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Multiple sums

De�nition

If H is a �nite subset of Z2, we put:

∑
(j ,k)∈H

aj ,k = ∑
j ,k

aj ,k [P(j ,k)]

where P(j ,k) ::= (j ,k) ∈H.

As only �nitely many summands are nonzero, the usual properties of sums can be
applied, and the following holds:

Law of interchange of order of summation

∑
j

∑
k

aj ,k [P(j ,k)] = ∑
j ,k

aj ,k [P(j ,k)] = ∑
k

∑
j

aj ,k [P(j ,k)]



Multiple sums with independent indices

If P(j ,k) =Q(j)∧R(k), then the indices j and k are independent and the double sum
can be rewritten:

∑
j ,k

aj ,k = ∑
j ,k

aj ,k ([Q(j)∧R(k)])

= ∑
j ,k

aj ,k [Q(j)] [R(k)]

= ∑
j

[Q(j)]∑
k

aj ,k [R(k)] by commutativity, distributivity and associativity

= ∑
j

∑
k

aj ,k

= ∑
k

[R(k)]∑
j

aj ,k [Q(j)]

= ∑
k

∑
j

aj ,k



Multiple sums with dependent indices

In general, the indices are not independent, but we can write:

P(j ,k) =Q(j)∧R ′(j ,k) = R(k)∧Q ′(j ,k)

In this case, for K ′(j) = {k | R ′(j ,k)} and J ′(k) = {j |Q ′(j ,k)} we can proceed as
follows:

∑
j ,k

aj ,k = ∑
j ,k

aj ,k [Q(j)][R ′(j ,k)]

= ∑
j

[Q(j)]∑
k

aj ,k [R
′(j ,k)] = ∑

j∈J
∑

k∈K ′(j)

aj ,k

= ∑
k

[R(k)]∑
j

aj ,k [Q
′(j ,k)] = ∑

k∈K
∑

j∈J ′(k)
aj ,k



Warmup: what's wrong with this sum?

(
n

∑
j=1

aj

)
·

(
n

∑
k=1

1

ak

)
=

n

∑
j=1

n

∑
k=1

aj
ak

=
n

∑
k=1

n

∑
k=1

ak
ak

=
n

∑
k=1

n

∑
k=1

1

= n2
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·

(
n

∑
k=1

1

ak

)
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n

∑
j=1

n

∑
k=1

aj
ak

=
n

∑
k=1

n

∑
k=1

ak
ak

=
n

∑
k=1

n

∑
k=1

1

= n2

Solution

The second passage is seriously wrong:
It is not licit to turn two independent variables into two dependent ones.



Examples of multiple summing: Mutual upper bounds

Change of index order

However given a positive integer n and complex numbers aj ,k ,

n

∑
k=1

k

∑
j=1

aj ,k = ∑
1⩽j⩽k⩽n

aj ,k =
n

∑
j=1

n

∑
k=j

aj ,k
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However given a positive integer n and complex numbers aj ,k ,

n

∑
k=1

k

∑
j=1

aj ,k = ∑
1⩽j⩽k⩽n

aj ,k =
n

∑
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n
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k=j
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Proof:

For every positive integer n and integers j ,k we have:

[1⩽ j ⩽ n] [j ⩽ k ⩽ n] = [1⩽ j ⩽ k ⩽ n] = [1⩽ k ⩽ n] [1⩽ j ⩽ k]

Hence,

n

∑
k=1

k

∑
j=1

aj ,k = ∑
k

∑
j

aj ,k [1⩽ k ⩽ n] [1⩽ j ⩽ k]

= ∑
j ,k

aj ,k [1⩽ j ⩽ k ⩽ n] = ∑
1⩽j⩽k⩽n

aj ,k

= ∑
j

∑
k

aj ,k [1⩽ j ⩽ n] [j ⩽ k ⩽ n] =
n

∑
j=1

n

∑
k=j

aj ,k

Observe that the values of the aj ,k 's played no part.



