ITT9132 Concrete Mathematics

Lecture 5: 23 February 2021
Chapter Two

Finite and infinite calculus
Infinite sums

Cesaro and Abel summation
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Finite and Infinite Calculus
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Derivative and Difference Operators

Infinite calculus: derivative

Finite calculus: difference

Euler's notation

Df(x) = Ll_%

Lagrange's notation

f'(x) =Df(x)
Leibniz's notatlon If y = f(x), then
f(x
% =800="¢ =pr(x)
Newton's notation
y="F(x)

Df(x) = ;I,TB

f(x+ h) —f(x)
h

Af(x)=f(x+1)—f(x)
In general, if h€R (or h € C), then
Forward difference

Ap[fl(x) = Fx+h) = f(x)

Backward difference
Vhlfl(x) =f(x) = f(x—h)

Central difference
on[f1(x) =
f(x+3h)—f(x—1h)

An[f1(x)
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Derivative of Power function

Example: f(x)=x3

In this case,
Ay [f](x) = f(x+h) — f(x)
= (X+ h)3 _X3
=x34+3x2h+3xh> + h> —x3
= h-(3x® +3xh+ h?)
Hence,
h- 2 h h2
Df(x) = lim M = lim 3X2+3Xh+h2 — 3x2
h—0 h h—0

In general, for m > 1 integer:

D(x™) = mx™!
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(Forward) Difference of Power Function

Example: f(x) = x3

In this case,

Af(x) = Aq [f](x) = 3x* +3x+1

In general, for m > 1 integer:

A(x™)

Il
agE]
ey
x> 3
N——

x

3

=

because of Newton's binomial theorem.
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Falling and Rising Factorials

The falling factorial (power) is defined for m > 0 by:
xT=x(x—1)(x—2)---(x—m+1)
The rising factorial (power) is defined for m > 0 by:

X™ = x(x+1)(x+2)---(x+m—1)

v

X = (—1)"(—x)2 XTEN — M (5 — m)2

| — p— 17 m+1
m=n=1 xm =% if x#m
n _f Xﬁ{"
k)~ K m

T )T GADxT2) - (x+m) [EEH



Falling factorials with negative exponents

We want to define x with m < 0 integer so that the expansion rule:
XME — 5™ (x — m)™

is satisfied for every m,ne€ Z and x € C.

m First of all, it must be x%=" = x9(x —0)” for every x € C and n € N.
Then it must be:

x2=1

This is also consistent with defining an empty product as equal to 1.

m Next it must be xX2=x="-(x+ m)™ for every x € C and m € N such that the
right-hand side is nonzero.
Then it must be:

X
‘I
|

= = — for every x 1,....m
GFmE )" yx &4 }
Dually,

X :ﬁ forevery x ¢ {—1,...,—m} AL
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Difference of falling factorial with positive exponent

A(xD)=(x+1)2—x2
=(x+1) (x---(x—=m+2))—(x:--(x—m+2))-(x—m+1)
=(x+1-(x—m+1))-(x:-(x—m+2))

=m-xm=1

Hence:
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Differences of falling factorials with negative exponents

First, a simple example:

Ax=2 = (x+1)2—x=2
_ 1 1
T (x4+2)(x+3)  (x+1)(x+2)
_ (x+1)—(x+3)
T (x+1)(x+2)(x+3)
—2
T (x+1)(x+2)(x+3)

— _2.x=3

TAL
TECH



Differences of falling factorials with negative exponents

Now, for the general rule: let m € N. Then:

Ax—T = (x+1)—x=7
3 1 1
T (x+2) - (xt+m)(x+m+1)  (x+1)(x+2)--(x+m)
_ (x+1)—(x+m+1)
T (x+D)(x+2) (x+m)(x+m+1)
—-m
T (x+HD)(x+2) - (x+m)(x+m+1)

_ _mX—(m+1)

— _mx=m=1
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Next subsection

Finite and Infinite Calculus

m Integrals and Sums

TAL
TECH



Indefinite Integrals and Sums

The Fundamental Theorem of Calculus

Df(x) = g(x) iff /g(x)dx =f(x)+C

Definition

The indefinite sum of the function g(x) is the class of functions f such that
Af(x) =g(x):

