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How to sum in�nite number sequences?

Setting ∑k∈N ak = limn→∞ ∑
n
k=0 ak seems meaningful . . .

Example 1

Let

S = 1+
1

2
+

1

4
+

1

8
+

1

16
+

1

32
+

1

64
+

1

128
+ · · · .

Then

2S = 2+1+
1

2
+

1

4
+

1

8
+

1

16
+

1

32
+

1

64
+ · · ·= 2+S ,

and
S = 2
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and
S = 2

But can we manipulate such sums like we do with �nite sums?



How to sum in�nite number sequences?

Example 2

Let
T = 1+2+4+8+16+32+64+ . . .

Then
2T = 2+4+8+16+32+64+128 . . .= T −1

and
T =−1



How to sum in�nite number sequences?

Example 2

Let
T = 1+2+4+8+16+32+64+ . . .

Then
2T = 2+4+8+16+32+64+128 . . .= T −1

and
T =−1

Problem:

The sum T is in�nite . . .

and we cannot subtract an in�nite quantity from another in�nite quantity.



How to sum in�nite number sequences?

Example 3

Let

∑
k⩾0

(−1)k = 1−1+1−1+1−1+1−1+ . . .

Di�erent ways to sum

(1−1)+(1−1)+(1−1)+(1−1)+ . . .= 0+0+0+0+ . . .= 0

and

1−(1−1)−(1−1)−(1−1)−(1−1)− . . .= 1−0−0−0−0−0− . . .= 1



How to sum in�nite number sequences?

Example 3

Let

∑
k⩾0

(−1)k = 1−1+1−1+1−1+1−1+ . . .

Di�erent ways to sum

(1−1)+(1−1)+(1−1)+(1−1)+ . . .= 0+0+0+0+ . . .= 0

and

1−(1−1)−(1−1)−(1−1)−(1−1)− . . .= 1−0−0−0−0−0− . . .= 1

Problem:

The sequence of the partial sums does not converge . . .

and we cannot manipulate something that does not exist.



De�ning In�nite Sums: Nonnegative Summands

De�nition 1

If ak ⩾ 0 for every k ⩾ 0, then:

∑
k⩾0

ak = lim
n→∞

n

∑
k=0

ak = sup
K⊆N,|K |<∞

∑
k∈K

ak

Note that:

The de�nition as a limit is (sort of) a Riemann integral .

The de�nition as a least upper bound is a Lebesgue integral with respect to the
counting measure

µ(X ) = if |K |= n ∈ N then n else +∞

The limit / least upper bound above can be �nite or in�nite, but are always
equal.
Exercise: Prove this fact.



De�ning In�nite Sums: Riemann Summation

De�nition 2 (Riemann sum of a series)

A series ∑k⩾0 ak with complex coe�cients converges to a complex number S, called
the sum of the series, if:

lim
n→∞

n

∑
k=0

ak = S .

In this case, we write: ∑k⩾0 ak = S .
The values Sn = ∑

n
k=0 ak are called the partial sums of the series.

The series ∑k⩾0 ak converges absolutely if ∑k⩾0 |ak | converges.

Note that the series ∑k⩾0 ak = ∑k⩾0(bk + ick ) converges to S = T + iU if and only if

∑k⩾0 bk converges to T and ∑k⩾0 ck converges to U.

A series that converges, but not absolutely

Let ak =
(−1)k−1

k
[k > 0]. Then ∑

k⩾0

ak = ln2.

However, it is easy to prove by induction that
2n

∑
k=0

|ak |=H2n >
n

2
for every n ⩾ 1.



In�nite Sums: Associativity within a series

Associativity

A series ∑k⩾0 ak has the associative property if for every two strictly increasing
sequences

i0 = 0< i1 < i2 < .. . < ik < ik+1 < .. .
j0 = 0< j1 < j2 < .. . < jk < jk+1 < .. .

we have:

∑
k⩾0

(
ik+1−1

∑
i=ik

ai

)
= ∑

k⩾0

(
jk+1−1

∑
j=jk

aj

)

We have seen that the series ∑k⩾0(−1)k does not have the associative property.

