}
$$

Same results for cases A and B indicates that we don't need to consider even and odd cases separately.

Binary representation of generalized Josephus function (4)

Let's evaluate:

$$
\begin{aligned}
f\left(\left(b_{m}, b_{m-1}, \ldots, b_{1}, b_{0}\right)_{2}\right) & =2 f\left(\left(b_{m}, b_{m-1}, \ldots, b_{1}\right)_{2}\right)+\beta_{b_{0}} \\
& =2 \cdot\left(2 f\left(\left(b_{m}, b_{m-1}, \ldots, b_{2}\right)_{2}\right)+\beta_{b_{1}}\right)+\beta_{b_{0}} \\
& =4 f\left(\left(b_{m}, b_{m-1}, \ldots, b_{2}\right)_{2}\right)+2 \beta_{b_{1}}+\beta_{b_{0}} \\
& =\vdots \\
& =f\left(\left(b_{m}\right)_{2}\right) 2^{m}+\beta_{b_{m-1}} 2^{m-1}+\ldots+\beta_{b_{1}} 2+\beta_{b_{0}} \\
& =f(1) 2^{m}+\beta_{b_{m-1}} 2^{m-1}+\ldots+\beta_{b_{1}} 2+\beta_{b_{0}} \\
& =\alpha 2^{m}+\beta_{b_{m-1}} 2^{m-1}+\ldots+\beta_{b_{1}} 2+\beta_{b_{0}}
\end{aligned}
$$

where

$$
\beta_{b_{j}}= \begin{cases}\beta_{1}, & \text { if } b_{j}=1 \\ \beta_{0} & \text { if } b_{j}=0\end{cases}
$$

Binary representation of generalized Josephus function (4)

Let's evaluate:

$$
\begin{aligned}
f\left(\left(b_{m}, b_{m-1}, \ldots, b_{1}, b_{0}\right)_{2}\right) & =2 f\left(\left(b_{m}, b_{m-1}, \ldots, b_{1}\right)_{2}\right)+\beta_{b_{0}} \\
& =2 \cdot\left(2 f\left(\left(b_{m}, b_{m-1}, \ldots, b_{2}\right)_{2}\right)+\beta_{b_{1}}\right)+\beta_{b_{0}} \\
& =4 f\left(\left(b_{m}, b_{m-1}, \ldots, b_{2}\right)_{2}\right)+2 \beta_{b_{1}}+\beta_{b_{0}} \\
& =\vdots \\
& =f\left(\left(b_{m}\right)_{2}\right) 2^{m}+\beta_{b_{m-1}} 2^{m-1}+\ldots+\beta_{b_{1}} 2+\beta_{b_{0}} \\
& =f(1) 2^{m}+\beta_{b_{m-1}} 2^{m-1}+\ldots+\beta_{b_{1}} 2+\beta_{b_{0}} \\
& =\alpha 2^{m}+\beta_{b_{m-1}} 2^{m-1}+\ldots+\beta_{b_{1}} 2+\beta_{b_{0}}
\end{aligned}
$$

where

$$
\beta_{b_{j}}= \begin{cases}\beta_{1}, & \text { if } b_{j}=1 \\ \beta_{0} & \text { if } b_{j}=0\end{cases}
$$

$$
f\left(\left(b_{m} b_{m-1} \ldots b_{1} b_{0}\right)_{2}\right)=\left(\alpha \beta_{b_{m-1}} \beta_{b_{m-2}} \ldots \beta_{b_{1}} \beta_{b_{0}}\right)_{2}
$$

Example

Original Josephus function: $\alpha=1, \beta_{0}=-1, \beta_{1}=1$ i.e.

$$
\begin{aligned}
f(1) & =1 \\
f(2 n) & =2 f(n)-1 \\
f(2 n+1) & =2 f(n)+1
\end{aligned}
$$

Compute

$$
\begin{aligned}
f\left(\left(b_{m} b_{m-1} \ldots b_{1} b_{0}\right)_{2}\right)= & \left(\alpha \beta_{b_{m-1}} \beta_{b_{m-2}} \ldots \beta_{b_{1}} \beta_{b_{0}}\right)_{2} \\
f(100)=f\left((1100100)_{2}\right)= & (1,1,-1,-1,1,-1,-1)_{2} \\
& =64+32-16-8+4-2-1=73
\end{aligned}
$$

Generalized Josephus function: Multiple bases

Let $c, d \geqslant 2$ be integers.
Consider the following recurrent problem:

$$
\begin{array}{rlrl}
f(j) & =\alpha_{j} & & \text { for } 1 \leqslant j<d ; \\
f(d n+j) & =c f(n)+\beta_{j} & \text { for } 0 \leqslant j<d \text { and } n \geqslant 1 .
\end{array}
$$

How can we compute $f(n)$ for an arbitrary positive integer n, without having to go through the entire iterative process?

