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Next section

Multiple sums
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Multiple sums

Definition
If H is a finite subset of Z2, we put:

Y a«= _z,:,aj,k [P, k)]
Js

(,k)eH

where P(j, k) == (j,k) € H.

As only finitely many summands are nonzero, the usual properties of sums can be
applied, and the following holds:

Law of interchange of order of summation

LY axlPG 01 = LG, ] = LY [P 4]
Js J

J
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Multiple sums with independent indices

If P(j,k) = Q(j) A R(k), then the indices j and k are independent and the double sum
can be rewritten:

Y a3k =Y 3k ([QU) AR(K))
Jik Jk
=L [QUIIR(A)
= Z [RU)I Zal «[R(k)] by commutativity, distributivity and associativity
= ZZQJ k
= ;[R(k)]zaj,k [QUI
J
=YY 3k
k j
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Multiple sums with dependent indices

In general, the indices are not independent, but we can write:
P(j,k) = QU)AR'(j,k) = R(k) AQ'(j, k)

In this case, for K'(j) = {k | R'(j,k)} and J'(k) = {j | Q' (j,k)} we can proceed as
follows:

}—_;aj,k = ;aj,k[QU)][R’U,k)l
J: J»
=YX axRGKI=Y ¥ ax
J k Jj€JkeK'(j)

:;[R(k)]Zaj,k[Q'U,k)]: Y Y Ak

keK jeJ'(k)
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Warmup: what's wrong with this sum?
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The second passage is seriously wrong:
It is not licit to turn two independent variables into two dependent ones.
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Examples of multiple summing: Mutual upper bounds

Change of index order

However given a positive integer n and complex numbers a; i,
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Examples of multiple summing: Mutual upper bounds

Change of index order

However given a positive integer n and complex numbers a; i,

n  k n n

Y Yak= Y ax=YYa«

k=1j=1 1<j<k<n j=1k=j

Proof:
m For every positive integer n and integers j, k we have:
R<j<ni<k<n=[1<j<k<n=[1<k<n[l<j<K]

m Hence,
n k

Z Z 9.k

k=1j=1

Y'Y a1 <k<n[1<j<K]
k j

= YLoull<j<k<n]= 3k
Jsk

J

= YYaull<jsnlisk<n=} Y a«
- 2L

= Observe that the values of the a;;'s played no part.



Examples of multiple summing: Mutual upper bounds

Change of index order

However given a positive integer n and complex numbers a; i,

This can also be understood by considering the matrix:

ai1 a2 a3 ... adin
a1 a2 a3 ... an
as1 a2 a3 ... a3,
an1 @n2 an3 ... ann

and observing that:
m The left-hand side is the sum Sy of the elements in the upper triangular part,
counted from top to bottom and from left to right.

m The right-hand side is the sum of the same elements, TAL
counted from left to right and from top to bottom. TECH



Upper and lower

What about the sum S; of the elements of the lower triangular part?

= A quick application of the inclusion-exclusion formula gives us:
I<j<k<n+[1<k<j<n=[1<j<nl1<k<n]+[1<k<nj=K]

m Then:

Su+S. = YYak<ji<k<n+YYa[l<k<j<n
J ok Jj ok

YYac(l<j<k<n+[1<k<j<n])
J k

Il
-
=

ac(1<i<nl<k<n+[l<k<nj=Kk])

j=1k=1
n n n
= Z Z ajk+ Z Ak k
j=1k=1 k=1
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The case of symmetric summands

Now assume that the matrix is symmetric: that is, a; x = ax; for every j and k.
m Then S, = Sy and the equality in the previous page can be rewritten:

k=1

k 1 n n n
Zzalk_2<j Zaj,k+23k,k>
k= k=1

m If, in particular, aj, = a; - ay for suitable ay,...,an, then:

2
ak
1
We thus get the following, remarkable rule:

For every positive integer n and complex numbers as,...,a,,

uM:
™=

£ Eom-fata-(

k
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Examples of multiple summation

n k-1
Example 1: S, = Z
k=1j

Sl,n

1<k<n 1<k—j<kj
swapping j with k —j as both vary between 1 and k —1
1 i
= Z Z = rewriting
1<k<n 0<j<k—1J

= Y H

1<k<n
= Y Hd
1<k+1<n
= Y H

0<k<n
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Examples of multiple summation

Example 2: S5,

S2,n

1<j<n j<k+j<n
swapping k with k —j as both vary between j + 1 and n
1 .