Theorem

A series has the associative property if and only if it has a sum (�nite or in�nite).

Proof: Regrouping as in the de�nition means taking a subsequence of the sequence of
partial sums, which can converge to any of the latter's limit points.



De�ning In�nite Sums: Lebesgue Summation

Every real number can be written as x = x+−x−, where:

x+ = x · [x > 0] = max(x ,0) and x− =−x · [x < 0] = max(−x ,0)

Note that: x+ ⩾ 0, x− ⩾ 0, and x++x− = |x |.

De�nition 3 (Lebesgue sum of a series)

Let {ak}k be an absolutely convergent sequence of real numbers. Then:

∑
k

ak = ∑
k

a+k −∑
k

a−k

The series ∑k ak :

converges absolutely if ∑k a
+
k <+∞ and ∑k a

−
k <+∞;

diverges positively if ∑k a
+
k =+∞ and ∑k a

−
k <+∞;

diverges negatively if ∑k a
+
k <+∞ and ∑k a

−
k =+∞.

If both ∑k a
+
k =+∞ and ∑k a

−
k =+∞ then �Bad Stu� happens�.



In�nite Sums: Bad Stu�

Riemann series theorem

Let ∑k ak be a series with real coe�cients which converges, but not absolutely.
For every real number L there exists a permutation p of N such that:

lim
n→∞

n

∑
k=0

ap(k) = L

Example: The harmonic series

If we rearrange the terms of the series 1− 1

2
+

1

3
− 1

4
+ . . . as follows:

1− 1

2
− 1

4
+

1

3
− 1

6
− 1

8
+ . . .= . . .+

1

2k−1
− 1

2(2k−1)
− 1

4k
+ . . .

= . . .+
1

2

(
1

2k−1
− 1

2k

)
+ . . .

we obtain:

1− 1

2
+

1

3
− 1

4
+ . . .= ln2 but 1− 1

2
− 1

4
+

1

3
− 1

6
− 1

8
+ . . .= ln

√
2



In�nite Sums: Commutativity

Commutativity

A series ∑k⩾0 ak has the commutative property if for every permutation p of N,

∑
k⩾0

ap(k) = ∑
k

ak

The Riemann series theorem says that any series which is convergent, but not
absolutely convergent, does not have the commutative property.

Theorem

A convergent series has the commutative property if and only if it is absolutely
convergent.

Proof: (Sketch) Think of Lebesgue summation.



In�nite Sums: Commutativity

Commutativity

A series ∑k⩾0 ak has the commutative property if for every permutation p of N,

∑
k⩾0

ap(k) = ∑
k

ak

The Riemann series theorem says that any series which is convergent, but not
absolutely convergent, does not have the commutative property.

Theorem

A convergent series has the commutative property if and only if it is absolutely
convergent.

If we want to manipulate in�nite sums like �nite ones,
we must require absolute convergence.



In�nite sums: Associativity between two series

De�nition

Two series ∑k ak ,∑k bk satisfy the associative property if:

∑
k

(ak +bk ) = ∑
k

ak +∑
k

bk

Can we say that any two series have the associative property?



In�nite sums: Associativity between two series

De�nition

Two series ∑k ak ,∑k bk satisfy the associative property if:

∑
k

(ak +bk ) = ∑
k

ak +∑
k

bk

Can we say that any two series have the associative property? In general, no:

Let ak = [k ⩾m] and bk =− [k ⩾ n] with m,n ∈ Z.
Then ∑k ak =+∞ and ∑k bk =−∞, but ∑k (ak +bk ) = n−m.

However, we have again the +∞−∞ issue. . .



In�nite sums: Associativity between two series

De�nition

Two series ∑k ak ,∑k bk satisfy the associative property if:

∑
k

(ak +bk ) = ∑
k

ak +∑
k

bk

Can we say that any two series have the associative property?

Theorem

If the ak and the bk are all nonnegative, then ∑k (ak +bk ) = ∑k ak +∑k bk .

If ∑k ak and ∑k bk both have a limit and at most one of those limits is in�nite,
then ∑k (ak +bk ) = ∑k ak +∑k bk .