Multiple bases representation

We can actually use the same technique!

Let $\left(b_{m} b_{m-1} \ldots b_{1} b_{0}\right)_{d}$ be the base- d writing of n. Then $b_{m} \neq 0$ and:

$$
\begin{aligned}
f\left(\left(b_{m}, b_{m-1}, \ldots, b_{1}, b_{0}\right)_{d}\right) & =c f\left(\left(b_{m}, b_{m-1}, \ldots, b_{1}\right)_{d}\right)+\beta_{b_{0}} \\
& =c \cdot\left(c f\left(\left(b_{m}, b_{m-1}, \ldots, b_{2}\right)_{d}\right)+\beta_{b_{1}}\right)+\beta_{b_{0}} \\
& =c^{2} f\left(\left(b_{m}, b_{m-1}, \ldots, b_{2}\right)_{d}\right)+c \beta_{b_{1}}+\beta_{b_{0}} \\
& =\vdots \\
& =c^{m} \cdot f\left(b_{m}\right)+c^{m-1} \beta_{b_{m-1}}+\ldots+c \beta_{b_{1}}+\beta_{b_{0}} \\
& =c^{m} \alpha_{b_{m}}+c^{m-1} \beta_{b_{m-1}}+\ldots+c \beta_{b_{1}}+\beta_{b_{0}}
\end{aligned}
$$

Multiple bases representation

We can actually use the same technique!

Let $\left(b_{m} b_{m-1} \ldots b_{1} b_{0}\right)_{d}$ be the base- d writing of n. Then $b_{m} \neq 0$ and:

$$
\begin{aligned}
f\left(\left(b_{m}, b_{m-1}, \ldots, b_{1}, b_{0}\right)_{d}\right) & =c f\left(\left(b_{m}, b_{m-1}, \ldots, b_{1}\right)_{d}\right)+\beta_{b_{0}} \\
& =c \cdot\left(c f\left(\left(b_{m}, b_{m-1}, \ldots, b_{2}\right)_{d}\right)+\beta_{b_{1}}\right)+\beta_{b_{0}} \\
& =c^{2} f\left(\left(b_{m}, b_{m-\mathbf{1}}, \ldots, b_{2}\right)_{d}\right)+c \beta_{b_{1}}+\beta_{b_{0}} \\
& =\vdots \\
& =c^{m} \cdot f\left(b_{m}\right)+c^{m-1} \beta_{b_{m-1}}+\ldots+c \beta_{b_{1}}+\beta_{b_{0}} \\
& =c^{m} \alpha_{b_{m}}+c^{m-1} \beta_{b_{m-1}}+\ldots+c \beta_{b_{1}}+\beta_{b_{0}}
\end{aligned}
$$

With a slight abuse of notation: (the β_{i} 's need not be base- c digits)

$$
f\left(\left(b_{m} b_{m-1} \ldots b_{1} b_{0}\right)_{d}\right)=\left(\alpha_{b_{m}} \beta_{b_{m-1}} \beta_{b_{m-2}} \ldots \beta_{b_{1}} \beta_{b_{0}}\right)_{c}
$$

Multiple bases representation

We can actually use the same technique!

Let $\left(b_{m} b_{m-1} \ldots b_{1} b_{0}\right)_{d}$ be the base- d writing of n. Then $b_{m} \neq 0$ and:

$$
\begin{aligned}
f\left(\left(b_{m}, b_{m-1}, \ldots, b_{1}, b_{0}\right)_{d}\right) & =c f\left(\left(b_{m}, b_{m-1}, \ldots, b_{1}\right)_{d}\right)+\beta_{b_{0}} \\
& =c \cdot\left(c f\left(\left(b_{m}, b_{m-\mathbf{1}}, \ldots, b_{2}\right)_{d}\right)+\beta_{b_{1}}\right)+\beta_{b_{0}} \\
& =c^{2} f\left(\left(b_{m}, b_{m-\mathbf{1}}, \ldots, b_{2}\right)_{d}\right)+c \beta_{b_{1}}+\beta_{b_{0}} \\
& =\vdots \\
& =c^{m} \cdot f\left(b_{m}\right)+c^{m-1} \beta_{b_{m-1}}+\ldots+c \beta_{b_{1}}+\beta_{b_{0}} \\
& =c^{m} \alpha_{b_{m}}+c^{m-1} \beta_{b_{m-1}}+\ldots+c \beta_{b_{1}}+\beta_{b_{0}}
\end{aligned}
$$

