ITT9132 Concrete Mathematics

Lecture 4: 16 February 2021
Chapter Two
Sums and recurrences
Manipulation of sums
Multiple sums
Original slides 2010-2014 Jaan Penjam; modified 2016-2021 SHlvio Capobianco

Contents

1 Sums and Recurrences

- Reduction to known solutions
- Summation factors
- Integrals

2 Manipulation of Sums

3 Multiple sums

- Expand and contract

Next section

1 Sums and Recurrences

- Reduction to known solutions
- Summation factors
- Integrals

2 Manipulation of Sums

3 Multiple sums

- Expand and contract

Next subsection

1 Sums and Recurrences

- Reduction to known solutions
- Summation factors - Integrals

2 Manipulation of Sums

3 Multiple sums

- Expand and contract

Example 3: Hanoi sequence

Consider again the Tower of Hanoi recurrence:

$$
\begin{aligned}
& T_{0}=0 \\
& T_{n}=2 T_{n-1}+1
\end{aligned}
$$

Example 3: Hanoi sequence

Consider again the Tower of Hanoi recurrence:

$$
\begin{aligned}
& T_{0}=0 \\
& T_{n}=2 T_{n-1}+1
\end{aligned}
$$

This sequence can be transformed into a geometric sum using the following manipulations:

- Divide both equalities by 2^{n} :

$$
\begin{aligned}
& T_{0} / 2^{0}=0 \\
& T_{n} / 2^{n}=T_{n-1} / 2^{n-1}+1 / 2^{n}
\end{aligned}
$$

Example 3: Hanoi sequence

Consider again the Tower of Hanoi recurrence:

$$
\begin{aligned}
& T_{0}=0 \\
& T_{n}=2 T_{n-1}+1
\end{aligned}
$$

This sequence can be transformed into a geometric sum using the following manipulations:

- Divide both equalities by 2^{n} :

$$
\begin{aligned}
& T_{0} / 2^{0}=0 \\
& T_{n} / 2^{n}=T_{n-1} / 2^{n-1}+1 / 2^{n}
\end{aligned}
$$

- Set $S_{n}=T_{n} / 2^{n}$ to have:

$$
\begin{aligned}
& S_{0}=0 \\
& S_{n}=S_{n-1}+2^{-n}
\end{aligned}
$$

This is almost the geometric sum with the parameters $a=1$ and $x=1 / 2$: Only the initial summand 1 is missing.

Example 3: Hanoi sequence

Consider again the Tower of Hanoi recurrence:

$$
\begin{aligned}
& T_{0}=0 \\
& T_{n}=2 T_{n-1}+1
\end{aligned}
$$

Hence,

$$
\begin{aligned}
S_{n} & =\frac{0.5\left(0.5^{n}-1\right)}{0.5-1}\left(a_{0}=0 \text { has been left out of the sum }\right) \\
& =1-2^{-n}
\end{aligned}
$$

$$
T_{n}=2^{n} S_{n}=2^{n}-1
$$

Example 3: Hanoi sequence

Consider again the Tower of Hanoi recurrence:

$$
\begin{aligned}
& T_{0}=0 \\
& T_{n}=2 T_{n-1}+1
\end{aligned}
$$

Hence,

$$
\begin{aligned}
S_{n} & =\frac{0.5\left(0.5^{n}-1\right)}{0.5-1}\left(a_{0}=0 \text { has been left out of the sum }\right) \\
& =1-2^{-n}
\end{aligned}
$$

$$
T_{n}=2^{n} S_{n}=2^{n}-1
$$

Next subsection

1 Sums and Recurrences

- Reduction to known solutions
- Summation factors
- Integrals

2 Manipulation of Sums

3 Multiple sums

- Expand and contract

Summation factor: Idea

We want to solve a linear recurrence of the form:

$$
a_{n} T_{n}=b_{n} T_{n-1}+c_{n} \text { for every } n>0
$$

where:
$1\left\langle a_{n}\right\rangle,\left\langle b_{n}\right\rangle$ and $\left\langle c_{n}\right\rangle$ are arbitrary sequences; and
2 for every $n>0, a_{n} \neq 0$ and $b_{n} \neq 0$.
We also assume that the initial value T_{0} is given.