If ∑k ak and ∑k bk both converge absolutely, then ∑k (ak +bk ) also converges
absolutely.
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Limits of sums, sums of limits

Consider the double indexed sequence:

aj ,k =
1

j
[1⩽ k ⩽ j]

Then on the one hand:

∑
k

aj ,k = 1 for every j , hence lim
j→∞

∑
k

aj ,k = 1

But on the other hand:

lim
j→∞

aj ,k = 0 for every k , hence ∑
k

lim
j→∞

aj ,k = 0



A positive result

Monotone Convergence Theorem

If the aj ,k are all nonnegative and for every k the sequence
〈
aj ,k
〉
j⩾0 is monotone

nondecreasing, then:
lim
j→∞

∑
k

aj ,k = ∑
k

lim
j→∞

aj ,k ,

regardless of the two sides being �nite or in�nite.

Proof: Let ak = limj→∞ aj ,k = supj aj ,k and Sj = ∑k aj ,k .

Then
〈
Sj
〉
is nondecreasing and limj→∞ Sj = supj Sj ⩽ ∑k ak = ∑k limj→∞ aj ,k .

If the l.h.s. is +∞ or the r.h.s. is 0, we have nothing else to do.

Otherwise, suppose ∑k ak > α > 0: We will prove that supj Sj > α too.

Fix δ > 0 such that ∑k ak > α +2δ too.

Choose k1, . . . ,kn such that ∑
n
i=1 aki > α +δ .

Choose j such that aj ,ki > aki −δ ·2−i for every 1⩽ i ⩽ n. Then:

Sj ⩾
n

∑
i=1

aj ,ki > ∑
k

aki −δ ·
n

∑
i=1

1

2i
> α +δ −δ = α



What can we be sure of, in general?

Fatou's Lemma

If the aj ,k are all nonnegative, then:

∑
k

liminf
j

aj ,k ⩽ liminf
j

∑
k

aj ,k

Proof: (Sketch) Apply the monotone convergence theorem to bj ,k = inf i⩾j ai ,k .



What can we be sure of, in general?

Fatou's Lemma

If the aj ,k are all nonnegative, then:

∑
k

liminf
j

aj ,k ⩽ liminf
j

∑
k

aj ,k

Dominated Convergence Theorem

If ak = limj→∞ aj ,k exists for every k and in addition there exists a sequence ⟨bk ⟩ such
that:

1
∣∣aj ,k ∣∣⩽ bk for every j ⩾ 0, and

2 ∑k bk <+∞,

then:
lim
j→∞

∑
k

∣∣aj ,k −ak
∣∣= 0 ;

consequently,
lim
j→∞

∑
k

aj ,k = ∑
k

ak = ∑
k

lim
j→∞

aj ,k .

Proof: (Sketch) Apply Fatou's lemma to cj ,k = 2bk −
∣∣aj ,k −ak

∣∣.



A proof of the divergence of the harmonic series1

By contradiction, assume ∑
k⩾1

1

k
= S <+∞.

For, j ,k ⩾ 1 put aj ,k =
1

j
[1⩽ k ⩽ j] and bk =

1

k
.

Then for every j and k,
∣∣aj ,k ∣∣⩽ bk , and ∑k⩾1 bk converges.

Now, limj→∞ aj ,k = 0 for every k, so ∑k⩾1 limj→∞ aj ,k = 0.

But ∑k⩾1 aj ,k = 1 for every j , so limj→∞ ∑k⩾1 aj ,k = 1.

This contradicts the Dominated Convergence Theorem.

1From the MathExchange thread �Awfully sophisticated proofs of simple facts�.
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Multiple in�nite sums

De�nition: Double in�nite sums

For every j ,k ⩾ 0 let aj ,k ⩾ 0.

1 If aj ,k ⩾ 0 for every j and k, then:

∑
j ,k

aj ,k = sup
K⊆N×N,|K |<∞

∑
K

aj ,k = lim
n→∞

∑
0⩽j ,k⩽n

aj ,k .

(Recall that ∑0⩽j ,k⩽n aj ,k = ∑j ,k aj ,k [0⩽ j ⩽ n] [0⩽ k ⩽ n].)