Z % rewriting

1<j<n 0<k<n—j
Hp_j

1<j<n

H; reversing order of summation
1<n—j<n
Y H
o<j<n
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Example 3: S3,

But:

Of course, S1,=S2,=S3,.

il
— | <
v/
x ‘.—k
I v/
T X -
./<\v\ | | |
- S (SR
0 H<n\ ﬁ _<n\ 0 H<n\
x x x
v/ v/ v/
- - -
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Next subsection

Multiple sums
m Expand and contract
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Another way of “simplifying by complicating”

To compute a sum of the form S, = Y1 <x<pak:

Expand the summand ay by introducing a new variable j and new summands

bj, cx such that:
g = Z bjCk
1<<k

Rewrite the sum Y1 <i<,ak as the double sum Yy ik bjck-
Contract the summands into a sum over k parameterized by j:

1<k 1<<n - \j<k<n

Sum over j to obtain a closed form for S,.
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Example: again, [ = Yo<k<n k>

k
Expand: k2 =k-k = Zl)-k.
j=1

Write the double sum: O, = k.
1<j<k<n

Contract by summing over k:

n n n n j-1
Q= Yk = L(Ek- Tk
j=Llk=j j=1 \k=1 k=1
_ Z n(n+1) (-1)
= 2 2
1[5 SHERNR S
= 3 n(n+1) =Y 2+ Y J
j=1 j=1
_ m+1) 1. n(n+1)
- 2 2" 4
Derive a closed form for [J,:
§Dn = LH ‘(2,72 _|_,-,)7 thatis, O, = w TAL
2 4 £ TECH



Next section

Finite and Infinite Calculus
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Next subsection

Finite and Infinite Calculus
m Derivative and Difference Operators
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Derivative and Difference Operators

Infinite calculus: derivative Finite calculus: difference

Euler's notation
Af(x)=f(x+1)—f(x
100 i £ F(5) S
hs0 h In general, if h€R (or h€C), then
Forward difference
Ap[fI(x) =f(x+h)—f(x)

Lagrange’s notation

f'(x) =Df(x)

Leibniz's notatlon If y = f(x), then
¢() = 7§ =D (x)

Backward difference
Valfl(x) = f(x) = f(x—h)

dX - dX Central difference
Newton's notation O, [f](x) = . L
}I/:f/(x) f(X—}—Eh)ff(XfEh)
Note that: AblF100)
Df(x) = lim 2h111X)
) hTL h
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The derivative of a power

Example: f(x)=x

In this case,
Ap[fl(x) = (x+h?-x3
= x3+3x2h+3xh2+h3—x3
= h-(3x*+3xh+ h?)
Hence, , \
h-(3 3xh+h
Df(x) = lim M — lim 3X2+3Xh+h2 — 3x2
h—0 h h—0

In general, for m > 1 integer:
D(x™) = mx™?

because of Newton's binomial theorem.
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The (forward) difference of a power

3

Example: f(x)=x

In this case,
Af(x) = A1 [f](x) =3x% +3x+1

In general, for m > 1 integer:

s & () -E ()

k=1

again because of Newton's binomial theorem — but this time, we don't take a limit.
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Falling and Rising Factorials

Let m be a positive integer.

m The falling factorial power, or simply falling factorial, is defined as:
xMT=x(x—1)(x—2)---(x—m+1)

m The rising factorial power, or simply rising factorial, is defined as:
XM =x(x+1)(x+2)---(x+m—1)

Read: “x to the mth falling” and “x to the mth rising”, respectively.