Examples of multiple summing: Mutual upper bounds

Change of index order

However given a positive integer n and complex numbers aj ,k ,

n

∑
k=1

k

∑
j=1

aj ,k = ∑
1⩽j⩽k⩽n

aj ,k =
n

∑
j=1

n

∑
k=j

aj ,k

This can also be understood by considering the matrix:
a1,1 a1,2 a1,3 . . . a1,n
a2,1 a2,2 a2,3 . . . a2,n
a3,1 a3,2 a3,3 . . . a3,n
...

...
...

. . .
...

an,1 an,2 an,3 . . . an,n


and observing that:

The left-hand side is the sum SU of the elements in the upper triangular part,
counted from top to bottom and from left to right.

The right-hand side is the sum of the same elements,
counted from left to right and from top to bottom.



Upper and lower

What about the sum SL of the elements of the lower triangular part?

A quick application of the inclusion-exclusion formula gives us:

[1⩽ j ⩽ k ⩽ n]+ [1⩽ k ⩽ j ⩽ n] = [1⩽ j ⩽ n,1⩽ k ⩽ n]+ [1⩽ k ⩽ n, j = k]

Then:

SU +SL = ∑
j

∑
k

aj ,k [1⩽ j ⩽ k ⩽ n]+∑
j

∑
k

aj ,k [1⩽ k ⩽ j ⩽ n]

= ∑
j

∑
k

aj ,k ([1⩽ j ⩽ k ⩽ n]+ [1⩽ k ⩽ j ⩽ n])

=
n

∑
j=1

n

∑
k=1

aj ,k ([1⩽ j ⩽ n,1⩽ k ⩽ n]+ [1⩽ k ⩽ n, j = k])

=
n

∑
j=1

n

∑
k=1

aj ,k +
n

∑
k=1

ak,k



The case of symmetric summands

Now assume that the matrix is symmetric: that is, aj ,k = ak,j for every j and k.

Then SL = SU and the equality in the previous page can be rewritten:

n

∑
k=1

k

∑
j=1

aj ,k =
1

2

(
n

∑
j=1

n

∑
k=1

aj ,k +
n

∑
k=1

ak,k

)

If, in particular, aj ,k = aj ·ak for suitable a1, . . . ,an, then:

n

∑
j=1

n

∑
k=1

ajak =
n

∑
j=1

aj
n

∑
k=1

ak =

(
n

∑
k=1

ak

)2

We thus get the following, remarkable rule:

Theorem

For every positive integer n and complex numbers a1, . . . ,an,

n

∑
k=1

k

∑
j=1

ajak =
1

2

( n

∑
k=1

ak

)2

+
n

∑
k=1

a2k





Examples of multiple summation

Example 1: S1,n =
n

∑
k=1

k−1

∑
j=1

1

k− j

S1,n = ∑
1⩽k⩽n

∑
1⩽k−j<k

1

j

swapping j with k− j as both vary between 1 and k−1

= ∑
1⩽k⩽n

∑
0<j⩽k−1

1

j
rewriting

= ∑
1⩽k⩽n

Hk−1

= ∑
1⩽k+1⩽n

Hk

= ∑
0⩽k<n

Hk



Examples of multiple summation

Example 2: S2,n =
n

∑
j=1

n

∑
k=j+1

1

k− j

S2,n = ∑
1⩽j⩽n

∑
j<k+j⩽n

1

k

swapping k with k− j as both vary between j+1 and n

= ∑
1⩽j⩽n

∑
0<k⩽n−j

1

k
rewriting

= ∑
1⩽j⩽n

Hn−j

= ∑
1⩽n−j⩽n

Hj reversing order of summation

= ∑
0⩽j<n

Hj



Examples of multiple summation

Example 3: S3,n = ∑
1⩽j<k⩽n

1

k− j

Of course, S1,n = S2,n = S3,n. But:

