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Next section

Infinite Sums
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How to sum infinite number sequences?

Setting Y ey ak = lim, e Y7 ax seems meaningful ...

Example 1

Let
S=lts4t4ii—ptp 1
- 2 4 8 16 32 64 128 ’
Then 1 1 1 1 1 1
25:2+1+§+Z+§+E+§+a+'”:2‘1‘5,
and

SEY
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How to sum infinite number sequences?

Setting Yxen ak = limpye Yf_g ak Seems meaningful . ..

Example 1

Let
5—1+1+1+1+1+1+1+ L +
T 2'4 8 16 32 64 128
Then 1 1 1 1 1 1
25:2+1+§+Z+§+R+372+674+“.:2+5’
and

5=2

But can we manipulate such sums like we do with finite sums?
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How to sum infinite number sequences?

Example 2

Let
T=1+2+4+8+16+32+64+...

Then
2T =2+4+4+8+16+32+64+128...=T —1

and
T=-1

TAL
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How to sum infinite number sequences?

Example 2

Let
T=14+2+4+8+16+324+64+...
Then
2T =2+4+8+16+324+64+128...=T—1
and

T=-1

Problem:
m The sum T is infinite . ..

m and we cannot subtract an infinite quantity from another infinite quantity.
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How to sum infinite number sequences?

Example 3

Let
Y (-Df=1-141-1+1-1+1-1+...
k=0

Different ways to sum
Q-1)+(1-1)+(1-1)+(1-1)+...=0+0+0+0+...=0
and

1-(1-1)-(1-1)-(1-1)—(1-1)—...=1-0-0-0-0-0—...=1




How to sum infinite number sequences?

Example 3

Let
Y (-Df=1-141-1+1-1+1-1+...
k>0

Different ways to sum
a-1y)+1-1)+(1-1)+(1-1)+...=04+04+0+4+0+...=0
and
1-(1-1)-(1-1)-(1-1)—-(1-1)-...=1-0-0-0-0-0—...=1
Problem:

m The sequence of the partial sums does not converge ...

= and we cannot manipulate something that does not exist.
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Defining Infinite Sums: Nonnegative Summands

If ay > 0 for every k > 0, then:

n
Zakzlim Zak: sup Zak
k>0 7% k=0 KCN,|K|<e keK

Note that:
m The definition as a limit is (sort of) a Riemann integral.

m The definition as a least upper bound is a Lebesgue integral with respect to the
counting measure

u(X)=if |K| = n € Nthen nelse +oo

m The limit / least upper bound above can be finite or infinite, but are always
equal.
Exercise: Prove this fact.
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Defining Infinite Sums: Riemann Summation

Definition 2 (Riemann sum of a series)

A series Y ;¢ ax with complex coefficients converges to a complex number S, called
the sum of the series, if:

n
lim Z ax=S.
n%wk=0

In this case, we write: Yy >pax = S.
The values S, =Y]_ ax are called the partial sums of the series.
The series Yy~ ax converges absolutely if ¥'4~¢ |ax| converges.

Note that the series Y 4~ ax = Y x>0 (bk + ick) converges to S = T + iU if and only if
Y k>0 b converges to T and Y~ cx converges to U.

A series that converges, but not absolutely

Let ay = (D [k>0]. Then } a,=In2
Kk = K a k>oak =InZ.
2n n
However, it is easy to prove by induction that Z lak| = Han > 5 for every n > 1.
k=0
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Infinite Sums: Associativity a series

Associativity

A series Y iq ax has the associative property if for every two strictly increasing
sequences
i=0<ii < <..<ip<igy1<...
Jo=0<j1<jo<...<jk<jky1<...

£('ta)-z(t)

we have:
k>0 \ i=ix k=0 \ j=jx

We have seen that the series 200(71)“ does not have the associative property.

Theorem

A series has the associative property if and only if it has a sum (finite or infinite).

Proof: Regrouping as in the definition means taking a subsequence of the sequence of
partial sums, which can converge to any of the latter's limit points.
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Defining Infinite Sums: Lebesgue Summation

Every real number can be written as x = xT — x~, where:

xT = x-[x > 0] = max(x,0) and x~ = —x-[x < 0] = max(—x,0)

Note that: xT >0, x~ >0, and x" +x~ = |x]|.