From the definitions the following properties immediately follow:
x™=(x+m—1)"=(-1)"(—x)™
mm =17 =ml.
XMEN — M (x — m)™,
n? = m! (n) if nis a nonnegative integer.
m
m+1

xM = Xim if x % m. PE‘(L:H




Falling factorials with negative exponents

We want to define x with m < 0 integer so that the expansion rule:

XTEN — 5™ (x — m)™
is satisfied for every m,ne€ Z and x € C.
m First of all, it must be x9*" = x%(x —0)" for every x € C and n€ N. Then:

This is also consistent with defining an empty product as equal to 1.

m Next, it must be x2 = x=".(x+m)™ for every x € C and m € N such that the
right-hand side is nonzero. Then:

. 1 . 1
T O+m)™ T (x+1)

x=m — forevery x ¢ {~1,...,—m}

Dually,
= 1

x M= ——5 forevery x ¢ {1,...,m}

(x-1)
TAL
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Difference of falling factorial with positive exponent

For m>1 we have:

A(x™m) = (x+1)"—x2
(x4+1)-xm=L _xm=L.(x —m+1)
(x+1—(x—m+1))-x2=L

= m-xm1

We thus obtain our first rule:
A(XT) = mx™=L ¥Ym >1
In fact, the family of functions {x | m € N} is the solution of the family of recurrences:
Afm(x) = mfpm_1(x) form>1; £,(0)=[m=0]
This is the same role of powers in Calculus, which satisfy:
Dfiy(x) = mfp_1(x) for m>1; £,(0) =[m=0]
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Differences of falling factorials with negative exponents

First, a simple example:

Ax=2=(x+1)2—x=2
B 1 1
T (x+2)(x+3)  (x+1)(x+2)
_ (x+1)—(x+3)
(x+1)(x+2)(x+3)
-2
T (x+1)(x+2)(x+3)

= -—2.x=3

TAL
TECH



Differences of falling factorials with negative exponents

Now, for the general rule: let m € N. Then:

Ax—T=(x+1)"—x="
. 1 1
T (x+2)-(x+m)(x+m+1)  (x+1)(x+2)---(x+m)
_ (x+1)—(x+m+1)
(x+1)(x+2):-(x+m)(x+m+1)

-m
T (x+D)(x+2) - (x+m)(x+m+1)
= —mx=(mt1)

—m—1

= —mx
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Warmup: Initial conditions for all falling powers

What is the value of 0, when m is a given integer?
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Warmup: Initial conditions for all falling powers

What is the value of 0, when m is a given integer?

For m > 0 a zero factor appears in 0™, so 0 = 0.
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Warmup: Initial conditions for all falling powers

What is the value of 0, when m is a given integer?

For m > 0 a zero factor appears in 0™, so 0 = 0.
We observed that x% =1 regardless of x, so 00 =1.
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Warmup: Initial conditions for all falling powers

What is the value of 0, when m is a given integer?

For m > 0 a zero factor appears in 0™, so 0 = 0.
We observed that x% =1 regardless of x, so 00 =1.
For m < 0 we have:

1

o = ﬁwithxzo
x+1)""
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Warmup: Initial conditions for all falling powers

What is the value of 0, when m is a given integer?

For m > 0 a zero factor appears in 0™, so 0 = 0.
We observed that x% =1 regardless of x, so 00 =1.
For m < 0 we have:
m 1 .
o = ———— withx=0
(x+1)""
1
1lml
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Warmup: Initial conditions for all falling powers

What is the value of 0, when m is a given integer?

For m > 0 a zero factor appears in 0™, so 0 = 0.
We observed that x% =1 regardless of x, so 00 =1.
For m < 0 we have:

1

0" = ——  withx=0
(x+1)™"
11
1ml — |m]!
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Warmup: Initial conditions for all falling powers

What is the value of 0, when m is a given integer?