Or, more precisely:

$$
f\left(\left(b_{m} b_{m-1} \ldots b_{1} b_{0}\right)_{d}\right)=p(c) \text { where } p(x)=\alpha_{b_{m}} x^{m}+\beta_{b_{m-1}} x^{m-1}+\ldots+\beta_{b_{1}} x+\beta_{b_{0}}
$$

Next section

1 The repertoire method

2 Binary representation of generalized Josephus function

3 Sequences

4 Notations for sums

5 Sums and Recurrences

- The repertoire method
- Perturbation method

层合

Sequences

Definition

A sequence of elements of a set A is a function $f: \mathbb{N} \rightarrow A$, where \mathbb{N} is the set of natural numbers.
Notations used:

- $f=\left\langle a_{n}\right\rangle$, where we denote $a_{n}=f(n)$;
- $\left\{a_{n}\right\}_{n \in \mathbb{N}} ;$
- $\left\langle a_{0}, a_{1}, a_{2}, a_{3}, \ldots\right\rangle$.
a_{n} is called the nth term of the sequence f

Sequences

Definition

A sequence of elements of a set A is a function $f: \mathbb{N} \rightarrow A$, where \mathbb{N} is the set of natural numbers.
Notations used:

- $f=\left\langle a_{n}\right\rangle$, where we denote $a_{n}=f(n)$;
- $\left\{a_{n}\right\}_{n \in \mathbb{N}} ;$
$-\left\langle a_{0}, a_{1}, a_{2}, a_{3}, \ldots\right\rangle$.
a_{n} is called the nth term of the sequence f

Example

$$
a_{0}=0, a_{1}=\frac{1}{2 \cdot 3}, a_{2}=\frac{2}{3 \cdot 4}, a_{3}=\frac{3}{4 \cdot 5}, \cdots
$$

or

$$
\left\langle 0, \frac{1}{6}, \frac{1}{6}, \frac{3}{20}, \frac{2}{15}, \cdots, \frac{n}{(n+1)(n+2)}, \cdots\right\rangle
$$

Sequences

Definition

A sequence of elements of a set A is a function $f: \mathbb{N} \rightarrow A$, where \mathbb{N} is the set of natural numbers.
Notations used:

- $f=\left\langle a_{n}\right\rangle$, where we denote $a_{n}=f(n)$;
- $\left\{a_{n}\right\}_{n \in \mathbb{N}}$;
- $\left\langle a_{0}, a_{1}, a_{2}, a_{3}, \ldots\right\rangle$.
a_{n} is called the nth term of the sequence f

Notation

$$
f(n)=\frac{n}{(n+1)(n+2)}
$$

or

$$
a_{n}=\frac{n}{(n+1)(n+2)}
$$

Sets of indices

- Default assumption: \mathbb{N}.
- Actually, any countably infinite set can be used as an index set. Examples:
- $\mathbb{Z}^{+}=\mathbb{N}-\{0\} \sim \mathbb{N}$.
- $\mathbb{N} \backslash K$, where $K \subseteq \mathbb{N}$ is finite.
- The set \mathbb{Z} of relative integers.
- $\{1,3,5,7, \ldots\}=$ Odd.
- $\{0,2,4,6, \ldots\}=$ Even.

Sets of indices

- Default assumption: \mathbb{N}.
- Actually, any countably infinite set can be used as an index set. Examples:
- $\mathbb{Z}^{+}=\mathbb{N}-\{0\} \sim \mathbb{N}$.
- $\mathbb{N} \backslash K$, where $K \subseteq \mathbb{N}$ is finite.
- The set \mathbb{Z} of relative integers.
- $\{1,3,5,7, \ldots\}=$ Odd.
- $\{0,2,4,6, \ldots\}=$ Even.

Sets of indices

- Default assumption: \mathbb{N}.
- Actually, any countably infinite set can be used as an index set. Examples:
- $\mathbb{Z}^{+}=\mathbb{N}-\{0\} \sim \mathbb{N}$.
- $\mathbb{N} \backslash K$, where $K \subseteq \mathbb{N}$ is finite.
- The set \mathbb{Z} of relative integers.
- $\{1,3,5,7, \ldots\}=$ Odd.
- $\{0,2,4,6, \ldots\}=$ Even.