Af(x)=g(x) iff Y g(x)éx = f(x)+ C(x)

where C(x) is a function such that C(x+1) = C(x) for any integer value of x.

v
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Definite Integrals and Sums

If g(x) =Df(x), then:

[ stax= 10} = £y 7(2)

Similarly:

If g(x) = Af(x), then:

b b
Y g(x)8x = f(x)L = f(b)— f(a)
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Definite sums

= Yig(x)dx=f(a)—f(a)=0
B Yl g(x)8x = f(a+1)—f(a) = g(a)
= Y5 g(x)3x — E2g(x)dx = f(b+1) — f(b) = g(b)

Hence, if g(x) = Af(x),

b
Zg(x)&x

then:

b—1
= k);g(k)= Y k)

a<k<b

= Y (Fk+1)— (k)

a<k<b
= (f(a+1)—f(a))+(f(a+2)—f(a+1))+...
H(F(b—1)— F(b—2))+ (F(B)— F(b—1))
= f(b)—f(a)
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Integrals and Sums of Powers

If m# —1, then:

Analogous finite case:

If m# —1, then:

n nm+1

0o m+1

n km+1

Z0:X * o<zk:<n m+1
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Sums of Powers: applications

Case m=1
K f _ n(n—1)
0<k<n 2 2
Case m=2 Due to k? = k2 + k1 we get:
Z k2 — f + f
0<k<n 3 2
1

1
= 5n nfl)(n*2)+§n(n*1)

- %n(2(n—1)(n—2)+3(’7—1))

1
= gn(n—l)(Zn—4+3)

:%n(nfl)(2n71)

Taking n+1 instead of n gives:

_ (n+1)n(2n+1)

Ln 6 TAL
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Sums of Powers (case m = —1)

As a first step, we observe that:

AHy = Hxy1— Hx

:<1+1+...+1+L>7(1+1+,..+1>
2 x x+1 2 X
_ 1
T x4+1 T

We conclude:
b
a

b
inSXZ H,
a
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Sums of Discrete Exponential Functions

m We have:
De* = e~

The finite analogue should have Af(x) = f(x). This means:
f(x+1)—f(x) = f(x), thatis, f(x+1)=2f(x), only possible if f(x) =2
m For general base ¢ > 0, the difference of c* is:
A(X) =t — X = (c—1)X

X
and the “anti-difference” for c #1 is

c—1°

As an application, we compute the sum of the geometric progression:

b X b b a b—a

c c’—c c’ -1

Y f=Yoex=| ==
I = c—1la c— c—
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Differential equations and difference equations

Differential equation Solution Difference equation Solution
DR = nfa() | B0 =x" || Btim(x) = M 1(x) | um(x) =x=
f(0)=[n=0],n>0 um(0)=[m=0], m>0

Dfy(x) = nfy_1(x) fa(x) =x" Aum(x) = mum_1(x) Um(x) = x2
f(1)=1,n<0 un(0) = 1, m <0

DF(x)= (x>0 | f)=tnx || Au(= ler1 k=1 [ eeo=H
f)=1 u(l)=1

Df (x) = f(x) f(x)=e* Au(x) = u(x) u(x) =2%
f(0)=1 u(0)=1

Df(x) =b-f(x) f(x)=a" Au(x)=b-u(x) u(x) =c*
f(0)=1 where b=1Ina || u(0)=1 where b=c—1
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I'Hépital's rule and Stolz-Cesaro lemma

I'Hopital’s rule: Hypotheses

f(x) and g(x) are both vanishing
or both infinite at xp.

g'(x) is always positive in some
neighborhood of xg.

I'Hépital’s rule: Thesis

' f'(x) _
m If limy sy m =LeR,
) _,

then li == =
m then limy_,,q 20

Stolz-Cesaro lemma: Hypotheses

u(n) and v(n) are defined for
every value neN.

v(n) is positive, strictly
increasing, and divergent.