The idea

Find a summation factor s_{n} satisfying the following property:

$$
s_{n} b_{n}=s_{n-1} a_{n-1} \text { for every } n \geqslant 1
$$

Summation factor: Realization

If a sequence $\left\langle s_{n}\right\rangle$ as in the previous slide exists, then:
$1 s_{n} a_{n} T_{n}=s_{n} b_{n} T_{n-\mathbf{1}}+s_{n} c_{n}=s_{n-\mathbf{1}} a_{n-1} T_{n-\mathbf{1}}+s_{n} c_{n}$.
2 Set $S_{n}=s_{n} a_{n} T_{n}$ and rewrite the equation as:

$$
\begin{aligned}
& S_{0}=s_{0} a_{0} T_{0} \\
& S_{n}=S_{n-1}+s_{n} c_{n}
\end{aligned}
$$

3 This yields a closed formula (!) for solution:

$$
T_{n}=\frac{1}{s_{n} a_{n}}\left(s_{0} a_{0} T_{0}+\sum_{k=1}^{n} s_{k} c_{k}\right)=\frac{1}{s_{n} a_{n}}\left(s_{1} b_{1} T_{0}+\sum_{k=1}^{n} s_{k} c_{k}\right) \text { for every } n>0
$$

Finding a summation factor

Assuming that $b_{n} \neq 0$ for every n :
1 Set $s_{0}=1$ and also $a_{0}=1$.
2 Compute the next elements using the property $s_{n} b_{n}=s_{n-1} a_{n-1}$:

$$
\begin{aligned}
s_{1} & =\frac{1}{b_{1}}=\frac{a_{0}}{b_{1}} \\
s_{2} & =\frac{s_{1} a_{1}}{b_{2}}=\frac{a_{0} a_{1}}{b_{1} b_{2}} \\
s_{3} & =\frac{s_{2} a_{2}}{b_{3}}=\frac{a_{0} a_{1} a_{2}}{b_{1} b_{2} b_{3}} \\
& =\ldots \\
s_{n} & =\frac{s_{n-1} a_{n-1}}{b_{n}}=\frac{a_{0} a_{1} \cdots a_{n-1}}{b_{1} b_{2} \cdots b_{n}}
\end{aligned}
$$

(To be proved by induction!)

Example: application of summation factor

$a_{n}=c_{n}=1$ and $b_{n}=2$ gives the Hanoi Tower sequence:
Evaluate the summation factor:

$$
s_{n}=\frac{s_{n-1} a_{n-1}}{b_{n}}=\frac{a_{0} a_{1} \cdots a_{n-1}}{b_{1} b_{2} \cdots b_{n}}=\frac{1}{2^{n}}
$$

The solution is:

$$
T_{n}=\frac{1}{s_{n} a_{n}}\left(s_{1} b_{1} T_{0}+\sum_{k=1}^{n} s_{k} c_{k}\right)=2^{n} \sum_{k=1}^{n} \frac{1}{2^{k}}=2^{n}\left(1-2^{-n}\right)=2^{n}-1
$$

Yet Another Example: constant coefficients

Equation $Z_{n}=a Z_{n-1}+b$

Taking $a_{n}=1, b_{n}=a$ and $c_{n}=b$:

- Evaluate summation factor:

$$
s_{n}=\frac{s_{n-1} a_{n-1}}{b_{n}}=\frac{a_{0} a_{1} \ldots a_{n-1}}{b_{1} b_{2} \ldots b_{n}}=\frac{1}{a^{n}}
$$

- The solution is:

$$
\begin{aligned}
Z_{n} & =\frac{1}{s_{n} a_{n}}\left(s_{1} b_{1} Z_{0}+\sum_{k=1}^{n} s_{k} c_{k}\right)=a^{n}\left(Z_{0}+b \sum_{k=1}^{n} \frac{1}{a^{k}}\right) \\
& =a^{n} Z_{0}+b\left(1+a+a^{2}+\cdots+a^{n-1}\right) \\
& =a^{n} Z_{0}+\frac{a^{n}-1}{a-1} b
\end{aligned}
$$