The writing $A \sim B$ denotes that sets A and B are of the same cardinality.

- For finite sets, $|A|$ is the number of elements of A.
- In general, A and B are said to have the same cardinality if there exists a bijection between the two.
We then write $A \sim B$, or $|A|=|B|$
(See http://www.mathsisfun.com/sets/injective-surjective- bijective.html TAL for detailed explanation)

Finite sequences

- A finite sequence of elements of a set A is a function $f: K \rightarrow A$, where K is set a finite subset of natural numbers

For example: $f:\{1,2,3,4, \cdots, n\} \rightarrow A, n \in \mathbb{N}$
Special case: $n=0$, i.e. empty sequence: $f(\emptyset)=e$

Domain of the sequence

$$
\begin{gathered}
f: T \rightarrow A \\
a_{n}=\frac{n}{(n-2)(n-5)}
\end{gathered}
$$

The domain of f is $T=\mathbb{N}-\{2,5\}$.

Next section

1 The repertoire method

2 Binary representation of generalized Josephus function

3 Sequences

4 Notations for sums

5 Sums and Recurrences

- The repertoire method
- Perturbation method

Notation

For a finite set $K=\{1,2, \cdots, m\}=[1: m]$ (a slice of \mathbb{N}) and a sequence $\left\langle a_{n}\right\rangle$ we write:

$$
\sum_{k=1}^{m} a_{k}=a_{1}+a_{2}+\cdots+a_{m}
$$

This specific writing takes into account the order of summation. Other writings, in which the order is less or not important, are:

$$
\sum_{1 \leqslant k \leqslant m} a_{k} ; \sum_{k \in[1: m]} a_{k} ; \sum_{k \in K} a_{k} ; \sum_{K} a_{k}
$$

Warmup: What does this notation mean?

$$
\sum_{k=4}^{0} q_{k}
$$

Warmup: What does this notation mean?

$$
\sum_{k=4}^{0} q_{k}
$$

Options:
$1 \sum_{k=4}^{0} q_{k}=q_{4}+q_{3}+q_{2}+q_{1}+q_{0}=\sum_{k \in\{4,3,2,1,0\}} q_{k}=\sum_{k=0}^{4} q_{k}$. This seems the sensible thing

Warmup: What does this notation mean?

$$
\sum_{k=4}^{0} q_{k}
$$

Options:
$1 \sum_{k=4}^{0} q_{k}=q_{4}+q_{3}+q_{2}+q_{1}+q_{0}=\sum_{k \in\{4,3,2,1,0\}} q_{k}=\sum_{k=0}^{4} q_{k}$. This seems the sensible thing-but:
$2 \sum_{4 \leqslant k \leqslant 0} q_{k}=0$ also looks like a feasible interpretation

Warmup: What does this notation mean?

$$
\sum_{k=4}^{0} q_{k}
$$

Options:
$1 \sum_{k=4}^{0} q_{k}=q_{4}+q_{3}+q_{2}+q_{1}+q_{0}=\sum_{k \in\{4,3,2,1,0\}} q_{k}=\sum_{k=0}^{4} q_{k}$. This seems the sensible thing-but:
$2 \sum_{4 \leqslant k \leqslant 0} q_{k}=0$ also looks like a feasible interpretation-but:
3 If

$$
\sum_{k=m}^{n} q_{k}=\sum_{k \leqslant n} q_{k}-\sum_{k<m} q_{k},
$$

(provided the two sums on the right-hand side exist finite) then $\sum_{k=4}^{0} q_{k}=\sum_{k \leqslant 0} q_{k}-\sum_{k<4} q_{k}=-q_{1}-q_{2}-q_{3}$.

Warmup: Interpreting the \sum-notation

Compute $\sum_{\{0 \leqslant k \leqslant 5\}} a_{k}$ and $\sum_{\left\{0 \leqslant k^{2} \leqslant 5\right\}} a_{k^{2}}$.

First sum

$$
\{0 \leqslant k \leqslant 5\}=\{0,1,2,3,4,5\}
$$

thus, $\sum_{\{0 \leqslant k \leqslant 5\}} a_{k}=a_{0}+a_{1}+a_{2}+a_{3}+a_{4}+a_{5}$.