Stolz-Cesaro lemma: Thesis

Au(n)
Av(n)

m then Iimn_,m,M =
v(n)

=LeR,

m If lim, e
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Proof of Stolz-Cesaro lemma in the case of real limit

Au(n)
Av(n)
m As (v(n)) is strictly increasing, for n large enough we have:

Suppose lim,_e =LeR. Fixe>0.

(v(n+1) - v(n)) (L_ %) <u(n+1)—u(n) < (v(n+1) - v(n)) <L+ g)

m Summing p consecutive terms, we find:
(v(n+p) = v(m) (L= 3) < uln+p) = u(n) < (v(n+p) —v(m) (L+3)
m As (v(n)) is positive, we can divide by v(n+ p) and obtain:
v(n) € u(n+p) u(n) v(n) €
(T tm) (5 < e~ vviey < (o) (£43)

m As limpy_e v(n) = oo, for every p large enough we have:

u(n+p)

L—e<
v(n+p)

<L+e

TAL
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A useful corollary

Arithmetic mean theorem

. . 1,
If lim, @, = L, then lim,_. = ):Z:%) ax = L too.
That is:

If a sequence converges,
then the sequence of its arithmetic means converges to the same limit.

Proof:
m Let u(x) =X _§ak and v(x) =x.
m Then Au(x)=ax and Av(x)=1.
m Apply the Stolz-Cesaro lemma.
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Next subsection

Finite and Infinite Calculus

m Summation by Parts
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Summation by Parts

Infinite analogue: integration by parts
/u(x)v'(x)dx = u(x)v(x) —/u’(x)v(x)dx J

Difference of a product

A(u(x)v(x)) = u(x+1)v(x+1) — u(x)v(x)
=u(x+1)v(x+1)—u(x)v(x+1)+ u(x)v(x+1) — u(x)v(x)
= Au(x)v(x+1)+u(x)Av(x)
= u(x)Av(x)+ Ev(x)Au(x)

where E is the shift operator Ef(x) = f(x+1). We then have the:

Rule for summation by parts

ZuAva = uv—ZEvAqu

—
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Why the shift?

If we repeat our derivation with two continuous functions f and g of one real variable
x, we find for any increment h # 0:

f(x+h)g(x+h) — f(x)g(x) = f(x+ h)g(x+h) — F(x)g(x + h) + F(x)g(x + h) — f(x)g(x)
=f(x)(g(x+h) —g(x)) +&(x+h)(f(x+h) - f(x))

The incremental ratio is thus:

fOxt hg(x+h) = F(Ig(x) _ ¢,y 80+ hz —8(9 | o

f(x+ h) —f(x)
h h

x4+ h)-

So there is a shift: but it is infinitesimal—and disappears by continuity of g.

TAL
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Example: S, =Y}, kck with ¢ #1

We want to write S, = Yo' u(x) Av(x)x for suitable u(x) and v(x).
Let u(x)=x and v(x)=c*/(c—1).

Then Au(x) =1, Av(x) =c*, and Ev(x) = c*t1/(c—1).

Summing by parts:

ntl n+1  pt+1 1
Z N . xcX CX+
xc*éx = 1 — Z ] dx
0 €= <lo 0 ¢~

_ (n41)cm? e T
- c—1 T -1 ;C (2

_ (n+1)cntt G (™1 -1)
c—1 (c—1)2
ncn+2 —(n+1)c"+1+c
(c—1)?
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Example: S, = Y7, kHx

We want to write S, = Yo7 u(x) Av(x)x for suitable u(x) and v(x).
Let u(x) = Hx and v(x) = x2/2.

Then Au(x) = x=L, Av(x) =x, and Ev(x) = (x+1)2/2.

® Summing by parts:

n+1 2 n+1l  pi1 2
ZXHX6X = X—HX —ZMxiﬁx
0 2 0 0
1)n
_ (”+2) Hyor — ):x (x— (~1))28x
n+1
= (n—zl) H,,_,.l—l Zx Sx
(n+1) (n+1)n

= Hpy

= (n+1 <Hn+1* *)
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Next section

Infinite Sums
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How to sum infinite number sequences?