Definition 3 (Lebesgue sum of a series)

Let {ax}x be an absolutely convergent sequence of real numbers. Then:

Ya=Ya -Ya
k k k

The series Yy ag:
m converges absolutely if Y, at < +eoand Yy a, < +oo;
m diverges positively if ¥4 af =+ and Ty a, < +oo;
m diverges negatively if ¥ az' < oo and Yy a = +oo.
If both Y, a;f = +o0 and Y i a, = +oo then “Bad Stuff happens”. TAL
TECH



Infinite Sums: Bad Stuff

Riemann series theorem

Let Y, ax be a series with real coefficients which converges, but not absolutely.
For every real number L there exists a permutation p of N such that:

n

tim ¥ ap =L

Example: The harmonic series

1 1 1
If we rearrange the terms of the series 1 — > + T + ... as follows:
1 1 1+1 1 1+ I 1 1 1+
6 8 7 2k—1 2(2k-1) 4k 7

I U S B
T2\ 2k—1 2k

we obtain:

1 1 1 - 1 1 1 1 1 . TAL
1—§+§—Z+..._In2 but 1—§—Z+§—g—§+...—|n\/§ rECH



Infinite Sums: Commutativity

Commutativity

A series Yy~ ax has the commutative property if for every permutation p of N,

Z ap(k) = ;ak

k>0

The Riemann series theorem says that any series which is convergent, but not
absolutely convergent, does not have the commutative property.

Theorem

A convergent series has the commutative property if and only if it is absolutely
convergent.

Proof: (Sketch) Think of Lebesgue summation.
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Infinite Sums: Commutativity

Commutativity

A series Yy~ ax has the commutative property if for every permutation p of N,

Y a0 = L2
k>0 k

The Riemann series theorem says that any series which is convergent, but not
absolutely convergent, does not have the commutative property.

Theorem

A convergent series has the commutative property if and only if it is absolutely
convergent.

If we want to manipulate infinite sums like finite ones,
we must require absolute convergence.
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Infinite sums: Associativity two series

Two series Y, ak, Y x bi satisfy the associative property if:

Y (ak+be) =Y ax+ ) b
K K K

Can we say that any two series have the associative property?
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Infinite sums: Associativity two series

Two series Yy ax, Y « bk satisfy the associative property if:

Z(ak-l-bk) :Zak +Zbk
k k k

Can we say that any two series have the associative property? In general, no:
m Let ay = [k > m] and by = —[k > n] with m,n € Z.
m Then Y, ax =+ and ¥, by = —oo, but ¥y (ax + bx) = n—m.

m However, we have again the oo — oo issue. ..
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Infinite sums: Associativity two series

Two series Y ak, Y x bi satisfy the associative property if:

Y (a+b) =Y a+Y bi
3 3 K

Can we say that any two series have the associative property?

m If the a; and the by are all nonnegative, then ¥, (ax + bx) = Yk ax + Y bk

m If ¥, ax and ¥, be both have a limit and at most one of those limits is infinite,
then ¥ (ak + bk) = Lk ak + Lk bk

m If ¥, ax and ¥ bx both converge absolutely, then Y (ax + bx) also converges
absolutely.

TAL
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Next subsection

Infinite Sums
m Sums and limits
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Limits of sums, sums of limits

Consider the double indexed sequence:
1 .
ajk=-[l<k<]]
J
Then on the one hand:
Zaj,k =1 for every j, hence lim Zaj,k =1
K I

But on the other hand:

lim a; , = 0 for every k, hence Z limaj, =0
s Al




A positive result

Monotone Convergence Theorem

If the a;  are all nonnegative and for every k the sequence <aj1k>j>0 is monotone
nondecreasing, then:

lim) a;, =) limaj,
tim E = L fim
regardless of the two sides being finite or infinite.
Proof: Let ay =lim; ;. a;x =sup;ajx and S; =Y a; «-
= Then (S;) is nondecreasing and limj_,.. Sj = sup; Sj < Ly ax = L limjsee aj k.
m If the L.h.s. is 4o or the r.h.s. is 0, we have nothing else to do.
m Otherwise, suppose Yx ax > o > 0: We will prove that sup;S; > a too.
m Fix 6 > 0 such that ¥y ax > a@+26 too.
m Choose ki,...,k, such that ¥'7_; a, > a+9.

m Choose j such that aj, > a, — -2 for every 1 <i < n. Then:

Sj > iajaki>zak;—5'i%>a+5—6:a
=i k i=1

TAL
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What can we be sure of, in general?