For m > 0 a zero factor appears in 0™, so 0 = 0.
We observed that x% =1 regardless of x, so 00 =1.
For m < 0 we have:

A general expression is thus:
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Next subsection

Finite and Infinite Calculus

m Integrals and Sums
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Indefinite Integrals and Sums

The Fundamental Theorem of Calculus

If g is continuous and f is differentiable, then:

DF(x) =g(x) iff / g(x)dx = f(x)+C

The symbol | g(x)dx, without the additive constant, represents a family of functions

whose derivative is g(x).
We do something similar for sums:

Definition
The indefinite sum of the function g(x) is the class of functions f such that
Af(x) = g(x):

Af(x)=g(x) iff Y g(x)6x =f(x)+ C(x)

where C(x) is a function such that C(x+1) = C(x) for any integer value of x.

For example, C(x) could be periodic of period 1, and not necessarily constant.
Or, it could be zero on integers, and arbitrary everywhere else. Etc.
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Definite Integrals and Sums

If g(x) =Df(x), then:

[ stax =9} = ()~ 7(2)

We want definite sums to satisfy a similar property:

If g(x) = Af(x), then:

b
Y 8()x = ()| = f(6) - £(a)
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Definite sums

Some observations

[ ig(x)&( =f(a)—f(a)=0

a+1

[ Z g(x)éx="f(a+1)—f(a) =g(a)

b+1

] Zg(x)ﬁx Zg(x x=

Hence, if g(x) = Af(x),

b
Zg(x)éx

F(b+1)— f(b) = g(b)

then:

b—1
k);g(k)= Y k)

a<k<b

Y, (F(k+1)—f(k))

a<k<b

(F(a+1)— F(a))+ (F(a+2)— Fa+1))+...
+(f(b—1)—f(b—2))+(f(b)—f(b-1))
f(b) —f(a) TAL
TECH



Integrals and Sums of Powers

Let's do a first “sanity check” for our definition:

If m# —1, then:

/nxde: xm+1 n _ nm+1

0 m+1llo m+1

Indeed:

If m+# —1, then:
n km+1 m+1
ZXESX = Z ko= [ —
0 0<k<n m+1lo  m+1
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Sums of Powers: applications

Case m=1
n(n—1)

o
Y k=5=""%

0<k<n

Case m=2 Due to k? = k2 + ki we get:

s

2 _
2: k® = 3
1

RS

o
0<k<n

= Sn(n-1)(n—2)+ zn(n-1)
- %n(2(n—1)(n—2)+3(n—1))

1
= gn(n—l)(2n—4+3)

1
= 6n(n—1)(2n—1)

Taking n+1 instead of n gives:

_ (n+1)n(2n+1)

Ln 6 TAL
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Sums of Powers (case m = —1)

As a first step, we observe that:

AH, = x+1 — Hy

1+ +ot s L I ) (14l 4l
x+1 27X

We conclude:

Zx Sx=H,—H, for0<a<hb

This is yet another parallel between harmonic numbers and natural logarithms, as we

know that: b
X \nb—Ina for0<a<b

a

TAL
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Sums of Discrete Exponential Functions

m We have:
De* = ¢~

The finite analogue should have Af(x) = f(x). This means:
f(x+1)—f(x) = f(x), thatis, f(x+1)=2f(x), only possible if f(x)=2*
m For general base ¢ > 0, the difference of c* is:

A=t X =(c—1)c*

X

and the “anti-difference” for c #1 is cil'

As an application, we compute the sum of the geometric progression:

b X b b a b—a

c c’—c c 1

2 ck :E c*ox = .= = c? 7
2<heb = c—1la c— c—
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Differential equations and difference equations

