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Example 3: Hanoi sequence

Consider again the Tower of Hanoi recurrence:

T0 = 0

Tn = 2Tn−1+1



Example 3: Hanoi sequence

Consider again the Tower of Hanoi recurrence:

T0 = 0

Tn = 2Tn−1+1

This sequence can be transformed into a geometric sum using the following
manipulations:

Divide both equalities by 2n:

T0/2
0 = 0

Tn/2
n = Tn−1/2

n−1+1/2n

Set Sn = Tn/2
n to have:

S0 = 0

Sn = Sn−1+2−n

This is almost the geometric sum with the parameters a= 1 and x = 1/2:
Only the initial summand 1 is missing.
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Example 3: Hanoi sequence

Consider again the Tower of Hanoi recurrence:

T0 = 0

Tn = 2Tn−1+1

Hence,

Sn =
0.5(0.5n−1)
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(a0 = 0 has been left out of the sum)

= 1−2−n

Tn = 2nSn = 2n−1



Example 3: Hanoi sequence

Consider again the Tower of Hanoi recurrence:

T0 = 0

Tn = 2Tn−1+1

Hence,

Sn =
0.5(0.5n−1)

0.5−1
(a0 = 0 has been left out of the sum)

= 1−2−n

Tn = 2nSn = 2n−1

Just the same result we have proven by means of induction! :))
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Summation factor: Idea

We want to solve a linear recurrence of the form:

anTn = bnTn−1+cn for every n > 0

where:

1 〈an〉, 〈bn〉 and 〈cn〉 are arbitrary sequences; and

2 for every n > 0, an 6= 0 and bn 6= 0.

We also assume that the initial value T0 is given.

The idea

Find a summation factor sn satisfying the following property:

snbn = sn−1an−1 for every n > 1



Summation factor: Realization

If a sequence 〈sn〉 as in the previous slide exists, then:

1 snanTn = snbnTn−1+ sncn = sn−1an−1Tn−1+ sncn.

2 Set Sn = snanTn and rewrite the equation as:

S0 = s0a0T0

Sn = Sn−1+ sncn

3 This yields a closed formula (!) for solution:

Tn =
1

snan

(
s0a0T0+

n

∑
k=1

skck

)
=

1

snan

(
s1b1T0+

n

∑
k=1

skck

)
for every n > 0



Finding a summation factor

Assuming that bn 6= 0 for every n:

1 Set s0 = 1 and also a0 = 1.

2 Compute the next elements using the property

snbn = sn−1an−1:

s1 =
1

b1
=

a0
b1

s2 =
s1a1
b2

=
a0a1
b1b2

s3 =
s2a2
b3

=
a0a1a2
b1b2b3

= . . .

sn =
sn−1an−1

bn
=

a0a1 · · ·an−1
b1b2 · · ·bn

(To be proved by induction!)



Example: application of summation factor

an = cn = 1 and bn = 2 gives the Hanoi Tower sequence:

Evaluate the summation factor:

sn =
sn−1an−1

bn
=

a0a1 · · ·an−1
b1b2 · · ·bn

=
1

2n

The solution is:

Tn =
1

snan

(
s1b1T0+

n

∑
k=1

skck

)
= 2n

n

∑
k=1

1

2k
= 2n(1−2−n) = 2n−1



Yet Another Example: constant coe�cients

Equation Zn = aZn−1+b

Taking an = 1, bn = a and cn = b:

Evaluate summation factor:

sn =
sn−1an−1

bn
=

a0a1 . . .an−1
b1b2 . . .bn

=
1

an

The solution is:

Zn =
1

snan

(
s1b1Z0+

n

∑
k=1

skck

)
= an

(
Z0+b

n

∑
k=1

1

ak

)
= anZ0+b

(
1+a+a2+ · · ·+an−1

)
= anZ0+

an−1
a−1

b



Yet Another Example: check up on results

Equation Zn = aZn−1+b

Zn = aZn−1+b

= a2Zn−2+ab+b

= a3Zn−3+a2b+ab+b

· · · · · ·

= akZn−k +(ak−1+ak−2+ . . .+1)b

= akZn−k +
ak −1
a−1

b (assuming a 6= 1)

Continuing until k = n:

Zn = anZn−n+
an−1
a−1

b

= anZ0+
an−1
a−1

b



E�ciency of Quicksort

Average number of comparisons: Cn = n+1+ 2
n ∑

n−1
k=0Ck , C0 = 0.