If the aj , are all nonnegative, then:

Y liminfa;, <liminf) a;
k Sk

Proof: (Sketch) Apply the monotone convergence theorem to b;, = infiz; aj «.

TAL
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What can we be sure of, in general?

If the aj  are all nonnegative, then:

Y liminfa; e <liminf) a;
k7 J Tk

Dominated Convergence Theorem

If ax =limj_. aj « exists for every k and in addition there exists a sequence (by) such

that:
}aj’k| < by for every j >0, and
Yk bk < oo,

then:

l k= ak] =0;
Jim Y [ajx —a]

consequently,
lim) a;, =) ap=) limaj.
j—>°°zk" b Zk" Zk"j—m &

TAL
TECH

Proof: (Sketch) Apply Fatou's lemma to ¢j = 2by — |aj,k—ak .



1

A proof of the divergence of the harmonic series

1
By contradiction, assume Z — =5 < +oo.
i1k

1 . 1
m For, j,k>1 put aj, =~ [1 < k <j] and bk:?
J
m Then for every j and k, |aj x| < b, and Yy>q b converges.
m Now, limj_,. ajx =0 for every k, so Y1 limj . aj, =0.
m But Y>3« =1 for every j, so lim; .Y y>1ax =1.
|

This contradicts the Dominated Convergence Theorem.

TAL
LFrom the MathExchange thread “Awfully sophisticated proofs of simple facts". TECH



Next subsection

Infinite Sums

m Multiple infinite sums
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Multiple infinite sums

Definition: Double infinite sums

For every j,k >0 let a;, > 0.
If ajx >0 for every j and k, then:

Yajk=__ sup Y aj=lim ajk-
jk KCNxN,|K|<eo K 0<j,k<n

(Recall that Zog’kgn aj k = Zj,k aj k [0 S_/ < n] [O < k < n])
If ¥ & |ajk| < oo, then:

TAL
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Multiple infinite sums

Definition: Double infinite sums

For every j,k >0 let a;, > 0.
If ajx >0 for every j and k, then:

Yau= _sup Y aj=lim 3jk-
Jk KCNxN,|K|<e K 0<j,k<n

(Recall that ZOQ,an aj k = Zj,k aj k [0 <_] < n] [0 < k < n])
Y« }aj’k| < +oo, then:

Can we use Z Z aj k or Z Z aj k instead?

j>0k>0 k>0,>0

TAL
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Multiple infinite sums

Definition: Double infinite sums

For every j,k >0 let a;, > 0.
If aj 4 > 0 for every j and k, then:
¥, yJ
aj k= sup aj k= lim aj -
J'Zk . KngN,\Kkeo; J HMOQ_Z d
(Recall that Yogjk<najk =Ljkajk[0<j<n][0<k<n])
If ¥ & |ajk| < oo, then:

Canweuse Y Y ajcor Y Y aj instead?

j>0k>0 k>0,>0

In general, no:
m One writing is the limit on j of a limit on k which is a function of j;
m The other writing is the limit on k of a limit on j which is a function of k. TAL
m There are no guarantees that the double limits be equal! TECH



Multiple sums: An example of noncommutativity

From Joel Feldman's notes?

Let ajyk:[j:k:0]+[k:j+1]f[k:j71]:

| 0 1 2 3 4
0 1 t 0 0 0
1{-1 0o 1 0 0
2/ 0 -1 0 1 0
3] 0 0 -1 0 1

Then:
m for every j >0, Yys0ajk=2-[j=0];
m for every k>0, Yi>0ak=0; and
m for every n >0, Yogjk<najk = L.

Hence:
ZZa-k:2; ZZa-kzo;and lim ai,=1.
Jj I am W
Jj>0k>0 k>0,>0 0<j,k<n

feen
2 http://www.math.ubc.ca/ feldman/m321/twosum.pdf retrieved 21.02.2019.


http://www.math.ubc.ca/~feldman/m321/twosum.pdf

Multiple infinite sums: Swapping indices

For j,k >0 let a;, be real numbers.
Tonelli If aj, >0 for every j and k, then:

LY aiw= X bai =Y 3

j>0k>0 k>0,>0

regardless of the quantities above being finite or infinite.
Fubini If ¥; }aj’k| < +oo, then:

L L aik= X 2= Y3

j>0k>0 k>0,>0

Fubini's theorem is proved in the textbook.