Setting Yxen ak = limp e Yf_g ak Seems meaningful . ..

Example 1

Let
5—1+1+1+1+i+i+i+i+
- 2 4'8"16 32 64 128
Then 11 01 1 1 1
25=2+1+ 4 +otet et =245,
and

SEY
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How to sum infinite number sequences?

Setting Y ey ak = lim, o Y7 ax seems meaningful ...

Example 1

Let
5—1+1+1+1+1+1+1+ ! +
- 2 4 8 16 32 64 128
Then 1 1 1 1 1 1
25:2+1+§+Z+§+R+372+674+“.:2+S7
and

5=2

But can we manipulate such sums like we do with finite sums?

TAL
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How to sum infinite number sequences?

Example 2

Let
T=1+2+4+8+16+32+64+...

Then
2T =2+4+8+16+32+64+128...=T —1

and
T=-1

TAL
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How to sum infinite number sequences?

Example 2

Let
T=14+2+4+8+16+324+64+...
Then
2T =2+4+8+16+324+64+128...=T -1
and

T=-1

Problem:
m The sum T is infinite . ..

m and we cannot subtract an infinite quantity from another infinite quantity.

TAL
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How to sum infinite number sequences?

Example 3

Let
Y (1) =1-141-14+1-1+1-1+...
k=0

Different ways to sum
(1-1)+@1-1)+(1-1)+(1-1)+...=04+04+0+0+...=0
and

1-(1-1)-(1-1)-(1-1)—(1-1)—...




How to sum infinite number sequences?

Example 3

Let
Y (-D)fF=1-141-1+1-1+1-1+...
k=0

Different ways to sum
a-1y)+1-1)+(1-1)+(1-1)+...=04+04+0+0+...=0
and
1-(1-1)-(1-1)-(1-1)—-(1-1)-...=1-0-0-0-0-0—...=1
Problem:

m The sequence of the partial sums does not converge ...

= and we cannot manipulate something that does not exist.

TAL
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Defining Infinite Sums: Nonnegative Summands

If ax > 0 for every k > 0, then:
n

Zak:Iim Zak: sup Zak
k>0 7% k=0 KCN,|K|<w= keK

Note that:
m The definition as a limit is (sort of) a Riemann integral.

m The definition as a least upper bound is a Lebesgue integral with respect to the
counting measure
W(X) =if [ X| = n € Nthen nelse +oo

m The limit / least upper bound above can be finite or infinite, but are always
equal.
Exercise: Prove this fact.
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Defining Infinite Sums: Riemann Summation

Definition 2 (Riemann sum of a series)

A series Yy~ ax with complex coefficients converges to a complex number S, called

the sum of the series, if:
n

lim ) a,=S.

n—roo k=0

In this case, we write: Y,>pax =S.
The values S, =Y]_ ax are called the partial sums of the series.
The series Yy~ ax converges absolutely if ¥ 4~¢ |ax| converges.

Note that the series Yy~ ax = L x>0 (bk + ick) converges to S = T + iU if and only if
Y k>0 bk converges to T and Y ,-q ckx converges to U.

A series that converges, but not absolutely
(_1)k—1
k n

. . . . n
However, it is easy to prove by induction that Y2_  |ax| = Han > > for every n> 1.

Let ay = [k >0]. Then Yy>0ak =In2.

TAL
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Infinite Sums: Associativity within a series

Associativity

A series Yy~ ax has the associative property if for every two strictly increasing
sequences
ip=0<i1<i<..<ik<ikt1<...
Jo=0<j1<j2<...<jk<jkt1 <...

£(t)-5(% )

k>0 \ i=i k>0 \ j=jk

we have:

We have seen that the series Z@o(—l)k does not have the associative property.

Theorem
A series has the associative property if and only if it has a sum (finite or infinite).

Proof: Regrouping as in the definition means taking a subsequence of the sequence of
partial sums, which can converge to any of the latter’s limit points.