2 If ∑j ,k

∣∣aj ,k ∣∣<+∞, then:

∑
j ,k

aj ,k = ∑
j ,k

a+j ,k −∑
j ,k

a−j ,k .



Multiple in�nite sums

De�nition: Double in�nite sums

For every j ,k ⩾ 0 let aj ,k ⩾ 0.

1 If aj ,k ⩾ 0 for every j and k, then:

∑
j ,k

aj ,k = sup
K⊆N×N,|K |<∞

∑
K

aj ,k = lim
n→∞

∑
0⩽j ,k⩽n

aj ,k .

(Recall that ∑0⩽j ,k⩽n aj ,k = ∑j ,k aj ,k [0⩽ j ⩽ n] [0⩽ k ⩽ n].)

2 If ∑j ,k

∣∣aj ,k ∣∣<+∞, then:

∑
j ,k

aj ,k = ∑
j ,k

a+j ,k −∑
j ,k

a−j ,k .

Can we use ∑
j⩾0

∑
k⩾0

aj ,k or ∑
k⩾0

∑
j⩾0

aj ,k instead?



Multiple in�nite sums

De�nition: Double in�nite sums

For every j ,k ⩾ 0 let aj ,k ⩾ 0.

1 If aj ,k ⩾ 0 for every j and k, then:

∑
j ,k

aj ,k = sup
K⊆N×N,|K |<∞

∑
K

aj ,k = lim
n→∞

∑
0⩽j ,k⩽n

aj ,k .

(Recall that ∑0⩽j ,k⩽n aj ,k = ∑j ,k aj ,k [0⩽ j ⩽ n] [0⩽ k ⩽ n].)

2 If ∑j ,k

∣∣aj ,k ∣∣<+∞, then:

∑
j ,k

aj ,k = ∑
j ,k

a+j ,k −∑
j ,k

a−j ,k .

Can we use ∑
j⩾0

∑
k⩾0

aj ,k or ∑
k⩾0

∑
j⩾0

aj ,k instead?

In general, no:

One writing is the limit on j of a limit on k which is a function of j ;

The other writing is the limit on k of a limit on j which is a function of k.

There are no guarantees that the double limits be equal!



Multiple sums: An example of noncommutativity

From Joel Feldman's notes2

Let aj ,k = [j = k = 0]+ [k = j+1]− [k = j−1]:

0 1 2 3 4 . . .
0 1 1 0 0 0 . . .
1 −1 0 1 0 0 . . .
2 0 −1 0 1 0 . . .
3 0 0 −1 0 1 . . .
...

...
...

...
...

...

Then:

for every j ⩾ 0, ∑k⩾0 aj ,k = 2 · [j = 0];

for every k ⩾ 0, ∑j⩾0 aj ,k = 0; and

for every n ⩾ 0, ∑0⩽j ,k⩽n aj ,k = 1.

Hence:

∑
j⩾0

∑
k⩾0

aj ,k = 2 ; ∑
k⩾0

∑
j⩾0

aj ,k = 0 ; and lim
n→∞

∑
0⩽j ,k⩽n

aj ,k = 1 .

2 http://www.math.ubc.ca/�feldman/m321/twosum.pdf retrieved 21.02.2019.

http://www.math.ubc.ca/~feldman/m321/twosum.pdf


Multiple in�nite sums: Swapping indices

Theorem

For j ,k ⩾ 0 let aj ,k be real numbers.

Tonelli If aj ,k ⩾ 0 for every j and k, then:

∑
j⩾0

∑
k⩾0

aj ,k = ∑
k⩾0

∑
j⩾0

aj ,k = ∑
j ,k

aj ,k ,

regardless of the quantities above being �nite or in�nite.

Fubini If ∑j ,k

∣∣aj ,k ∣∣<+∞, then:

∑
j⩾0

∑
k⩾0

aj ,k = ∑
k⩾0

∑
j⩾0

aj ,k = ∑
j ,k

aj ,k .

Fubini's theorem is proved in the textbook.