TAL
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Multiple infinite sums: Swapping indices

For j,k >0 let a;, be real numbers.
Tonelli If aj, >0 for every j and k, then:

LY k= L X aik =k

j=>0k=>0 k>0,>0

regardless of the quantities above being finite or infinite.
Fubini If ¥ « |aj| < +oo, then:

L L= L o= Y3

j=0k>0 k>0,>0

Fubini's theorem is proved in the textbook. Again:

If we want to manipulate infinite sums like finite ones,
we must require absolute convergence.

TAL
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Next subsection

Infinite Sums

m Other summation criteria

TAL
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Cesaro summation

Given a series Y; ay, consider the sequence S, =Y }_ ax of the partial sums.
m Put u(x) =Y _5 Sk and v(x) = x. Then Au(x) =S, and Av(x)=1.

. S
= Suppose Y ax converges. Put L=Y,-gax =Ilim, . T"
n—1
N - k=0 Sk
m We then have by the Stolz-Cesaro lemma: lim,_o =, = L.

Given a (not necessarily convergent) series Y, ax, the quantity:
n—1 S
Czak = lim @
" n—soo n

if it exists, is called the Cesaro sum of the series Y ax.

TAL
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Cesaro sum without convergence

The series ) (—1) does not converge. However:
k>0

n
Sn= Z (=1)¥ = [nis even]
k=0
so for every n>1:
n—1 n—1
Z Sk = Z [k is even]
k=0 k=0

n;l —|—1) [n—11is even]

= g[n—lisodd]-i-(

n n+[nis odd]

2

1
= g [nis even] + ; [nis odd] =

The Cesaro sum of a; = (—1) is thus:

.1 n+[nisodd] 1
= k — — =
CXk:( = r!l—T-o n 2 2
n_ |0 2 4 6 7 8 9
an I -I 1 -1 1 -1 1 -1 1 -1
Sn 1 o1 01 01 01 0 TAL
YitSc|o 11 2 2 3 3 4 4 5 TECH




Convergence of sequences of functions

Let E CC and, for every n€N, let f,: E— C. Let also f: E — C.

m We say that f, converges pointwise to f if for every € >0 and for every x € E
there exists n € N such that:

|fa(x) — f(x)| < € forevery n> ng.

m We say that f, converges uniformly to f if for every € > 0 there exists ng € N
such that for every x € E:

[fa(x) — f(x)| < & forevery n> n.

Difference:
m With pointwise convergence, ne depends on both € and x.

m With uniform convergence, ne depends on &, but not on x:
The same ne works for every x.

TAL
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Useful properties of uniform convergence

Uniform convergence has many desirable properties:
If f, converges uniformly, then the order of limits can be swapped:

lim lim fh(x) = lim lim f,(x)
N—o0 X— X0 X—3XQ N—>o0

If £, convergs uniformly to f and every f, is continuous, then f is continuous.
Not true for pointwise convergence: (1— n|x|)[|x| < 1/n] converges to [x =0].

If
the functions f;, are all differentiable3,
f, converges pointwise to f, and
f! converges uniformly,
then f is differentiable and f/(x) = limp_,. f;(x) for every x € E.

TAL

3Complex derivative is defined similarly to real derivative: we will see more in TECH
Chapter 5.



A simple criterion for uniform convergence

Weierstrass M-test

Let fy : E - C, k € N, be a sequence of functions.
Suppose that a sequence My of real numbers exists such that:

|fe(x)| < My for every n€ N and x € E; and
Y M=MeR.

k>0
Then the series of functions:

S(x) = Z fi(x) = ||m Z i (x)

k=0 0<k<n

converges uniformly and absolutely in E.

If the sequence fi(x) satisfies the Weierstrass M-test, we also say that the series of
functions S(x) converges totally in E.
Total convergence plays an important role in the theory of generating functions.