TAL
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Defining Infinite Sums: Lebesgue Summation

Every real number can be written as x =xtT —x~, where:
xT =x-[x > 0] = max(x,0) and x~ = —x-[x < 0] = max(—x,0)

Note that: x* >0, x~ >0, and x* +x~ = |x]|.

Definition 3 (Lebesgue sum of a series)

Let {ax}x be an absolutely convergent sequence of real numbers. Then:

Ya=Ya —Ya
3 3 x

The series Y, ax:

m converges absolutely if ¥y af <+ and ¥y a, < +oo;

m diverges positively if ¥4 af =+ and ¥y a < +oo;

m diverges negatively if Y a;r < +ooand Yy a, = oo
If both ¥ ar = +o0 and Y, a, = +oo then “Bad Stuff happens”. TAL
TECH



Infinite Sums: Bad Stuff

Riemann series theorem

Let Y ax be a series with real coefficients which converges, but not absolutely.
For every real number L there exists a permutation p of N such that:

il kgo ap(k) = L

Example: The harmonic series

1 1 1
If we rearrange the terms of the series 1 — - + 372 + ... as follows:
P U OO O S SRS SR S
6 T 2k—1 2(2k—1) 4k

we obtain:

11 01, 11 N [AL
1—s+z—gt-=h2butl—s—7+ 8+"'_In\6 [ECH



Infinite Sums: Commutativity

Commutativity

A series Yy ~q ax has the commutative property if for every permutation p of N,

Y 3 =Y ak
k=0 k

The Riemann series theorem says that any series which is convergent, but not
absolutely convergent, does not have the commutative property.

Theorem

A convergent series has the commutative property if and only if it is absolutely
convergent.

Proof: (Sketch) Think of Lebesgue summation.
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Infinite Sums: Commutativity

Commutativity

A series Y'y~q ax has the commutative property if for every permutation p of N,

Y 3y =Y ak
k=0 k

The Riemann series theorem says that any series which is convergent, but not
absolutely convergent, does not have the commutative property.

Theorem

A convergent series has the commutative property if and only if it is absolutely
convergent.

If we want to manipulate infinite sums like finite ones,
we must require absolute convergence.

TAL
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Infinite sums: Associativity between two series

Two series Y ax, Y x bk satisfy the associative property if:

Y (ak+b) =Y ax+) bk
% % x

Can we say that any two series have the associative property?

TAL
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Infinite sums: Associativity between two series

Two series Y ak, Y« bi satisfy the associative property if:

Y(a+b)=Y ac+Y bk
T p *

Can we say that any two series have the associative property? In general, no:
m Let ay = [k > m] and by = —[k > n] with m,n € Z.
m Then Y ax =+ and Y by = —oo, but Yy (ax + bx) = n—m.

However, we have again the 4o —co issue. ..
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Infinite sums: Associativity between two series

Two series Y ax, Y « bk satisfy the associative property if:

Y (ak+be) =Y ax+Y b
% P %

Can we say that any two series have the associative property?

m If the a; and the by are all nonnegative, then ¥, (ax + bx) = Yk ak + Y bk

m If ¥ ax and ¥, bc both have a limit and at most one of those limits is infinite,
then ¥ (ak + bk) = Lk ak + Lk bk

m If ¥, ax and ¥ bx both converge absolutely, then Y (ax + bx) also converges
absolutely.
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Next subsection

Infinite Sums
m Sums and limits
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Limits of sums, sums of limits

Consider the double indexed sequence:
ajk==[1<k<]]
Then on the one hand:
;ajyk =1 for every j, hence}Ln;; ajk=1
But on the other hand:

lim a; , = 0 for every k, hence Z lima;, =0
== A mia




A positive result

Monotone Convergence Theorem

If the aj , are all nonnegative and for every k the sequence <aj,k>j>0 is monotone
nondecreasing, then:

Ilmz‘ajk_ZIlmajk,

==

regardless of the two sides being finite or infinite.

Proof: Let ay =lim; ;. ajx =sup;ajx and Sj =Y aj k-

Then (S;) is nondecreasing and lim;_,.. S; = sup; Sj < Y ax = L limj e aj k.
If the l.h.s. is 4+ or the r.h.s. is 0, we have nothing else to do.