E�ciency of Quicksort (2)

The following transformations reduce this equation

nCn = n2+n+2
n−1

∑
k=0

Ck

Write the last equation for n−1:

(n−1)Cn−1 = (n−1)2+(n−1)+2
n−2

∑
k=0

Ck

and subtract to eliminate the sum:

nCn− (n−1)Cn−1 = n2+n+2Cn−1− (n−1)2− (n−1)

nCn−nCn−1+Cn−1 = n2+n+2Cn−1−n2+2n−1−n+1

nCn−nCn−1 = Cn−1+2n

nCn = (n+1)Cn−1+2n



E�ciency of Quicksort (3)

Equation nCn = (n+1)Cn−1+2n

Evaluate summation factor with an = n, bn = n+1 and cn = 2n:

sn =
a1a2 · · ·an−1
b2b3 · · ·bn

=
1 ·2 · · ·(n−1)
3 ·4 · · ·(n+1)

=
2

n(n+1)

Then the solution of the recurrence is:

Cn =
1

snan

(
s1b1C0+

n

∑
k=1

skck

)

=
n+1

2

n

∑
k=1

4k

k(k+1)

= 2(n+1)
n

∑
k=1

1

k+1
= 2(n+1)

(
n

∑
k=1

1

k
+

1

n+1
−1

)
= 2(n+1)Hn−2n

where Hn = 1+ 1
2 +

1
3 + . . .+ 1

n ≈ lnn is the nth harmonic number.
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A basic continuous method for discrete mathematics

To compute a sum of the form Sn = ∑
n
k=1 ak :

1 Choose a continuous function f (x) such that f (k) = ak for every k > 0 integer.

2 Identify the sequence 〈ak 〉 with the staircase function

a(x) = ∑
k>1

ak [k−1< x 6 k]

3 Determine an error term En such that:

Sn =
∫ n

0
f (x)dx+En for every n > 1

4 Express En itself as a sum:

En =
n

∑
k=1

(
ak −

∫ k

k−1
f (x)dx

)

5 Use a closed form for En to determine a closed form for Sn.



Example

Example: �n = ∑06k6n k
2 for n > 0

Replace sums by integrals.

∫ n

0
x2 dx =

n3

3
(1)

�n =
∫ n

0
x2 dx+En (2)

En =
n

∑
k=1

(
k2−

∫ k

k−1
x2 dx

)
(3)



Example

Example: �n = ∑06k6n k
2 for n > 0

Replace sums by integrals.

Evaluate (3):

En =
n

∑
k=1

(
k2−

∫ k

k−1
x2 dx

)
=

n

∑
k=1

(
k2− k3− (k−1)3

3

)
=

n

∑
k=1

(
k− 1

3

)
=

(n+1)n

2
− n

3
=

3n2+n

6
.

Finally, from (2) and (1) we get :

�n =
n3

3
+

3n2+n

6
=

n(n+1)(2n+1)

6
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Manipulation of Sums

For every �nite set K and permutation p(k) of K :

Distributive law:

∑
k∈K

cak = c ∑
k∈K

ak

Associative law:

∑
k∈K

(ak +bk ) = ∑
k∈K

ak + ∑
k∈K

bk

Commutative law:

∑
k∈K

ak = ∑
p(k)∈K

ap(k)

All of the above work because the summands are nonzero at most �nitely many times.
(More on this later.)