Second sum

Warmup: Interpreting the \sum-notation

Compute $\sum_{\{0 \leqslant k \leqslant 5\}} a_{k}$ and $\sum_{\left\{0 \leqslant k^{2} \leqslant 5\right\}} a_{k^{2}}$.
First sum

$$
\{0 \leqslant k \leqslant 5\}=\{0,1,2,3,4,5\}:
$$

thus, $\sum_{\{0 \leqslant k \leqslant 5\}} a_{k}=a_{0}+a_{1}+a_{2}+a_{3}+a_{4}+a_{5}$.

Second sum

Warmup: Interpreting the \sum-notation

Compute $\sum_{\{0 \leqslant k \leqslant 5\}} a_{k}$ and $\sum_{\left\{0 \leqslant k^{2} \leqslant 5\right\}} a_{k^{2}}$.
First sum

$$
\{0 \leqslant k \leqslant 5\}=\{0,1,2,3,4,5\}:
$$

thus, $\sum_{\{0 \leqslant k \leqslant 5\}} a_{k}=a_{0}+a_{1}+a_{2}+a_{3}+a_{4}+a_{5}$.

Second sum

$$
\left\{0 \leqslant k^{2} \leqslant 5\right\}=\{0,1,2
$$

thus,
$\sum_{\{0 \leqslant k \leqslant 5} a_{k^{2}}=a_{0^{2}}+a_{1^{2}}+a_{2^{2}}+a_{(-1)^{2}}+a_{(-2)^{2}}=a_{0}+2 a_{1}+2 a_{2}$

Warmup: Interpreting the \sum-notation

Compute $\sum_{\{0 \leqslant k \leqslant 5\}} a_{k}$ and $\sum_{\left\{0 \leqslant k^{2} \leqslant 5\right\}} a_{k^{2}}$.
First sum

$$
\{0 \leqslant k \leqslant 5\}=\{0,1,2,3,4,5\}:
$$

thus, $\sum_{\{0 \leqslant k \leqslant 5\}} a_{k}=a_{0}+a_{1}+a_{2}+a_{3}+a_{4}+a_{5}$.

Second sum

$$
\left\{0 \leqslant k^{2} \leqslant 5\right\}=\{0,1,2,-1,-2\}:
$$

thus,

$$
\sum_{\{0 \leqslant k \leqslant 5\}} a_{k^{2}}=a_{0^{2}}+a_{1^{2}}+a_{2^{2}}+a_{(-1)^{2}}+a_{(-2)^{2}}=a_{0}+2 a_{1}+2 a_{2} .
$$

A universal writing

We can decrease our worries about notation by using the Iverson brackets:

- $[$ True $]=1$ and $[$ False $]=0$;
- if a is infinite or undefined, then $a \cdot[$ False $]=0$.

Then we can write:

$$
\sum_{k \in K} a_{k}=\sum_{k} a_{k}[k \in K]
$$

or more generally:

$$
\sum_{k \in \mathbb{Z} \mid P(k)} a_{k}=\sum_{k} a_{k}[P(k)]
$$

where P is a property of (some) integers. For example:

$$
\sum_{k \in \mathbb{Z} \mid k \text { is prime }} \frac{1}{k}=\sum_{p} \frac{1}{p}[p \text { is prime }]
$$

Next section

1 The repertoire method

2 Binary representation of generalized Josephus function

3 Sequences

4 Notations for sums

5 Sums and Recurrences

- The repertoire method
- Perturbation method

Sums and Recurrences

A sum of the form $S_{n}=\sum_{k=0}^{n} a_{k}$ can be presented in recursive form:

$$
\begin{aligned}
& S_{0}=a_{0} ; \\
& S_{n}=S_{n-1}+a_{n} \text { for every } n \geq 1
\end{aligned}
$$

that is, as the solution of a first-order recurrence.

Next subsection

1 The repertoire method

2 Binary representation of generalized Josephus function

3 Sequences

4 Notations for sums

5 Sums and Recurrences

- The repertoire method
- Perturbation method

Recalling the repertoire method

- Given

$$
\begin{aligned}
& g(0)=\alpha_{1} \\
& g(n)=\Phi(g(n-1))+\Psi_{n}\left(\alpha_{2}, \ldots, \alpha_{k}\right) \text { for every } n>0 .
\end{aligned}
$$

where Φ and Ψ_{n} are linear.