Otherwise, suppose Y, ax > & > 0: We will prove that sup; S; > o too.

Fix 6 > 0 such that Y, ax > a+26 too.

Choose ki,...,k, such that Y7, ax, > a+6.

Choose j such that aj s, > ax; —8-27 for every 1 <i< n. Then:

Zajk >Zak —4- Z*>(X+5 d=o

i=1

TAL
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What can we be sure of, in general?

If the aj , are all nonnegative, then:

Zlim.infaj)k < Iim.ianaj?k
k Sk

Proof: (Sketch) Apply the monotone convergence theorem to b, = infi>; aj «.

TAL
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What can we be sure of, in general?

If the aj  are all nonnegative, then:

lemmfaj K < I|m|anaJ P

Dominated Convergence Theorem

If ay = lim;_., a; x exists for every k and in addition there exists a sequence (by) such

that:
|aj k| < bk for every j >0, and
Y b <eo,

then:

lim) |a;x—ax|=0;
tim i~ o

consequently,

Jim Y ajx =Y =L fim 2

TAL
TECH

Proof: (Sketch) Apply Fatou's lemma to ¢jx = 2by — |aj x — ax].



1

Divergence of the harmonic series

1
By contradiction, assume Y ;> P S < oo,
. 1 ) 1
m For, j,k>1 put aj,k:j[léké_/] and bk:;.

Then for every j and k, |aj | < by, and L4>1 by converges.

But Y41 ajk =1 for every j, so limj . Y x>1 ajk = 1.

[
m Now, limj_,.. ajx =0 for every k, so Yy~qlimj_,.aj, =0.
[

m This contradicts the Dominated Convergence Theorem.

1 This proof is taken from the MathExchange thread “Awfully sophisticated TAL
] - TECH
proofs of simple facts".



Next subsection

Infinite Sums

m Multiple infinite sums
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Multiple infinite sums

Definition: Double infinite sums

For every j,k >0 let aj, > 0.
If aj > 0 for every j and k, then:

Zaj’k = sup Zaj,k = Im aj k-
Jk KCNXN,|K|<e K %0 k<n

(Recall that Yoqj k<najk = Xjkajk[0<j<n][0< k< n])
If Zj,k ‘3j7k| < oo, then:

TAL
TECH



Multiple infinite sums

Definition: Double infinite sums

For every j,k >0 let a;, > 0.
If ajx >0 for every j and k, then:

Yau= sup  Yaj.=lim 3j k-
jk KCNxN,|K|<e K 0<j,k<n

(Recall that Yoo k<najk = Yk ajk[0<j<n][0< k
If ¥« |aj k| < oo, then:

IN
=

Can we use Y50 Y k>0 3j,k OF Yk>0Lj>03jk instead?
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Multiple infinite sums

Definition: Double infinite sums

For every j,k >0 let a;, > 0.
If aj x >0 for every j and k, then:
Zaj,k = sup Zaj,k = Im Z aj k-
Jk KCNxN,|K|<eo K 0L k<n

(Recall that Yo k<najk = Ljkajk [0 <j<n[0< k< n])
If ¥k |aj k| < —+oo, then:

Can we use Y50 Y k>0 3j,k OF Lk=0Lj>03jk instead? In general, no:
m One writing is the limit on j of a limit on k which is a function of j;
m The other writing is the limit on k of a limit on j which is a function of k.
m There are no guarantees that the double limits be equal!
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Multiple sums: An example of noncommutativity

From Joel Fel 's notes?

Let aj, =[j=k=0]+[k=j+1]-[k=j—-1]:

| o 1 2 3 4
0 1 1 0 0 O
1| -1 0 1 0 0
2 0 -1 0 1 0
3 0 0 -1 0 1
Then:
m for every j >0, Yysoajk =2-[j=0];
m for every k>0, Y03k =0; and
m for every n> 0, Yo<jk<najk =1.
Hence:
Y Y a=2; Y Y ax=0; and lim ajr=1.
j>0k>0 k>0j50 "7 0 ksn

TAL
2 http://www.math.ubc.ca/ feldman/m321/twosum.pdf retrieved 21.02.2019. U
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Multiple infinite sums: Swapping indices

For j,k >0 let aj be real numbers.