Yet Another Example: check up on results

Equation $Z_{n}=a Z_{n-1}+b$

$$
\begin{aligned}
Z_{n} & =a Z_{n-1}+b \\
& =a^{2} Z_{n-2}+a b+b \\
& =a^{3} Z_{n-3}+a^{2} b+a b+b \\
& =a^{k} Z_{n-k}+\left(a^{k-1}+a^{k-2}+\ldots+1\right) b \\
& =a^{k} Z_{n-k}+\frac{a^{k}-1}{a-1} b \quad(\text { assuming } a \neq 1)
\end{aligned}
$$

Continuing until $k=n$:

$$
\begin{aligned}
Z_{n} & =a^{n} Z_{n-n}+\frac{a^{n}-1}{a-1} b \\
& =a^{n} Z_{0}+\frac{a^{n}-1}{a-1} b
\end{aligned}
$$

Efficiency of Quicksort

Average number of comparisons: $C_{n}=n+1+\frac{2}{n} \sum_{k=0}^{n-1} C_{k}, C_{0}=0$.
112 $\sqrt{26}$ 7 14 3 $\sqrt{2}$ unsorted

	pivot value $=7$
ata	
	$12 \geq 7 \geq 2$, swap 12 and 2
$\uparrow \uparrow$	
	$26 \geq 7 \geq 7$, swap 26 and 7
	$7 \geq 7 \geq 3$, swap 7 and 3
$\uparrow \uparrow$	
	i> j, stop patition
\uparrow	
	run quick sotr recursively
...	
123 ${ }^{57112} 1$	sorted

Efficiency of Quicksort (2)

The following transformations reduce this equation

$$
n C_{n}=n^{2}+n+2 \sum_{k=0}^{n-1} C_{k}
$$

Write the last equation for $n-1$:

$$
(n-1) C_{n-1}=(n-1)^{2}+(n-1)+2 \sum_{k=0}^{n-2} C_{k}
$$

and subtract to eliminate the sum:

$$
\begin{aligned}
n C_{n}-(n-1) C_{n-1} & =n^{2}+n+2 C_{n-1}-(n-1)^{2}-(n-1) \\
n C_{n}-n C_{n-1}+C_{n-1} & =n^{2}+n+2 C_{n-1}-n^{2}+2 n-1-n+1 \\
n C_{n}-n C_{n-1} & =C_{n-1}+2 n \\
n C_{n} & =(n+1) C_{n-1}+2 n
\end{aligned}
$$

Efficiency of Quicksort (3)

Equation $n C_{n}=(n+1) C_{n-1}+2 n$

- Evaluate summation factor with $a_{n}=n, b_{n}=n+1$ and $c_{n}=2 n$:

$$
s_{n}=\frac{a_{1} a_{2} \cdots a_{n-1}}{b_{2} b_{3} \cdots b_{n}}=\frac{1 \cdot 2 \cdots(n-1)}{3 \cdot 4 \cdots(n+1)}=\frac{2}{n(n+1)}
$$

- Then the solution of the recurrence is:

$$
\begin{aligned}
C_{n} & =\frac{1}{s_{n} a_{n}}\left(s_{1} b_{1} C_{0}+\sum_{k=1}^{n} s_{k} c_{k}\right) \\
& =\frac{n+1}{2} \sum_{k=1}^{n} \frac{4 k}{k(k+1)} \\
& =2(n+1) \sum_{k=1}^{n} \frac{1}{k+1}=2(n+1)\left(\sum_{k=1}^{n} \frac{1}{k}+\frac{1}{n+1}-1\right) \\
& =2(n+1) H_{n}-2 n
\end{aligned}
$$

where $H_{n}=1+\frac{1}{2}+\frac{1}{3}+\ldots+\frac{1}{n} \approx \ln n$ is the nth harmonic number.