S3,n = ∑
1⩽j<k+j⩽n

1

k

= ∑
1⩽k⩽n

∑
1⩽j⩽n−k

1

k

= ∑
1⩽k⩽n

n−k

k

= ∑
1⩽k⩽n

n

k
− ∑

1⩽k⩽n

1

= n

(
∑

1⩽k⩽n

1

k

)
−n

= nHn−n
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Another way of �simplifying by complicating�

To compute a sum of the form Sn = ∑1⩽k⩽n ak :

1 Expand the summand ak by introducing a new variable j and new summands
bj ,ck such that:

ak = ∑
1⩽j⩽k

bjck

2 Rewrite the sum ∑1⩽k⩽n ak as the double sum ∑1⩽j⩽k⩽n bjck .

3 Contract the summands into a sum over k parameterized by j :

Sn = ∑
1⩽k⩽n

(
∑

1⩽j⩽k

bj

)
ck = ∑

1⩽j⩽n

bj

(
∑

j⩽k⩽n

ck

)

4 Sum over j to obtain a closed form for Sn.



Example: again, □n = ∑0⩽k⩽n k
2

1 Expand: k2 = k ·k =

(
k

∑
j=1

1

)
·k.

2 Write the double sum: □n = ∑
1⩽j⩽k⩽n

k.

3 Contract by summing over k:

□n =
n

∑
j=1

n

∑
k=j

k =
n

∑
j=1

(
n

∑
k=1

k−
j−1

∑
k=1

k

)

=
n

∑
j=1

(
n(n+1)

2
− (j−1)j

2

)

=
1

2

(
n2(n+1)−

n

∑
j=1

j2+
n

∑
j=1

j

)

=
n2(n+1)

2
− 1

2
□n+

n(n+1)

4

4 Derive a closed form for □n:

3

2
□n =

n+1

4
· (2n2+n) , that is, □n =

n(n+1)(2n+1)

6
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Derivative and Di�erence Operators

In�nite calculus: derivative

Euler's notation

Df (x) = lim
h→0

f (x+h)− f (x)

h

Lagrange's notation
f ′(x) = Df (x)

Leibniz's notation If y = f (x), then
dy
dx = df

dx (x) =
df (x)
dx = Df (x)

Newton's notation
ẏ = f ′(x)

Finite calculus: di�erence

∆f (x) = f (x+1)− f (x)

In general, if h ∈ R (or h ∈ C), then
Forward di�erence

∆h [f ] (x) = f (x+h)− f (x)

Backward di�erence
∇h [f ] (x) = f (x)− f (x−h)

Central di�erence
δh [f ] (x) =

f (x+ 1
2h)− f (x− 1

2h)

Note that:

Df (x) = lim
h→0

∆h [f ] (x)

h



The derivative of a power

Example: f (x) = x3

In this case,

∆h [f ] (x) = (x+h)3−x3

= x3+3x2h+3xh2+h3−x3

= h · (3x2+3xh+h2)

Hence,

Df (x) = lim
h→0

h · (3x2+3xh+h2)

h
= lim

h→0
3x2+3xh+h2 = 3x2

In general, for m ⩾ 1 integer:
D(xm) =mxm−1

because of Newton's binomial theorem.



The (forward) di�erence of a power

Example: f (x) = x3

In this case,
∆f (x) =∆1 [f ] (x) = 3x2+3x+1

In general, for m ⩾ 1 integer:

∆(xm) =
m

∑
k=1

(
m

k

)
xm−k =

m−1

∑
k=0

(
m

k

)
xk

again because of Newton's binomial theorem � but this time, we don't take a limit.



Falling and Rising Factorials

De�nition

Let m be a positive integer.

The falling factorial power, or simply falling factorial, is de�ned as:

xm = x(x−1)(x−2) · · ·(x−m+1)

The rising factorial power, or simply rising factorial, is de�ned as:

xm = x(x+1)(x+2) · · ·(x+m−1)

Read: �x to the mth falling� and �x to the mth rising�, respectively.