Tonelli If a;, >0 for every j and k, then:

ZZaj,k—ZZ%k—Z%h

Jj>0k>0 k>0,j>0

regardless of the quantities above being finite or infinite.
Fubini If ;i |aj x| < +o0, then:
Y Yak=Y Za,k—):a,k

j>0k>0 k>0,>0

Fubini's theorem is proved in the textbook.
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Multiple infinite sums: Swapping indices

For j,k >0 let aj be real numbers.

Tonelli If aj, >0 for every j and k, then:

ZZaj,k—ZZajk—Zam

Jj=0k>0 k>0,j>0

regardless of the quantities above being finite or infinite.
Fubini If ¥; i [aj k| < +eo, then:

L Yo=Y X o=

j>0k>0 k>0,>0

Fubini's theorem is proved in the textbook. Again:

If we want to manipulate infinite sums like finite ones,
we must require absolute convergence.




Next subsection

Infinite Sums

m Other summation criteria
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Cesaro summation

Given a series ) ay, consider the sequence S, =Y7_ ax of the partial sums.
m Put u(x) = Zi;; Sk and v(x) = x. Then Au(x) =S, and Av(x)=1.

. S
m Suppose Y ax converges. Put L=Y,-0ax = lim_e T"
. Yro Sk
m We then have by the Stolz-Cesaro lemma: lim, . == =L,
n

Given a (not necessarily convergent) series Y ax, the quantity:
n—1 S
. _0 2k
Czak — lim Zki ,
k n—oo n

if it exists, is called the Cesaro sum of the series Y, ai.
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Cesaro sum without convergence

The series: ax = (—1)* does not converge. However:
n
Sn= Z (~1)% =[n s even]
k=0

so for every n>1:

n—1 n—1

Y S« = Y [kiseven]

k=0 k=0

n—

1
= g[n—lisodd]-i-(?—i—l) [n—1is even]

0 .
= E[niseven]—l-n—’— [nisodd]:M
2 2 2
The Cesaro sum of a, = (—1) is thus:
1
_1)k==
LD =3
n |0 1 2 3 4 5 6 7 8 9
an 1 -1 1 -1 1 -1 1 -1 1 -1
S 1 0 1 0 1 0 1 0 1 0
YieS«|0 1.1 2 2 3 3 4 4 b ;eéH




Abel summation

Abel's summation theorem

Let the series S(x) = L0 akx* converge for every 0 < x < 1. If:

Sa)=Y a

k>0

converges, then:

n
. k_ . .
Jm kgo ayx* = S(x) uniformly in [0,1]

In particular:
L= lim S(x)=S5(1)
x—1-

We can then define the Abel sum of a series as:

AZak = lim Zakxk if the right-hand side exists
T x—1 i
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Abel sum without convergence

The series ay = (—1)“ does not converge. However, for 0 < x < 1 the series:

Sk =Y (-1 =} (X"

k=0 k>0

1
converges to
verg 1+ x

1 1
lim S(x)= lm — ==
XLT* (X) x—l>nl1* 14+x 2

The Abel sum of a; = (—1)¥ is thus:

A;(fl)k :%
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Tauber’s theorems

Tauber's first theorem (partial converse of Abel's summation theorem)

Let S(x) = Ly=0 akx” be such that L =lim,_,;- S(x) exists. If:
lim kay =0
KK

then S(1) =Y4>pak = L.

The condition here is that a is infinitesimal of order greater than first.

Tauber's second theorem (full converse of Abel's summation theorem)

Let S(x) = Lx=0 akx” be such that L =lim,_,;- S(x) exists. Then ¥~ ax converges
if and only if:

1 n
lim = Y ka, =0
n—oo N k=1
In this case, Y >oax = L.

The condition here is that ka, converges to zero in arithmetic mean.
This is more general than the previous one because of the Stolz-Cesaro lemma.
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