Example: Arithmetic progressions

Let's compute again:
S = ∑

06k6n

(a+bk)

S = ∑
06n−k6n

(a+b(n−k)) by commutativity

= ∑
06k6n

(a+bn−bk) because [06 k 6 n] = [06 n−k 6 n]

2S = ∑
06k6n

((a+bk)+(a+bn−bk)) by associativity

= ∑
06k6n

(2a+bn)

2S = (2a+bn) ∑
06k6n

1 by distributivity

= (2a+bn)(n+1)

Again, but only using basic properties:

S = (n+1)a+
n(n+1)

2
b



Yet Another Useful Equality

The Inclusion-Exclusion Principle

For any two �nite sets K and K ′:

∑
k∈K

ak + ∑
k∈K ′

ak = ∑
k∈K∪K ′

ak + ∑
k∈K∩K ′

ak

Examples:

1 For 16m 6 n:
m

∑
k=1

ak +
n

∑
k=m

ak = am+
n

∑
k=1

ak

2 For n > 0:

∑
06k6n

ak = a0+ ∑
16k6n

ak

3 For n > 0:
Sn+an+1 = a0+ ∑

06k6n

ak+1

that is, we recover the perturbation method!
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Multiple sums

De�nition

If H is a �nite subset of Z2, we put:

∑
(j ,k)∈H

aj ,k = ∑
j ,k

aj ,k [P(j ,k)]

where P(j ,k) = (j ,k) ∈H.

As only �nitely many summands are nonzero, the usual properties of sums can be
applied, and the following holds:

Law of interchange of order of summation

∑
j

∑
k

aj ,k [P(j ,k)] = ∑
j ,k

aj ,k [P(j ,k)] = ∑
k

∑
j

aj ,k [P(j ,k)]



Multiple sums with independent indices

If P(j ,k) =Q(j)∧R(k), then the indices j and k are independent and the double sum
can be rewritten:

∑
j ,k

aj ,k = ∑
j ,k

aj ,k ([Q(j)∧R(k)])

= ∑
j ,k

aj ,k [Q(j)] [R(k)]

= ∑
j

[Q(j)]∑
k

aj ,k [R(k)] by commutativity, distributivity and associativity

= ∑
j

∑
k

aj ,k

= ∑
k

[R(k)]∑
j

aj ,k [Q(j)]

= ∑
k

∑
j

aj ,k



Multiple sums with dependent indices

In general, the indices are not independent, but we can write:

P(j ,k) =Q(j)∧R ′(j ,k) = R(k)∧Q ′(j ,k)

In this case, for K ′(j) = {k | R ′(j ,k)} and J ′(k) = {j |Q ′(j ,k)} we can proceed as
follows:

∑
j ,k

aj ,k = ∑
j ,k

aj ,k [Q(j)][R ′(j ,k)]

= ∑
j

[Q(j)]∑
k

aj ,k [R
′(j ,k)] = ∑

j∈J
∑

k∈K ′(j)
aj ,k

= ∑
k

[R(k)]∑
j

aj ,k [Q
′(j ,k)] = ∑

k∈K
∑

j∈J ′(k)
aj ,k



Warmup: what's wrong with this sum?

(
n

∑
j=1

aj

)
·

(
n

∑
k=1

1

ak

)
=

n

∑
j=1

n

∑
k=1

aj
ak

=
n

∑
k=1

n

∑
k=1

ak
ak

=
n

∑
k=1

n

∑
k=1

1

= n2



Warmup: what's wrong with this sum?

(
n

∑
j=1

aj

)
·

(
n

∑
k=1

1

ak

)
=

n

∑
j=1

n

∑
k=1

aj
ak

=
n

∑
k=1

n

∑
k=1

ak
ak

=
n

∑
k=1

n

∑
k=1

1

= n2

Solution

The second passage is seriously wrong:
It is not licit to turn two independent variables into two dependent ones.



Examples of multiple summing: Mutual upper bounds

Compute: ∑
n
j=1∑

n
k=j ajak = ∑16j6n ∑j6k6n ajak .



Examples of multiple summing: Mutual upper bounds

Compute: ∑
n
j=1∑

n
k=j ajak = ∑16j6n ∑j6k6n ajak .