From the de�nitions the following properties immediately follow:

1 xm = (x+m−1)m = (−1)m(−x)m.

2 mm = 1m =m!.

3 xm+n = xm(x−m)n.

4 nm =m!

(
n

m

)
if n is a nonnegative integer.

5 xm =
xm+1

x−m
if x ̸=m.



Falling factorials with negative exponents

We want to de�ne xm with m ⩽ 0 integer so that the expansion rule:

xm+n = xm · (x−m)n

is satis�ed for every m,n ∈ Z and x ∈ C.
First of all, it must be x0+n = x0(x−0)n for every x ∈ C and n ∈ N. Then:

x0 = 1

This is also consistent with de�ning an empty product as equal to 1.

Next, it must be x0 = x−m · (x+m)m for every x ∈ C and m ∈ N such that the
right-hand side is nonzero. Then:

x−m =
1

(x+m)m
=

1

(x+1)m
for every x ̸∈ {−1, . . . ,−m}

Dually,

x−m =
1

(x−1)m
for every x ̸∈ {1, . . . ,m}



Di�erence of falling factorial with positive exponent

For m ⩾ 1 we have:

∆(xm) = (x+1)m−xm

= (x+1) ·xm−1−xm−1 · (x−m+1)

= (x+1− (x−m+1)) ·xm−1

= m ·xm−1

We thus obtain our �rst rule:

∆(xm) =mxm−1 ∀m ⩾ 1

In fact, the family of functions {xm |m ∈N} is the solution of the family of recurrences:

∆fm(x) =mfm−1(x) for m ⩾ 1 ; fm(0) = [m= 0]

This is the same role of powers in Calculus, which satisfy:

Dfm(x) =mfm−1(x) for m ⩾ 1 ; fm(0) = [m= 0]



Di�erences of falling factorials with negative exponents

First, a simple example:

∆x−2 = (x+1)−2−x−2

=
1

(x+2)(x+3)
− 1

(x+1)(x+2)

=
(x+1)− (x+3)

(x+1)(x+2)(x+3)

=
−2

(x+1)(x+2)(x+3)

=−2 ·x−3



Di�erences of falling factorials with negative exponents

Now, for the general rule: let m ∈ N. Then:

∆x−m = (x+1)−m−x−m

=
1

(x+2) · · ·(x+m)(x+m+1)
− 1

(x+1)(x+2) · · ·(x+m)

=
(x+1)− (x+m+1)

(x+1)(x+2) · · ·(x+m)(x+m+1)

=
−m

(x+1)(x+2) · · ·(x+m)(x+m+1)

=−mx−(m+1)

=−mx−m−1



Warmup: Initial conditions for all falling powers

Exercise 2.8

What is the value of 0m, when m is a given integer?

1 For m > 0 a zero factor appears in 0m, so 0m = 0.

2 We observed that x0 = 1 regardless of x , so 00 = 1.

3 For m < 0 we have:

0m =
1

(x+1)−m
with x = 0

=
1

1|m|
=

1

|m|!

A general expression is thus:

0m =
1

|m|!
[m ⩽ 0]
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Inde�nite Integrals and Sums

The Fundamental Theorem of Calculus

If g is continuous and f is di�erentiable, then:

Df (x) = g(x) iff
∫

g(x)dx = f (x)+C

The symbol
∫

g(x)dx , without the additive constant, represents a family of functions

whose derivative is g(x).
We do something similar for sums:

De�nition

The inde�nite sum of the function g(x) is the class of functions f such that
∆f (x) = g(x):

∆f (x) = g(x) iff ∑g(x)δx = f (x)+C(x)

where C(x) is a function such that C(x+1) = C(x) for any integer value of x .

For example, C(x) could be periodic of period 1, and not necessarily constant.
Or, it could be zero on integers, and arbitrary everywhere else. Etc.