TAL
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Abel summation

Abel's summation theorem

Let the series S(x) = L0 akx* converge for every 0 < x < 1. If:

5(1) = Z ak

k=0

converges, then:

n
2 k _ q 9
’!mkgoakx = S(x) uniformly in [0..1]

In particular:
L= lim S(x)=5(1)
x—1"

We can then define the Abel sum of a series as:

AY a = lim ¥ ayx¥ if the right-hand side exists
T x—=1~ 7

TAL
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Abel sum without convergence

The series a; = (—1)* does not converge. However, for 0 < x < 1 the series:

Se) =Y (-1 =} (-0

k=0 k>0

1
converges to
verg 1+ x

1
lim S(x)= lm — ==
XLT* (X) x~I>nl1* 1+x 2

The Abel sum of a; = (—1)¥ is thus:

A;(fl)k :%

TAL
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Tauber’'s theorems

Tauber’s first theorem (partial converse of Abel’s summation theorem)

Let S(x) = Lk=0 akx” be such that L =lim,_,;- S(x) exists. If:

lim kay =0
k—so0

then S(1) =Y0ak = L.

The condition here is that ay is infinitesimal of order greater than first.

Tauber’s second theorem (full converse of Abel’'s summation theorem)

Let S(x) = Lys0 akx” be such that L =lim,_,;- S(x) exists. Then ¥ ;-0 ax converges
if and only if:

1 n
lim — Z ka, =0
n—oo N k=1

In this case, Yy~ ax = L.

The condition here is that ka, converges to zero in arithmetic mean.
This is more general than the previous one because of the Stolz-Cesaro lemma.

TAL
TECH



Next section

Floors and Ceilings
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Floors and Ceilings

m The floor |x| is the greatest integer not larger than x;
m The ceiling [x] is the smallest integer not smaller than x.

)

—
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Rarrian
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Il
|
~
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Properties of |x| and [x]

" For every x € R:

—7ZL D |x]=x=[x] iff x€Z

- @ x—1<|x]<x<[x] <x+1
® |—x]=~Ix] and [-x] =~ |x]
@ [x]-|x]=[x¢Z]

\

TAL
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Properties of |x| and [x]

fix)

1

oG L

For every x € R:
D |x]=x=[x] iff xeZ
@ x—1<|x|<x<[x]<x+1
® |-x)=—[x] and [—x] = |]
@ [x]- x| = [x¢7]

Why @?

We could also call @ the “flip the number, flip the room” rule.

TAL
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Properties of |x| and [x]

fix)

1

oG L

For every x € R:
D |x]=x=[x] iff xeZ
@ x—1<|x|<x<[x]<x+1
® |—x) =[] and [—x] = — x|
@ [x]-|x] =[x ¢7]
Why @? Because the intervals (x—1..x] and [x..x+1) contain

exactly one integer each.
We could also call @ the “flip the number, flip the room’ rule.

TAL
TECH



Warmup: Representing numbers

Let n=2"+/¢. What are closed formulas for m and ¢?

TAL
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Warmup: Representing numbers

Let n=2"+/¢. What are closed formulas for m and ¢?

First, 2™ < n < 2m+1,
m As g, the logarithm in base 2, is an increasing function, m<lgn< m+1.
m Then:
m=|lgn| .

Next, £ =n—2™. Then:
¢=n—2len

From now on, the base-2 logarithm will be denoted by Ig.

TAL
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Warmup: the generalized Dirichlet box principle

Statement of the principle

Let m and n be positive integers. If n items are stored into m boxes, then:
m at least one box will contain at least [n/m]| objects, and
m at least one box will contain at most |n/m| objects.

TAL
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Warmup: the generalized Dirichlet box principle

Statement of the principle

Let m and n be positive integers. If n items are stored into m boxes, then:
m at least one box will contain at least [n/m]| objects, and
at least one box will contain at most [n/m| objects.

m By contradiction, assume each of the m boxes contains fewer than [n/m]
objects.

m Then

n . n n
n<m- ([—“ — 1) or equivalently, — +1 < [—“ :
m m m

which is impossible.

m Similarly, if each of the m boxes contained more than [n/m| objects, we would
have
n . n n
nzm- ({—J 4 1> or equivalently, — —1 > {—J :
m m m

which is also impossible.

TAL
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Properties of |x| and [x] (cont.)

i

N

For every x R and ne Z:

x| =niff n<x<n+1
[x]=niffx—1<n<x
[x]=niffn—1<x<n

[x]|=niff x<n<x+1

[x+n| = |x]|+n but, in general, |nx| # n|x].