A crucial observation

[16 j 6 n] [j 6 k 6 n] = [16 j 6 k 6 n] = [16 k 6 n] [16 j 6 k]

Hence,
n

∑
j=1

n

∑
k=j

ajak =
n

∑
k=1

k

∑
j=1

ajak

Also,
[16 j 6 k 6 n]+ [16 k 6 j 6 n] = [16 j ,k 6 n]+ [16 j = k 6 n]



Examples of multiple summing: Mutual upper bounds

Compute: ∑
n
j=1∑

n
k=j ajak = ∑16j6n ∑j6k6n ajak .

A crucial observation (cont.)

This can also be understood by considering the following matrix:


a1a1 a1a2 a1a3 . . . a1an
a2a1 a2a2 a2a3 . . . a2an
a3a1 a3a2 a3a3 . . . a2an
...

...
...

. . .
...

ana1 ana2 ana3 . . . anan


and observing that ∑

n
j=1 ∑

n
k=j ajak = SU is the sum of the elements of the upper

triangular part of the matrix.



Examples of multiple summing: Mutual upper bounds

Compute: ∑
n
j=1∑

n
k=j ajak = ∑16j6n ∑j6k6n ajak .

A crucial observation (end)

If we add to SU the sum SL = ∑
n
k=1 ∑

k
j=1 ajak of the elements of the lower triangular

part of the matrix, we count each element of the matrix once, except those on the
main diagonal, which we count twice.
But the matrix is symmetric, so SU = SL, and

SU =
1

2

( n

∑
k=1

ak

)2

+
n

∑
k=1

a2k





Examples of multiple summation

Example 1

Sn = ∑
16k6n

∑
16j<k

1

k− j

= ∑
16k6n

∑
16k−j<k

1

j

= ∑
16k6n

∑
0<j6k−1

1

j

= ∑
16k6n

Hk−1

= ∑
16k+16n

Hk

= ∑
06k<n

Hk



Examples of multiple summation

Example 2

Sn = ∑
16j6n

∑
j<k6n

1

k− j

= ∑
16j6n

∑
j<k+j6n

1

k

= ∑
16j6n

∑
0<k6n−j

1

k

= ∑
16j6n

Hn−j

= ∑
16n−j6n

Hj

= ∑
06j<n

Hj



Examples of multiple summation

Example 3

Sn = ∑
16j<k6n

1

k− j

= ∑
16j<k+j6n

1

k

= ∑
16k6n

∑
16j6n−k

1

k

= ∑
16k6n

n−k

k

= ∑
16k6n

n

k
− ∑

16k6n

1

= n

(
∑

16k6n

1

k

)
−n

= nHn−n
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Another way of �simplifying by complicating�

To compute a sum of the form Sn = ∑16k6n ak :

1 Expand the summand ak by introducing a new variable j and new summands
bj ,ck such that:

ak = ∑
16j6k

bjck

2 Rewrite the sum ∑16k6n ak as the double sum ∑16j6k6n bjck .

3 Contract the summands into a sum over k parameterized by j :

Sn = ∑
16k6n

(
∑

16j6k

bj

)
ck = ∑

16j6n

bj

(
∑

j6k6n

ck

)

4 Sum over j to obtain a closed form for Sn.



Example: again, �n = ∑06k6n k
2

1 Expand: k2 = k ·k =
(

∑
k
j=1 1

)
·k.

2 Write the double sum: �n = ∑16j6k6n k.

3 Contract by summing over k:

�n =
n

∑
j=1

n

∑
k=j

k

=
n

∑
j=1

(
n

∑
k=1

k−
j−1

∑
k=1

k

)

=
n

∑
j=1

(
n(n+1)

2
− (j−1)j

2

)

=
1

2

(
n2(n+1)−

n

∑
j=1

j2+
n

∑
j=1

j

)

=
n2(n+1)

2
− 1

2
�n+

n(n+1)

4

4 Derive a closed form for �n:

3

2
�n =

n+1

4
· (2n2+n) , that is, �n =

n(n+1)(2n+1)

6
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