Multiple in�nite sums: Swapping indices

Theorem

For j ,k ⩾ 0 let aj ,k be real numbers.

Tonelli If aj ,k ⩾ 0 for every j and k, then:

∑
j⩾0

∑
k⩾0

aj ,k = ∑
k⩾0

∑
j⩾0

aj ,k = ∑
j ,k

aj ,k ,

regardless of the quantities above being �nite or in�nite.

Fubini If ∑j ,k

∣∣aj ,k ∣∣<+∞, then:

∑
j⩾0

∑
k⩾0

aj ,k = ∑
k⩾0

∑
j⩾0

aj ,k = ∑
j ,k

aj ,k .

Fubini's theorem is proved in the textbook. Again:

If we want to manipulate in�nite sums like �nite ones,
we must require absolute convergence.
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Cesàro summation

Given a series ∑k ak , consider the sequence Sn = ∑
n
k=0 ak of the partial sums.

Put u(x) = ∑
x−1
k=0Sk and v(x) = x . Then ∆u(x) = Sx and ∆v(x) = 1.

Suppose ∑k ak converges. Put L= ∑k⩾0 ak = limn→∞

Sn
1
.

We then have by the Stolz-Cesàro lemma: limn→∞

∑
n−1
k=0Sk
n

= L.

Given a (not necessarily convergent) series ∑k ak , the quantity:

C∑
k

ak = lim
n→∞

∑
n−1
k=0Sk
n

,

if it exists, is called the Cesàro sum of the series ∑k ak .



Cesàro sum without convergence

The series ∑
k⩾0

(−1)k does not converge. However:

Sn =
n

∑
k=0

(−1)k = [n is even]

so for every n ⩾ 1:

n−1

∑
k=0

Sk =
n−1

∑
k=0

[k is even]

=
n

2
[n−1 is odd]+

(
n−1

2
+1

)
[n−1 is even]

=
n

2
[n is even]+

n+1

2
[n is odd] =

n+[n is odd]
2

The Cesàro sum of ak = (−1)k is thus:

C∑
k

(−1)k = lim
n→∞

1

n
· n+[n is odd]

2
=

1

2

n 0 1 2 3 4 5 6 7 8 9
an 1 −1 1 −1 1 −1 1 −1 1 −1
Sn 1 0 1 0 1 0 1 0 1 0

∑
n−1
k=0Sk 0 1 1 2 2 3 3 4 4 5



Convergence of sequences of functions

De�nition

Let E ⊆ C and, for every n ∈ N, let fn : E → C. Let also f : E → C.
We say that fn converges pointwise to f if for every ε > 0 and for every x ∈ E
there exists nε ∈ N such that:

|fn(x)− f (x)|< ε for every n > nε .

We say that fn converges uniformly to f if for every ε > 0 there exists nε ∈ N
such that for every x ∈ E :

|fn(x)− f (x)|< ε for every n > nε .

Di�erence:

With pointwise convergence, nε depends on both ε and x .

With uniform convergence, nε depends on ε, but not on x :
The same nε works for every x .



Useful properties of uniform convergence

Uniform convergence has many desirable properties:

1 If fn converges uniformly, then the order of limits can be swapped:

lim
n→∞

lim
x→x0

fn(x) = lim
x→x0

lim
n→∞

fn(x)

2 If fn convergs uniformly to f and every fn is continuous, then f is continuous.
Not true for pointwise convergence: (1−n |x |) [|x |⩽ 1/n] converges to [x = 0].

3 If

1 the functions fn are all di�erentiable3,
2 fn converges pointwise to f , and
3 f ′n converges uniformly,

then f is di�erentiable and f ′(x) = limn→∞ f ′n(x) for every x ∈ E .

3Complex derivative is de�ned similarly to real derivative: we will see more in
Chapter 5.



A simple criterion for uniform convergence

Weierstrass M-test

Let fk : E → C, k ∈ N, be a sequence of functions.
Suppose that a sequence Mk of real numbers exists such that:

1 |fk (x)|⩽Mk for every n ∈ N and x ∈ E ; and

2 ∑
k⩾0

Mk =M ∈ R.