Differential equation Solution Difference equation Solution
Df,(x) = nfp_1(x) fa(x) = x" Aum(x) = mum—1(x) Um(x) = x2
m(0)=[n=0],n>0 um(0)=[m=0], m>0

DR = nf1() | B =x" || Bm(x) = mm 1(x) | um(x) =x=
f(1)=1,n<0 um(O):W,m<0
Df(x)=x1-[x>0] [ f(x)=Inx Au(x)=x=L-[x>0] u(x) = Hx
f(1)=1 u(l)=1

Df (x) = f(x) f(x)=e* Au(x) = u(x) u(x) =2%
f(0)=1 u(0)=1

Df(x) =b-f(x) f(x)=a" Au(x)=b-u(x) u(x) =c*
f(0)=1 where b=1Ina || u(0)=1 where b=c—1
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I'Hépital's rule and Stolz-Cesaro lemma

I'Hépital’s rule: Hypotheses

f(x) and g(x) are both vanishing
or both infinite at xp.

g'(x) is always positive in some
neighborhood of xg.

I'Hopital’s rule: Thesis

()
m If limy sy m =LeR,
. f(x)
m then limy_.,, m =

Stolz-Cesaro lemma: Hypotheses

u(n) and v(n) are defined for
every value neN.

v(n) is positive, strictly
increasing, and divergent.

Stolz-Cesaro lemma: Thesis

. Au(n)
m Iflimy e Av(n) =LeR,
u(n) _,

then li =
[ ] n lim,_, v(n)
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A useful corollary

Arithmetic mean theorem
1 n—1
If lim,a, =L, then lim = Z ay = L too.

n=ee o
That is:

If a sequence converges,
then the sequence of its arithmetic means converges to the same limit.

Proof:
x—1
m Let u(x)= Z ax and v(x) = x.

m Then Au(x) =ax and Av(x) =1.
m Apply the Stolz-Cesaro lemma.

TAL
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Next subsection

Finite and Infinite Calculus

= Summation by Parts
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Summation by Parts

Infinite analogue: integration by parts

/u(x)v/(x)dx = u(x)v(x) 7/u’(x)v(x)dx

Now, when we take the difference of a product, we have a slightly more complex rule:

A(u(x)v(x)) u(x+1)v(x+1)—u(x)v(x)
u(x+1)v(x+1)—u(x)v(x+1)+ u(x)v(x+1) — u(x)v(x)
= Au(x)v(x+1)+u(x)Av(x)

u(x)Av(x)+ Ev(x)Au(x)

where E is the shift operator Ef(x) = f(x+1). We then have the:

Rule for summation by parts

ZUAVSX = uv—ZEvAqu
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Why the shift?

If we repeat our derivation with two continuous functions f and g of one real variable
x, we find for any increment h # 0:

f(x+h)g(x+h)—f(x)g(x) =f(x+h)g(x+h)—f(x)g(x+ h)+ f(x)g(x+ h) — f(x)g(x)
= f(x)(g(x+h) —g(x)) +&(x+ h)(f(x+ h) — f(x))
The incremental ratio is thus:

ta(x+h)- f(x+h’)7—f(x)

FOct MEG) = F(9B0) _ f 80Hh) —g(x)
h h

So there is a shift: but it is infinitesimal—and disappears by continuity of g.
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Example: S, = Y7, kHx

n+l
= We want to write S, = )" u(x) Av(x) 8x for suitable u(x) and v(x).
0

Let u(x) = Hx and v(x) = x2/2.
Then Au(x) =x=1, Av(x) = x, and Ev(x) = (x+1)%/2.

u
= Summing by parts:
n+1 2 n+1  pg1 2
ZxHxﬁx = X—HX —meiﬁx
0 2 0 0 2
n+1)n
= 2) Hiyor — Zx (x— (~1))28x

1)n n+1
= (n—g) H,,+1—7Zx Sx

_ (n+1) My,

= (n+1 <Hn+1* *)

(n+1)n
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