- Suppose we have $k(k+1)$-tuples $\left(g_{i} ; \alpha_{i, 1}, \alpha_{i, 2}, \ldots, \alpha_{i, k}\right)$ such that:
$1 g_{i}(0)=\alpha_{i, 1}$ and $g_{i}(n)=\Phi\left(g_{i}(n-1)\right)+\Psi_{n}\left(\alpha_{i, 2}, \ldots, \alpha_{i, k}\right)$ for every $i \in[1: k]$;
2 the k-tuples $\left(\alpha_{i, 1}, \alpha_{i, 2}, \ldots, \alpha_{i, k}\right)$ are linearly independent.
- Then the recurrence has a solution in closed form:

$$
g(n)=\alpha_{1} A_{1}(n)+\alpha_{2} A_{2}(n)+\ldots+\alpha_{k} A_{k}(n)
$$

where the functions $A_{1}(n), A_{2}(n), \ldots, A_{k}(n)$ can be determined from the system of equations:

$$
\begin{gathered}
\alpha_{1,1} A_{1}(n)+\alpha_{1,2} A_{2}(n)+\ldots+\alpha_{1, k} A_{k}(n)=g_{1}(n) \\
\vdots \\
\alpha_{k, 1} A_{1}(n)+\alpha_{k, 2} A_{2}(n)+\ldots+\alpha_{k, k} A_{k}(n)=g_{k}(n)
\end{gathered}
$$

Example 1: arithmetic sequence

Arithmetic sequence: $a_{n}=a+b n$
Recurrence equation for the sum $S_{n}=a_{0}+a_{1}+a_{2}+\cdots+a_{n}$:

$$
\begin{aligned}
& S_{0}=a \\
& S_{n}=S_{n-1}+(a+b n), \text { for } n>0 .
\end{aligned}
$$

Let's find a closed form for a bit more general recurrent equation:

Example 1: arithmetic sequence

Arithmetic sequence: $a_{n}=a+b n$
Recurrence equation for the sum $S_{n}=a_{0}+a_{1}+a_{2}+\cdots+a_{n}$:

$$
\begin{aligned}
& S_{0}=a \\
& S_{n}=S_{n-1}+(a+b n), \text { for } n>0 .
\end{aligned}
$$

Let's find a closed form for a bit more general recurrent equation:

$$
\begin{aligned}
& R_{0}=\alpha \\
& R_{n}=R_{n-1}+(\beta+\gamma n), \text { for } n>0 .
\end{aligned}
$$

Evaluation of terms $R_{n}=R_{n-1}+(\beta+\gamma n)$

$$
\begin{aligned}
& R_{0}=\alpha \\
& R_{1}=\alpha+\beta+\gamma \\
& R_{2}=\alpha+\beta+\gamma+(\beta+2 \gamma)=\alpha+2 \beta+3 \gamma \\
& R_{3}=\alpha+2 \beta+3 \gamma+(\beta+3 \gamma)=\alpha+3 \beta+6 \gamma
\end{aligned}
$$

Observation

$$
R_{n}=A(n) \alpha+B(n) \beta+C(n) \gamma
$$

Evaluation of terms $R_{n}=R_{n-1}+(\beta+\gamma n)$

$$
\begin{aligned}
& R_{0}=\alpha \\
& R_{1}=\alpha+\beta+\gamma \\
& R_{2}=\alpha+\beta+\gamma+(\beta+2 \gamma)=\alpha+2 \beta+3 \gamma \\
& R_{3}=\alpha+2 \beta+3 \gamma+(\beta+3 \gamma)=\alpha+3 \beta+6 \gamma
\end{aligned}
$$

Observation

$$
R_{n}=A(n) \alpha+B(n) \beta+C(n) \gamma
$$

$A(n), B(n), C(n)$ can be evaluated using repertoire method: we will consider three cases
$1 R_{n}=1$ for all n
$2 R_{n}=n$ for all n
$3 R_{n}=n^{2}$ for all n

Repertoire method: case 1

Lemma 1: $A(n)=1$ for all n

■ $1=R_{0}=\alpha$

- From $R_{n}=R_{n-1}+(\beta+\gamma n)$ follows that $1=1+(\beta+\gamma n)$. This must be true for every $n \in \mathbb{N}$, so $\beta=\gamma=0$

Hence

$$
1=A(n) \cdot 1+B(n) \cdot 0+C(n) \cdot 0
$$

Repertoire method: case 2

Lemma 2: $B(n)=n$ for all n

- $\alpha=R_{0}=0$
- From $R_{n}=R_{n-1}+(\beta+\gamma n)$ follows that $n=(n-1)+(\beta+\gamma n)$.
I.e. $1=\beta+\gamma n$.