@ o066 6

[x+ ] = [x] +n but, in general, [nx] # n[x].
U 1 ] <1
B e i [
D) e ptP<a

e 52 B < |1

TAL
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Generalization of property @

_ ) X+l if0 < {x}+{y} <1,
LXJ”’J_{ x|+ [y]+1 if1<{x}+{y}<2.

where {x} = x — | x| is the fractional part of x.

Proof. Let x=|x|+{x} and y=|y|+{y}. Then:

x+y] =X+ ]+ {3 +{y}
= x|+ ]+ [{x} +{y}]

and clearly

0 ifo<{x}+ L,
L{x}+{y}J={ 1 if1<}xi+8’€z2'

Q.E.D.

TAL
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Warmup: When is |nx| =n|x]?

The problem

Give a necessary and sufficient condition on n and x so that

Lnx| = n|x]

where n is a positive integer.

TAL
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Warmup: When is |nx| =n|x]?

The problem

Give a necessary and sufficient condition on n and x so that
[nx] =n|x]

where n is a positive integer.

The solution
Write x = | x| 4+ {x}. Then

Lnx] = [nx] +n{x}] = n|x] + [n{x}]
As {x} is nonnegative, so is [n{x}]. Then

|nx| = n|x] ifand only if {x} <1/n

TAL
TECH



Next section

Floor/Ceiling Applications

TAL
TECH



Floor /Ceiling Applications

The binary representation of a natural number n >0 has m= [Ign| +1 bits.

Proof.
n=2""14a, 52m 2. ..La2+a

m bits

Thus, 271 < n < 2™, which gives m—1 <lgn < m. The last formula
is valid if and only if |Ilgn] = m—1. Q.E.D.

As [x] = |x] + [x € Z], we cannot, in general replace |lgn|+1 with [Ign].

TAL
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Floor /Ceiling Applications

The binary representation of a natural number n >0 has m= [Ign| +1 bits.

Proof.
n=2""14a, 52m 2. ..La2+a

m bits

Thus, 271 < n < 2™, which gives m—1 <lgn < m. The last formula
is valid if and only if |Ilgn] = m—1. Q.E.D.

As [x] = |x] + [x € Z], we cannot, in general replace |lgn|+1 with [Ign].
Example: n=35=100011,

m=|lg35|+1=5+1=6

TAL
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Floor/Ceiling Applications (2)

Let f: ACR — R be a continuous, strictly increasing function with the property that,
if f(x) € Z, then x € Z. Then:

LFO)) = LF([x])) and [FO)] = [F([xD)]
whenever f(x), f(|x]|). and f([x]) are all defined.

Proof. (for the ceiling function)

m If x € Z, then x = [x], and there is nothing to prove.
m If xZZ, then x < [x], so f(x) < f([x]) < [f([x])] as f is strictly increasing.
m Also, by the special property, f(x) & Z, so:

F(x) <TFCT < TF(TXD]

m By contradiction, assume [f(x)] < [f([x])].

m As f is continuous, by the intermediate value theorem there exists y such that
x<y <[] and F(y) = [F(x)].

m Such y is an integer, because of f's special property, so actually x <y < [x].

m But there are no integers strictly between x and [x]: contradiction. TAL

Q.E.D. TECH



Floor/Ceiling Applications (2a)

In contrast:

For example, [ L1/4J—‘ =0 but [ 1/4-‘ =1.

TAL
TECH



Floor/Ceiling Applications (3) : Intervals

For real numbers o < 8

Range Nr. of integer values of t
oa<t<P | [B]-Jal+1
o<t<pB | [B]—a]
a<t<pB | [B]-|a]
a<t<p | ([B]-la]-1) [a<p]

TAL
TECH



Floor/Ceiling Applications (3) : Intervals

For real numbers o < 8

Range Nr. of integer values of t
o<t<P | [B]-Jal+1
ao<t<B | [B]—[a]
ao<t<B | [B]-la

a<t<B | ([BT-la]-1) [a<p]

This is because, if t € Z, then:

o<t ifandonlyif [a]<t
o<t ifandonlyif |o <t ifandonlyif |a|+1<t
t<B ifandonlyif ¢<|f]
t<p ifandonlyif t<[B] ifandonlyift<[B]—1

and the slice [m: n] = [m..n]NZ, m < n, has n—m+1 elements.
(Note that, if = are both integers, then [B]— |a] —1=-1.)

TAL
TECH
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