De�nite Integrals and Sums

If g(x) = Df (x), then:

∫ b

a
g(x)dx = f (x)

∣∣∣b
a
= f (b)− f (a)

We want de�nite sums to satisfy a similar property:

If g(x) =∆f (x), then:

b

∑
a

g(x)δx = f (x)
∣∣∣b
a
= f (b)− f (a)



De�nite sums

Some observations
a

∑
a

g(x)δx = f (a)− f (a) = 0

a+1

∑
a

g(x)δx = f (a+1)− f (a) = g(a)

b+1

∑
a

g(x)δx−
b

∑
a

g(x)δx = f (b+1)− f (b) = g(b)

Hence, if g(x) =∆f (x), then:

b

∑
a

g(x)δx =
b−1

∑
k=a

g(k) = ∑
a⩽k<b

g(k)

= ∑
a⩽k<b

(f (k+1)− f (k))

= (f (a+1)− f (a))+(f (a+2)− f (a+1))+ . . .

+(f (b−1)− f (b−2))+(f (b)− f (b−1))

= f (b)− f (a)



Integrals and Sums of Powers

Let's do a �rst �sanity check� for our de�nition:

If m ̸=−1, then:

∫ n

0
xmdx =

xm+1

m+1

∣∣∣n
0
=

nm+1

m+1

Indeed:

If m ̸=−1, then:

n

∑
0

xmδx = ∑
0⩽k<n

km =
km+1

m+1

∣∣∣n
0
=

nm+1

m+1



Sums of Powers: applications

Case m= 1

∑
0⩽k<n

k =
n2

2
=

n(n−1)

2

Case m= 2 Due to k2 = k2+k1 we get:

∑
0⩽k<n

k2 =
n3

3
+

n2

2

=
1

3
n(n−1)(n−2)+

1

2
n(n−1)

=
1

6
n (2(n−1)(n−2)+3(n−1))

=
1

6
n(n−1)(2n−4+3)

=
1

6
n(n−1)(2n−1)

Taking n+1 instead of n gives:

□n =
(n+1)n(2n+1)

6



Sums of Powers (case m =−1)

As a �rst step, we observe that:

∆Hx =Hx+1−Hx

=

(
1+

1

2
+ . . .+

1

x
+

1

x+1

)
−
(
1+

1

2
+ . . .+

1

x

)
=

1

x+1
= x−1

We conclude:
b

∑
a

x−1 δx =Hb −Ha for 0< a⩽ b

This is yet another parallel between harmonic numbers and natural logarithms, as we
know that: ∫ b

a

dx

x
= lnb− lna for 0< a⩽ b



Sums of Discrete Exponential Functions

We have:
Dex = ex

The �nite analogue should have ∆f (x) = f (x). This means:

f (x+1)− f (x) = f (x) , that is, f (x+1) = 2f (x) , only possible if f (x) = 2x

For general base c > 0, the di�erence of cx is:

∆(cx ) = cx+1−cx = (c−1)cx

and the �anti-di�erence� for c ̸= 1 is
cx

c−1
.

As an application, we compute the sum of the geometric progression:

∑
a⩽k<b

ck =
b

∑
a

cxδx =
cx

c−1

∣∣∣b
a
=

cb −ca

c−1
= ca · c

b−a−1

c−1
.



Di�erential equations and di�erence equations

Differential equation Solution Difference equation Solution
Dfn(x) = nfn−1(x) fn(x) = xn ∆um(x) =mum−1(x) um(x) = xm

fn(0) = [n= 0] , n ⩾ 0 um(0) = [m= 0] , m ⩾ 0
Dfn(x) = nfn−1(x) fn(x) = xn ∆um(x) =mum−1(x) um(x) = xm

fn(1) = 1 , n < 0 um(0) =
1

|m|!
, m < 0

Df (x) = x−1 · [x > 0] f (x) = lnx ∆u(x) = x−1 · [x > 0] u(x) =Hx

f (1) = 1 u(1) = 1
Df (x) = f (x) f (x) = ex ∆u(x) = u(x) u(x) = 2x

f (0) = 1 u(0) = 1
Df (x) = b · f (x) f (x) = ax ∆u(x) = b ·u(x) u(x) = cx

f (0) = 1 where b = lna u(0) = 1 where b = c−1



l'Hôpital's rule and Stolz-Cesàro lemma

l'Hôpital's rule: Hypotheses

1 f (x) and g(x) are both vanishing
or both in�nite at x0.