This must be true for every $n \in \mathbb{N}$, so $\beta=1$ and $\gamma=0$
Hence

$$
n=A(n) \cdot 0+B(n) \cdot 1+C(n) \cdot 0
$$

Repertoire method: case 3

Lemma 3: $C(n)=\frac{n^{2}+n}{2}$ for all n

- $\alpha=R_{0}=0^{2}=0$.
- Equation $R_{n}=R_{n-1}+(\beta+\gamma n)$ can be rewritten as:
- $n^{2}=(n-1)^{2}+\beta+\gamma n$.
- $n^{2}=n^{2}-2 n+1+\beta+\gamma n$.
- $0=(1+\beta)+n(\gamma-2)$.

This must be true for every $n \in \mathbb{N}$, so $\beta=-1$ and $\gamma=2$.
Hence:

$$
\begin{aligned}
n^{2} & =A(n) \cdot 0+B(n) \cdot(-1)+C(n) \cdot 2 \\
& =-n+2 C(n) \text { by Lemma } 2
\end{aligned}
$$

Repertoire method: summing up

According to Lemma 1, 2, 3, we get:
1 $R_{n}=1$ for all n

$$
\begin{array}{ll}
\Longrightarrow & A(n)=1 \\
\Longrightarrow & B(n)=n
\end{array}
$$

$2 R_{n}=n$ for all n
$3 R_{n}=n^{2}$ for all $n \quad \Longrightarrow \quad C(n)=\frac{n^{2}+n}{2}$
Hence,

$$
R_{n}=\alpha+n \beta+\left(\frac{n^{2}+n}{2}\right) \gamma
$$

For $\alpha=\beta=a$ and $\gamma=b$ we get:

$$
S_{n}=\sum_{k=0}^{n}(a+b k)=(n+1) a+\frac{n(n+1)}{2} b
$$

Next subsection

1 The repertoire method

2 Binary representation of generalized Josephus function

3 Sequences

4 Notations for sums

5 Sums and Recurrences

- The repertoire method
- Perturbation method

Perturbation method

To find a closed form for $S_{n}=\sum_{0 \leqslant k \leqslant n} a_{k}$:

1 Rewrite S_{n+1} by splitting off first and last term:

$$
\begin{aligned}
S_{n}+a_{n+1} & =a_{0}+\sum_{1 \leqslant k \leqslant n+1} a_{k} \\
& =a_{0}+\sum_{1 \leqslant k+1 \leqslant n+1} a_{k+1} \\
& =a_{0}+\sum_{0 \leqslant k \leqslant n} a_{k+1}
\end{aligned}
$$

2 Work on the sum on the right and express it as a function of S_{n}.
3 Solve with respect to S_{n}.

Example 2: geometric sequence

Geometric sequence: $a_{n}=a x^{n}, x \neq 1$
Recurrence equation for the sum $S_{n}=a_{0}+a_{1}+a_{2}+\cdots+a_{n}=\sum_{0 \leqslant k \leqslant n} a x^{k}$:

$$
\begin{aligned}
& S_{0}=a \\
& S_{n}=S_{n-1}+a x^{n}, \text { for } n>0 .
\end{aligned}
$$

Example 2: geometric sequence

Geometric sequence: $a_{n}=a x^{n}, x \neq 1$

Recurrence equation for the sum $S_{n}=a_{0}+a_{1}+a_{2}+\cdots+a_{n}=\sum_{0 \leqslant k \leqslant n} a x^{k}$:

$$
\begin{aligned}
& S_{0}=a \\
& S_{n}=S_{n-1}+a x^{n}, \text { for } n>0 .
\end{aligned}
$$

- Splitting off the first term gives

$$
\begin{aligned}
S_{n}+a_{n+1} & =a_{0}+\sum_{0 \leqslant k \leqslant n} a_{k+1} \\
& =a+\sum_{0 \leqslant k \leqslant n} a x^{k+1} \\
& =a+x \sum_{0 \leqslant k \leqslant n} a x^{k} \\
& =a+x S_{n}
\end{aligned}
$$

Example 2: geometric sequence

Geometric sequence: $a_{n}=a x^{n}, x \neq 1$
Recurrence equation for the sum $S_{n}=a_{0}+a_{1}+a_{2}+\cdots+a_{n}=\sum_{0 \leqslant k \leqslant n} a x^{k}$:

$$
\begin{aligned}
& S_{0}=a \\
& S_{n}=S_{n-1}+a x^{n}, \text { for } n>0 .
\end{aligned}
$$

- From this we obtain the equality:

$$
S_{n}+a x^{n+1}=a+x S_{n},
$$

that is: $(1-x) S_{n}=a-a x^{n+1}$.