Next subsection

1 Sums and Recurrences

- Reduction to known solutions
- Summation factors
- Integrals

2 Manipulation of Sums

3 Multiple sums

- Expand and contract

A basic continuous method for discrete mathematics

To compute a sum of the form $S_{n}=\sum_{k=1}^{n} a_{k}$:
1 Choose a continuous function $f(x)$ such that $f(k)=a_{k}$ for every $k>0$ integer.
2 Identify the sequence $\left\langle a_{k}\right\rangle$ with the staircase function

$$
a(x)=\sum_{k \geqslant 1} a_{k}[k-1<x \leqslant k]
$$

3 Determine an error term E_{n} such that:

$$
S_{n}=\int_{0}^{n} f(x) d x+E_{n} \text { for every } n \geqslant 1
$$

4 Express E_{n} itself as a sum:

$$
E_{n}=\sum_{k=1}^{n}\left(a_{k}-\int_{k-1}^{k} f(x) d x\right)
$$

5 Use a closed form for E_{n} to determine a closed form for S_{n}.

Example

Example: $\square_{n}=\sum_{0 \leqslant k \leqslant n} k^{2}$ for $n \geqslant 0$

Replace sums by integrals.

Example

Example: $\square_{n}=\sum_{0 \leqslant k \leqslant n} k^{2}$ for $n \geqslant 0$

Replace sums by integrals.

Evaluate (3):

$$
\begin{aligned}
E_{n} & =\sum_{k=1}^{n}\left(k^{2}-\int_{k-1}^{k} x^{2} d x\right) \\
& =\sum_{k=1}^{n}\left(k^{2}-\frac{k^{3}-(k-1)^{3}}{3}\right) \\
& =\sum_{k=1}^{n}\left(k-\frac{1}{3}\right) \\
& =\frac{(n+1) n}{2}-\frac{n}{3}=\frac{3 n^{2}+n}{6}
\end{aligned}
$$

Finally, from (2) and (1) we get :

$$
\square_{n}=\frac{n^{3}}{3}+\frac{3 n^{2}+n}{6}=\frac{n(n+1)(2 n+1)}{6}
$$

Next section

1 Sums and Recurrences

- Reduction to known so utions
- Summation factors
- Integrals

2 Manipulation of Sums

3 Multiple sums
 - Expand and contract

Manipulation of Sums

For every finite set K and permutation $p(k)$ of K :

- Distributive law:

$$
\sum_{k \in K} c a_{k}=c \sum_{k \in K} a_{k}
$$

- Associative law:

$$
\sum_{k \in K}\left(a_{k}+b_{k}\right)=\sum_{k \in K} a_{k}+\sum_{k \in K} b_{k}
$$

- Commutative law:

$$
\sum_{k \in K} a_{k}=\sum_{p(k) \in K} a_{p(k)}
$$

All of the above work because the summands are nonzero at most finitely many times. (More on this later.)

Example: Arithmetic progressions

Let's compute again:

$$
S=\sum_{0 \leqslant k \leqslant n}(a+b k)
$$

$$
\begin{aligned}
S & =\sum_{0 \leqslant n-k \leqslant n}(a+b(n-k)) \text { by commutativity } \\
& =\sum_{0 \leqslant k \leqslant n}(a+b n-b k) \text { because }[0 \leqslant k \leqslant n]=[0 \leqslant n-k \leqslant n] \\
2 S & =\sum_{0 \leqslant k \leqslant n}((a+b k)+(a+b n-b k)) \text { by associativity } \\
& =\sum_{0 \leqslant k \leqslant n}(2 a+b n) \\
2 S & =(2 a+b n) \sum_{0 \leqslant k \leqslant n} 1 \text { by distributivity } \\
& =(2 a+b n)(n+1)
\end{aligned}
$$

Again, but only using basic properties:

$$
S=(n+1) a+\frac{n(n+1)}{2} b
$$

Yet Another Useful Equality

The Inclusion-Exclusion Principle

For any two finite sets K and K^{\prime} :

$$
\sum_{k \in K} a_{k}+\sum_{k \in K^{\prime}} a_{k}=\sum_{k \in K \cup K^{\prime}} a_{k}+\sum_{k \in K \cap K^{\prime}} a_{k}
$$

Examples:
1 For $1 \leqslant m \leqslant n$:

$$
\sum_{k=1}^{m} a_{k}+\sum_{k=m}^{n} a_{k}=a_{m}+\sum_{k=1}^{n} a_{k}
$$

2 For $n \geqslant 0$:

$$
\sum_{0 \leqslant k \leqslant n} a_{k}=a_{0}+\sum_{1 \leqslant k \leqslant n} a_{k}
$$

3 For $n \geqslant 0$:

$$
S_{n}+a_{n+1}=a_{0}+\sum_{0 \leqslant k \leqslant n} a_{k+1}
$$

that is, we recover the perturbation method!