2 g ′(x) is always positive in some
neighborhood of x0.

Stolz-Cesàro lemma: Hypotheses

1 u(n) and v(n) are de�ned for
every value n ∈ N.

2 v(n) is positive, strictly
increasing, and divergent.

l'Hôpital's rule: Thesis

If limx→x0

f ′(x)

g ′(x)
= L ∈ R,

then limx→x0

f (x)

g(x)
= L.

Stolz-Cesàro lemma: Thesis

If limn→∞

∆u(n)

∆v(n)
= L ∈ R,

then limn→∞

u(n)

v(n)
= L.



A useful corollary

Arithmetic mean theorem

If limn→∞ an = L, then lim
n→∞

1

n

n−1

∑
k=0

ak = L too.

That is:

If a sequence converges,
then the sequence of its arithmetic means converges to the same limit.

Proof:

Let u(x) =
x−1

∑
k=0

ak and v(x) = x .

Then ∆u(x) = ax and ∆v(x) = 1.

Apply the Stolz-Cesàro lemma.



Next subsection

1 Multiple sums
Expand and contract

2 Finite and In�nite Calculus
Derivative and Di�erence Operators
Integrals and Sums
Summation by Parts



Summation by Parts

In�nite analogue: integration by parts

∫
u(x)v ′(x)dx = u(x)v(x)−

∫
u′(x)v(x)dx

Now, when we take the di�erence of a product, we have a slightly more complex rule:

∆(u(x)v(x)) = u(x+1)v(x+1)−u(x)v(x)

= u(x+1)v(x+1)−u(x)v(x+1)+u(x)v(x+1)−u(x)v(x)

= ∆u(x)v(x+1)+u(x)∆v(x)

= u(x)∆v(x)+Ev(x)∆u(x)

where E is the shift operator Ef (x) = f (x+1). We then have the:

Rule for summation by parts

∑u∆v δx = uv −∑Ev∆u δx



Why the shift?

If we repeat our derivation with two continuous functions f and g of one real variable
x , we �nd for any increment h ̸= 0:

f (x+h)g(x+h)− f (x)g(x) = f (x+h)g(x+h)− f (x)g(x+h)+ f (x)g(x+h)− f (x)g(x)

= f (x)(g(x+h)−g(x))+g(x+h)(f (x+h)− f (x))

The incremental ratio is thus:

f (x+h)g(x+h)− f (x)g(x)

h
= f (x) · g(x+h)−g(x)

h
+g(x+h) · f (x+h)− f (x)

h

So there is a shift: but it is in�nitesimal�and disappears by continuity of g .



Example: Sn = ∑
n
k=0 kHk

We want to write Sn =
n+1

∑
0

u(x)∆v(x)δx for suitable u(x) and v(x).

Let u(x) =Hx and v(x) = x2/2.

Then ∆u(x) = x−1, ∆v(x) = x , and Ev(x) = (x+1)2/2.

Summing by parts:

n+1

∑
0

x Hx δx =
x2

2
Hx

∣∣∣∣n+1
0

−
n+1

∑
0

(x+1)2

2
x−1 δx

=
(n+1)n

2
Hn+1−

1

2

n+1

∑
0

x−1(x− (−1))2 δx

=
(n+1)n

2
Hn+1−

1

2

n+1

∑
0

x1 δx

=
(n+1)n

2
Hn+1−

(n+1)n

4

=
(n+1)n

2

(
Hn+1−

1

2

)
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