Then the series of functions:

S(x) = ∑
k⩾0

fk (x) = lim
n→∞

∑
0⩽k⩽n

fk (x)

converges uniformly and absolutely in E .

If the sequence fk (x) satis�es the Weierstrass M-test, we also say that the series of
functions S(x) converges totally in E .
Total convergence plays an important role in the theory of generating functions.



Abel summation

Abel's summation theorem

Let the series S(x) = ∑k⩾0 akx
k converge for every 0⩽ x < 1. If:

S(1) = ∑
k⩾0

ak

converges, then:

lim
n→∞

n

∑
k=0

akx
k = S(x) uniformly in [0..1]

In particular:
L= lim

x→1−
S(x) = S(1)

We can then de�ne the Abel sum of a series as:

A∑
k

ak = lim
x→1−

∑
k

akx
k if the right-hand side exists



Abel sum without convergence

The series ak = (−1)k does not converge. However, for 0⩽ x < 1 the series:

S(x) = ∑
k⩾0

(−1)kxk = ∑
k⩾0

(−x)k

converges to
1

1+x
, and:

lim
x→1−

S(x) = lim
x→1−

1

1+x
=

1

2

The Abel sum of ak = (−1)k is thus:

A∑
k

(−1)k =
1

2



Tauber's theorems

Tauber's �rst theorem (partial converse of Abel's summation theorem)

Let S(x) = ∑k⩾0 akx
k be such that L= limx→1− S(x) exists. If:

lim
k→∞

kak = 0

then S(1) = ∑k⩾0 ak = L.

The condition here is that ak is in�nitesimal of order greater than �rst.

Tauber's second theorem (full converse of Abel's summation theorem)

Let S(x) = ∑k⩾0 akx
k be such that L= limx→1− S(x) exists. Then ∑k⩾0 ak converges

if and only if:

lim
n→∞

1

n

n

∑
k=1

kak = 0

In this case, ∑k⩾0 ak = L.

The condition here is that kak converges to zero in arithmetic mean.
This is more general than the previous one because of the Stolz-Cesàro lemma.
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Floors and Ceilings

De�nition

The �oor ⌊x⌋ is the greatest integer not larger than x ;

The ceiling ⌈x⌉ is the smallest integer not smaller than x .

⌊π⌋= 3 ⌊−π⌋=−4
⌈π⌉= 4 ⌈−π⌉=−3



Properties of ⌊x⌋ and ⌈x⌉

For every x ∈ R:
1 ⌊x⌋= x = ⌈x⌉ iff x ∈ Z
2 x−1< ⌊x⌋⩽ x ⩽ ⌈x⌉< x+1

3 ⌊−x⌋=−⌈x⌉ and ⌈−x⌉=−⌊x⌋
4 ⌈x⌉−⌊x⌋= [x ̸∈ Z]
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4 ⌈x⌉−⌊x⌋= [x ̸∈ Z]

Why 2 ?
We could also call 3 the ��ip the number, �ip the room� rule.



Properties of ⌊x⌋ and ⌈x⌉

For every x ∈ R:
1 ⌊x⌋= x = ⌈x⌉ iff x ∈ Z
2 x−1< ⌊x⌋⩽ x ⩽ ⌈x⌉< x+1

3 ⌊−x⌋=−⌈x⌉ and ⌈−x⌉=−⌊x⌋
4 ⌈x⌉−⌊x⌋= [x ̸∈ Z]

Why 2 ? Because the intervals (x−1..x] and [x ..x+1) contain
exactly one integer each.
We could also call 3 the ��ip the number, �ip the room� rule.



Warmup: Representing numbers

Problem

Let n= 2m+ ℓ. What are closed formulas for m and ℓ?



Warmup: Representing numbers

Problem

Let n= 2m+ ℓ. What are closed formulas for m and ℓ?

Solution

First, 2m ⩽ n < 2m+1.

As lg, the logarithm in base 2, is an increasing function, m ⩽ lgn <m+1.

Then:
m= ⌊lgn⌋ .

Next, ℓ= n−2m. Then:
ℓ= n−2⌊lgn⌋ .

From now on, the base-2 logarithm will be denoted by lg.