Next section

1 Sums and Recurrences
 - Reduction to known solutions
 - Summation factors
 - Integrals

2 Manipulation of Sums

3 Multiple sums
Expand and contract

Multiple sums

Definition

If H is a finite subset of \mathbb{Z}^{2}, we put:

$$
\sum_{(j, k) \in H} a_{j, k}=\sum_{j, k} a_{j, k}[P(j, k)]
$$

where $P(j, k)=(j, k) \in H$.
As only finitely many summands are nonzero, the usual properties of sums can be applied, and the following holds:

Law of interchange of order of summation

$$
\sum_{j} \sum_{k} a_{j, k}[P(j, k)]=\sum_{j, k} a_{j, k}[P(j, k)]=\sum_{k} \sum_{j} a_{j, k}[P(j, k)]
$$

Multiple sums with independent indices

If $P(j, k)=Q(j) \wedge R(k)$, then the indices j and k are independent and the double sum can be rewritten:

$$
\begin{aligned}
\sum_{j, k} a_{j, k} & =\sum_{j, k} a_{j, k}([Q(j) \wedge R(k)]) \\
& =\sum_{j, k} a_{j, k}[Q(j)][R(k)] \\
& =\sum_{j}[Q(j)] \sum_{k} a_{j, k}[R(k)] \text { by commutativity, distributivity and associativity } \\
& =\sum_{j} \sum_{k} a_{j, k} \\
& =\sum_{k}[R(k)] \sum_{j} a_{j, k}[Q(j)] \\
& =\sum_{k} \sum_{j} a_{j, k}
\end{aligned}
$$

Multiple sums with dependent indices

In general, the indices are not independent, but we can write:

$$
P(j, k)=Q(j) \wedge R^{\prime}(j, k)=R(k) \wedge Q^{\prime}(j, k)
$$

In this case, for $K^{\prime}(j)=\left\{k \mid R^{\prime}(j, k)\right\}$ and $J^{\prime}(k)=\left\{j \mid Q^{\prime}(j, k)\right\}$ we can proceed as follows:

$$
\begin{aligned}
\sum_{j, k} a_{j, k} & =\sum_{j, k} a_{j, k}[Q(j)]\left[R^{\prime}(j, k)\right] \\
& =\sum_{j}[Q(j)] \sum_{k} a_{j, k}\left[R^{\prime}(j, k)\right]=\sum_{j \in J} \sum_{k \in K^{\prime}(j)} a_{j, k} \\
& =\sum_{k}[R(k)] \sum_{j} a_{j, k}\left[Q^{\prime}(j, k)\right]=\sum_{k \in K} \sum_{j \in J^{\prime}(k)} a_{j, k}
\end{aligned}
$$

Warmup: what's wrong with this sum?

$$
\begin{aligned}
& =\sum_{i=1}^{\sum_{i}^{2}} \\
& =\sum_{i=1}^{2} \\
& =n^{2}
\end{aligned}
$$

Warmup: what's wrong with this sum?

$$
\begin{aligned}
\left(\sum_{j=1}^{n} a_{j}\right) \cdot\left(\sum_{k=1}^{n} \frac{1}{a_{k}}\right) & =\sum_{j=1}^{n} \sum_{k=1}^{n} \frac{a_{j}}{a_{k}} \\
& =\sum_{k=1}^{n} \sum_{k=1}^{n} \frac{a_{k}}{a_{k}} \\
& =\sum_{k=1}^{n} \sum_{k=1}^{n} 1 \\
& =n^{2}
\end{aligned}
$$

Solution

The second passage is seriously wrong:
It is not licit to turn two independent variables into two dependent ones.