- As $x \neq 1$ we can divide and obtain:

$$
S_{n}=a \cdot \frac{1-x^{n+1}}{1-x}
$$

Example 3: When perturbation doesn't work .. .

Compute: $S_{n}=\sum_{k=0}^{n} k^{2}$.
1 Perturb the sum:

$$
S_{n}+(n+1)^{2}=0+\sum_{k=1}^{n+1} k^{2}
$$

Um ... that shifted k^{2} sounds bad ...

Example 3: When perturbation doesn't work . . .

Compute: $S_{n}=\sum_{k=0}^{n} k^{2}$.
1 Perturb the sum:

$$
S_{n}+(n+1)^{2}=0+\sum_{k=1}^{n+1} k^{2}
$$

Um ...that shifted k^{2} sounds bad ...
2 Rewrite the right-hand side so that it depends on S_{n} :

$$
\begin{aligned}
\sum_{k=1}^{n+1} k^{2} & =\sum_{k=0}^{n}(k+1)^{2} \\
& =\sum_{k=0}^{n}\left(k^{2}+2 k+1\right) \\
& =S_{n}+\sum_{k=0}^{n}(2 k+1) \\
& =S_{n}+2 \frac{n(n+1)}{2}+n+1
\end{aligned}
$$

Example 3: When perturbation doesn't work . . .

Compute: $S_{n}=\sum_{k=0}^{n} k^{2}$.
1 Perturb the sum:

$$
S_{n}+(n+1)^{2}=0+\sum_{k=1}^{n+1} k^{2}
$$

Um ... that shifted k^{2} sounds bad ...
2 Rewrite the right-hand side so that it depends on S_{n} :

$$
\sum_{k=1}^{n+1} k^{2}=S_{n}+2 \frac{n(n+1)}{2}+n+1
$$

3 Solve with respect to S_{n} :

$$
\begin{aligned}
S_{n}+(n+1)^{2} & =S_{n}+(n+1)+2 \frac{n(n+1)}{2} \\
(n+1)^{2} & =(n+1)+n(n+1)
\end{aligned}
$$

... which is true, but where is S_{n} ?

try perturbing another sum!

In addition to S_{n}, consider the sum: $T_{n}=\sum_{k=0}^{n} k^{3}$.
1 Perturb T_{n} :

$$
T_{n}+(n+1)^{3}=0+\sum_{k=1}^{n+1} k^{3}
$$

try perturbing another sum!

In addition to S_{n}, consider the sum: $T_{n}=\sum_{k=0}^{n} k^{3}$.
1 Perturb T_{n} :

$$
T_{n}+(n+1)^{3}=0+\sum_{k=1}^{n+1} k^{3}
$$

2 Rewrite the right-hand side so that it depends on T_{n} and on S_{n} :

$$
\begin{aligned}
\sum_{k=1}^{n+1} k^{3} & =\sum_{k=0}^{n}(k+1)^{3} \\
& =\sum_{k=0}^{n}\left(k^{3}+3 k^{2}+3 k+1\right) \\
& =T_{n}+3 S_{n}+\sum_{k=0}^{n}(3 k+1)
\end{aligned}
$$

try perturbing another sum!

In addition to S_{n}, consider the sum: $T_{n}=\sum_{k=0}^{n} k^{3}$.
1 Perturb T_{n} :

$$
T_{n}+(n+1)^{3}=0+\sum_{k=1}^{n+1} k^{3}
$$

2 Rewrite the right-hand side so that it depends on T_{n} and on S_{n} :

$$
\sum_{k=1}^{n+1} k^{3}=T_{n}+3 S_{n}+\sum_{k=0}^{n}(3 k+1)
$$

3 Solve with respect to S_{n} :

$$
\begin{aligned}
(n+1)^{3} & =3 S_{n}+3 \frac{n(n+1)}{2}+n+1 \\
& =3 S_{n}+(n+1)\left(\frac{3}{2} n+1\right) \\
3 S_{n} & =(n+1)\left(n^{2}+2 n+1-\frac{3}{2} n-1\right) \\
S_{n} & =\frac{1}{3}(n+1)\left(n^{2}+\frac{n}{2}\right)=\frac{n(n+1)(2 n+1)}{6}
\end{aligned}
$$