Warmup: the generalized Dirichlet box principle

Statement of the principle

Let m and n be positive integers. If n items are stored into m boxes, then:

at least one box will contain at least ⌈n/m⌉ objects, and
at least one box will contain at most ⌊n/m⌋ objects.



Warmup: the generalized Dirichlet box principle

Statement of the principle

Let m and n be positive integers. If n items are stored into m boxes, then:

at least one box will contain at least ⌈n/m⌉ objects, and
at least one box will contain at most ⌊n/m⌋ objects.

By contradiction, assume each of the m boxes contains fewer than ⌈n/m⌉
objects.

Then
n ⩽m ·

(⌈ n

m

⌉
−1
)

or equivalently ,
n

m
+1⩽

⌈ n

m

⌉
:

which is impossible.

Similarly, if each of the m boxes contained more than ⌊n/m⌋ objects, we would
have

n ⩾m ·
(⌊ n

m

⌋
+1
)

or equivalently ,
n

m
−1⩾

⌊ n

m

⌋
:

which is also impossible.



Properties of ⌊x⌋ and ⌈x⌉ (cont.)

For every x ∈ R and n ∈ Z:
5 ⌊x⌋= n i� n ⩽ x < n+1

6 ⌊x⌋= n i� x−1< n ⩽ x

5 ⌈x⌉= n i� n−1< x ⩽ n

8 ⌈x⌉= n i� x ⩽ n < x+1

9 ⌊x+n⌋= ⌊x⌋+n but, in general, ⌊nx⌋ ̸= n⌊x⌋.

10 ⌈x+n⌉= ⌈x⌉+n but, in general, ⌈nx⌉ ̸= n⌈x⌉.

11 x < n i� ⌊x⌋< n

12 n < x i� n < ⌈x⌉

13 x ⩽ n i� ⌈x⌉⩽ n

14 n ⩽ x i� n ⩽ ⌊x⌋



Generalization of property 9

Theorem

⌊x+y⌋=
{

⌊x⌋+ ⌊y⌋ if 0⩽ {x}+{y}< 1 ,
⌊x⌋+ ⌊y⌋+1 if 1⩽ {x}+{y}< 2 .

where {x}= x−⌊x⌋ is the fractional part of x .

Proof. Let x = ⌊x⌋+{x} and y = ⌊y⌋+{y}. Then:

⌊x+y⌋= ⌊⌊x⌋+ ⌊y⌋+{x}+{y}⌋
= ⌊x⌋+ ⌊y⌋+ ⌊{x}+{y}⌋

and clearly

⌊{x}+{y}⌋=
{

0 if 0⩽ {x}+{y}< 1 ,
1 if 1⩽ {x}+{y}< 2 .

Q.E.D.



Warmup: When is ⌊nx⌋= n⌊x⌋?

The problem

Give a necessary and su�cient condition on n and x so that

⌊nx⌋= n⌊x⌋

where n is a positive integer.



Warmup: When is ⌊nx⌋= n⌊x⌋?

The problem

Give a necessary and su�cient condition on n and x so that

⌊nx⌋= n⌊x⌋

where n is a positive integer.

The solution

Write x = ⌊x⌋+{x}. Then

⌊nx⌋= ⌊n⌊x⌋+n{x}⌋= n⌊x⌋+ ⌊n{x}⌋

As {x} is nonnegative, so is ⌊n{x}⌋. Then

⌊nx⌋= n⌊x⌋ if and only if {x}< 1/n
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Floor/Ceiling Applications

Theorem

The binary representation of a natural number n > 0 has m= ⌊lgn⌋+1 bits.

Proof.

n= 2m−1+am−22
m−2+ · · ·+a12+a0︸ ︷︷ ︸
m bits

Thus, 2m−1 ⩽ n< 2m, which gives m−1⩽ lgn<m. The last formula
is valid if and only if ⌊lgn⌋=m−1. Q.E.D.

As ⌈x⌉= ⌊x⌋+[x ̸∈ Z], we cannot, in general replace ⌊lgn⌋+1 with ⌈lgn⌉.