Examples of multiple summing: Mutual upper bounds

Compute: $\sum_{j=1}^{n} \sum_{k=j}^{n} a_{j} a_{k}=\sum_{1 \leqslant j \leqslant n} \sum_{j \leqslant k \leqslant n} a_{j} a_{k}$.

Examples of multiple summing: Mutual upper bounds

Compute: $\sum_{j=1}^{n} \sum_{k=j}^{n} a_{j} a_{k}=\sum_{1 \leqslant j \leqslant n} \sum_{j \leqslant k \leqslant n} a_{j} a_{k}$.

A crucial observation

$$
[1 \leqslant j \leqslant n][j \leqslant k \leqslant n]=[1 \leqslant j \leqslant k \leqslant n]=[1 \leqslant k \leqslant n][1 \leqslant j \leqslant k]
$$

Hence,

$$
\sum_{j=1}^{n} \sum_{k=j}^{n} a_{j} a_{k}=\sum_{k=1}^{n} \sum_{j=1}^{k} a_{j} a_{k}
$$

Also,

$$
[1 \leqslant j \leqslant k \leqslant n]+[1 \leqslant k \leqslant j \leqslant n]=[1 \leqslant j, k \leqslant n]+[1 \leqslant j=k \leqslant n]
$$

Examples of multiple summing: Mutual upper bounds

Compute: $\sum_{j=1}^{n} \sum_{k=j}^{n} a_{j} a_{k}=\sum_{1 \leqslant j \leqslant n} \sum_{j \leqslant k \leqslant n} a_{j} a_{k}$.

A crucial observation (cont.)

This can also be understood by considering the following matrix:

$$
\left(\begin{array}{ccccc}
a_{1} a_{1} & a_{1} a_{2} & a_{1} a_{3} & \ldots & a_{1} a_{n} \\
a_{2} a_{1} & a_{2} a_{2} & a_{2} a_{3} & \ldots & a_{2} a_{n} \\
a_{3} a_{1} & a_{3} a_{2} & a_{3} a_{3} & \ldots & a_{2} a_{n} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
a_{n} a_{1} & a_{n} a_{2} & a_{n} a_{3} & \ldots & a_{n} a_{n}
\end{array}\right)
$$

and observing that $\sum_{j=1}^{n} \sum_{k=j}^{n} a_{j} a_{k}=S_{U}$ is the sum of the elements of the upper triangular part of the matrix.

Examples of multiple summing: Mutual upper bounds

Compute: $\sum_{j=1}^{n} \sum_{k=j}^{n} a_{j} a_{k}=\sum_{1 \leqslant j \leqslant n} \sum_{j \leqslant k \leqslant n} a_{j} a_{k}$.

A crucial observation (end)

If we add to S_{U} the sum $S_{L}=\sum_{k=1}^{n} \sum_{j=1}^{k} a_{j} a_{k}$ of the elements of the lower triangular part of the matrix, we count each element of the matrix once, except those on the main diagonal, which we count twice.
But the matrix is symmetric, so $S_{U}=S_{L}$, and

$$
S_{U}=\frac{1}{2}\left(\left(\sum_{k=1}^{n} a_{k}\right)^{2}+\sum_{k=1}^{n} a_{k}^{2}\right)
$$

Examples of multiple summation

Example 1

$$
\begin{aligned}
S_{n} & =\sum_{1 \leqslant k \leqslant n} \sum_{1 \leqslant j<k} \frac{1}{k-j} \\
& =\sum_{1 \leqslant k \leqslant n} \sum_{1 \leqslant k-j<k} \frac{1}{j} \\
& =\sum_{1 \leqslant k \leqslant n} \sum_{0<j \leqslant k-\mathbf{1}} \frac{1}{j} \\
& =\sum_{1 \leqslant k \leqslant n} H_{k-\mathbf{1}} \\
& =\sum_{1 \leqslant k+1 \leqslant n} H_{k} \\
& =\sum_{0 \leqslant k<n} H_{k}
\end{aligned}
$$