Example: n= 35= 1000112

m= ⌊lg35⌋+1= 5+1= 6



Floor/Ceiling Applications

Theorem

The binary representation of a natural number n > 0 has m= ⌊lgn⌋+1 bits.

Proof.

n= 2m−1+am−22
m−2+ · · ·+a12+a0︸ ︷︷ ︸
m bits

Thus, 2m−1 ⩽ n< 2m, which gives m−1⩽ lgn<m. The last formula
is valid if and only if ⌊lgn⌋=m−1. Q.E.D.

As ⌈x⌉= ⌊x⌋+[x ̸∈ Z], we cannot, in general replace ⌊lgn⌋+1 with ⌈lgn⌉.

Example: n= 35= 1000112

m= ⌊lg35⌋+1= 5+1= 6



Floor/Ceiling Applications (2)

Theorem

Let f : A⊆ R→ R be a continuous, strictly increasing function with the property that,
if f (x) ∈ Z, then x ∈ Z. Then:

⌊f (x)⌋= ⌊f (⌊x⌋)⌋ and ⌈f (x)⌉= ⌈f (⌈x⌉)⌉

whenever f (x), f (⌊x⌋), and f (⌈x⌉) are all de�ned.

Proof. (for the ceiling function)

If x ∈ Z, then x = ⌈x⌉, and there is nothing to prove.

If x ̸∈ Z, then x < ⌈x⌉, so f (x)< f (⌈x⌉)⩽ ⌈f (⌈x⌉)⌉ as f is strictly increasing.

Also, by the special property, f (x) ̸∈ Z, so:

f (x)< ⌈f (x)⌉⩽ ⌈f (⌈x⌉)⌉

By contradiction, assume ⌈f (x)⌉< ⌈f (⌈x⌉)⌉.
As f is continuous, by the intermediate value theorem there exists y such that
x ⩽ y < ⌈x⌉ and f (y) = ⌈f (x)⌉.
Such y is an integer, because of f 's special property, so actually x < y < ⌈x⌉.
But there are no integers strictly between x and ⌈x⌉: contradiction.

Q.E.D.



Floor/Ceiling Applications (2a)

Example⌊
x+m
n

⌋
=
⌊
⌊x⌋+m

n

⌋
⌈
x+m
n

⌉
=
⌈
⌈x⌉+m

n

⌉

⌈
⌈x⌉/10
10

⌉
10

=

⌈
⌈x⌉/10
100

⌉
= ⌈x/1000⌉

⌊√
⌊x⌋
⌋
=
⌊√

x
⌋

In contrast: ⌈√
⌊x⌋
⌉
̸=
⌈√

x
⌉

For example,
⌈√

⌊1/4⌋
⌉
= 0 but

⌈√
1/4
⌉
= 1.



Floor/Ceiling Applications (3) : Intervals

For real numbers α ⩽ β

Range Nr. of integer values of t
α ⩽ t ⩽ β ⌊β⌋−⌈α⌉+1
α ⩽ t < β ⌈β⌉−⌈α⌉
α < t ⩽ β ⌊β⌋−⌊α⌋
α < t < β (⌈β⌉−⌊α⌋−1) · [α < β ]



Floor/Ceiling Applications (3) : Intervals

For real numbers α ⩽ β

Range Nr. of integer values of t
α ⩽ t ⩽ β ⌊β⌋−⌈α⌉+1
α ⩽ t < β ⌈β⌉−⌈α⌉
α < t ⩽ β ⌊β⌋−⌊α⌋
α < t < β (⌈β⌉−⌊α⌋−1) · [α < β ]

This is because, if t ∈ Z, then:

α ⩽ t if and only if ⌈α⌉⩽ t

α < t if and only if ⌊α⌋< t if and only if ⌊α⌋+1⩽ t

t ⩽ β if and only if t ⩽ ⌊β⌋
t < β if and only if t < ⌈β⌉ if and only if t ⩽ ⌈β⌉−1

and the slice [m : n] = [m..n]∩Z, m ⩽ n, has n−m+1 elements.
(Note that, if α = β are both integers, then ⌈β⌉−⌊α⌋−1=−1.)
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