Examples of multiple summation

Example 2

$$
\begin{aligned}
S_{n} & =\sum_{1 \leqslant j \leqslant n} \sum_{j<k \leqslant n} \frac{1}{k-j} \\
& =\sum_{1 \leqslant j \leqslant n} \sum_{j<k+j \leqslant n} \frac{1}{k} \\
& =\sum_{1 \leqslant j \leqslant n} \sum_{0<k \leqslant n-j} \frac{1}{k} \\
& =\sum_{1 \leqslant j \leqslant n} H_{n-j} \\
& =\sum_{1 \leqslant n-j \leqslant n} H_{j} \\
& =\sum_{0 \leqslant j<n} H_{j}
\end{aligned}
$$

Examples of multiple summation

Example 3

$$
\begin{aligned}
S_{n} & =\sum_{1 \leqslant j<k \leqslant n} \frac{1}{k-j} \\
& =\sum_{1 \leqslant j<k+j \leqslant n} \frac{1}{k} \\
& =\sum_{1 \leqslant k \leqslant n} \sum_{1 \leqslant j \leqslant n-k} \frac{1}{k} \\
& =\sum_{1 \leqslant k \leqslant n} \frac{n-k}{k} \\
& =\sum_{1 \leqslant k \leqslant n} \frac{n}{k}-\sum_{1 \leqslant k \leqslant n} 1 \\
& =n\left(\sum_{1 \leqslant k \leqslant n} \frac{1}{k}\right)-n \\
& =n H_{n}-n
\end{aligned}
$$

Next subsection

1 Sums and Recurrences

- Reduction to known solutions
- Summation factors
- Integrals

2 Manipulation of Sums

3 Multiple sums

- Expand and contract

Another way of "simplifying by complicating"

To compute a sum of the form $S_{n}=\sum_{1 \leqslant k \leqslant n} a_{k}$:
1 Expand the summand a_{k} by introducing a new variable j and new summands b_{j}, c_{k} such that:

$$
a_{k}=\sum_{1 \leqslant j \leqslant k} b_{j} c_{k}
$$

2 Rewrite the sum $\sum_{1 \leqslant k \leqslant n} a_{k}$ as the double sum $\sum_{1 \leqslant j \leqslant k \leqslant n} b_{j} c_{k}$.
3 Contract the summands into a sum over k parameterized by j :

$$
S_{n}=\sum_{1 \leqslant k \leqslant n}\left(\sum_{1 \leqslant j \leqslant k} b_{j}\right) c_{k}=\sum_{1 \leqslant j \leqslant n} b_{j}\left(\sum_{j \leqslant k \leqslant n} c_{k}\right)
$$

4 Sum over j to obtain a closed form for S_{n}.

Example: again, $\square_{n}=\sum_{0 \leqslant k \leqslant n} k^{2}$

1 Expand: $k^{2}=k \cdot k=\left(\sum_{j=1}^{k} 1\right) \cdot k$.
2 Write the double sum: $\square_{n}=\sum_{1 \leqslant j \leqslant k \leqslant n} k$.
3 Contract by summing over k :

$$
\begin{aligned}
\square_{n} & =\sum_{j=1}^{n} \sum_{k=j}^{n} k \\
& =\sum_{j=1}^{n}\left(\sum_{k=1}^{n} k-\sum_{k=1}^{j-1} k\right) \\
& =\sum_{j=1}^{n}\left(\frac{n(n+1)}{2}-\frac{(j-1) j}{2}\right) \\
& =\frac{1}{2}\left(n^{2}(n+1)-\sum_{j=1}^{n} j^{2}+\sum_{j=1}^{n} j\right) \\
& =\frac{n^{2}(n+1)}{2}-\frac{1}{2} \square_{n}+\frac{n(n+1)}{4}
\end{aligned}
$$

4 Derive a closed form for \square_{n} :

$$
\frac{3}{2} \square_{n}=\frac{n+1}{4} \cdot\left(2 n^{2}+n\right), \text { that is, } \square_{n}=\frac{n(n+1)(2 n+1)}{6}
$$

