ITT9132 Concrete Mathematics

Lecture 5: 23 February 2021
Chapter Two
Finite and infinite calculus
Infinite sums
Cesàro and Abel summation
Original slides 2010-2014 Jaan Penjam; modified 2016-2021 Stlvio Capobianco

Contents

1 Finite and Infinite Calculus

■ Derivative and Difference Operators

- Integrals and Sums
- Summation by Parts

2 Infinite Sums

- Sums and limits
- Multiple infinite sums
- Other summation criteria

Next section

1 Finite and Infinite Calculus

- Derivative and Difference Operators
- Integrals and Sums
- Summation by Parts

2 Infinite Sums

- Sums and limits
- Multiple infinite sums
- Other summation criteria

Next subsection

1. Finite and Infinite Calculus

- Derivative and Difference Operators
- Integrals and Sums
- Summation by Parts

2 Infinite Sums

- Sums and limits
- Multiple infinite sums
- Other summation criteria

Derivative and Difference Operators

Infinite calculus: derivative

Euler's notation

$$
D f(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

Lagrange's notation

$$
f^{\prime}(x)=\mathrm{D} f(x)
$$

Leibniz's notation If $y=f(x)$, then

$$
\frac{d y}{d x}=\frac{d f}{d x}(x)=\frac{d f(x)}{d x}=\mathrm{D} f(x)
$$

Newton's notation

$$
\dot{y}=f^{\prime}(x)
$$

Finite calculus: difference

$$
\Delta f(x)=f(x+1)-f(x)
$$

In general, if $h \in \mathbb{R}$ (or $h \in \mathbb{C}$), then
Forward difference

$$
\Delta_{h}[f](x)=f(x+h)-f(x)
$$

Backward difference

$$
\nabla_{h}[f](x)=f(x)-f(x-h)
$$

Central difference
$\delta_{h}[f](x)=$

$$
f\left(x+\frac{1}{2} h\right)-f\left(x-\frac{1}{2} h\right)
$$

$$
\mathrm{D} f(x)=\lim _{h \rightarrow 0} \frac{\Delta_{h}[f](x)}{h}
$$

Derivative of Power function

Example: $f(x)=x^{3}$

In this case,

$$
\begin{aligned}
\Delta_{h}[f](x) & =f(x+h)-f(x) \\
& =(x+h)^{3}-x^{3} \\
& =x^{3}+3 x^{2} h+3 x h^{2}+h^{3}-x^{3} \\
& =h \cdot\left(3 x^{2}+3 x h+h^{2}\right)
\end{aligned}
$$

Hence,

$$
\mathrm{D} f(x)=\lim _{h \rightarrow 0} \frac{h \cdot\left(3 x^{2}+3 x h+h^{2}\right)}{h}=\lim _{h \rightarrow 0} 3 x^{2}+3 x h+h^{2}=3 x^{2}
$$

In general, for $m \geqslant 1$ integer:

$$
\mathrm{D}\left(x^{m}\right)=m x^{m-1}
$$

(Forward) Difference of Power Function

Example: $f(x)=x^{3}$
In this case,

$$
\Delta f(x)=\Delta_{1}[f](x)=3 x^{2}+3 x+1
$$

In general, for $m \geqslant 1$ integer:

$$
\Delta\left(x^{m}\right)=\sum_{k=1}^{m}\binom{m}{k} x^{m-k}
$$

because of Newton's binomial theorem.

Falling and Rising Factorials

Definition

The falling factorial (power) is defined for $m \geqslant 0$ by:

$$
x^{\underline{m}}=x(x-1)(x-2) \cdots(x-m+1)
$$

The rising factorial (power) is defined for $m \geqslant 0$ by:

$$
x^{\bar{m}}=x(x+1)(x+2) \cdots(x+m-1)
$$

Properties

$$
\begin{aligned}
x^{\bar{m}} & =(-1)^{m}(-x)^{\underline{m}} \\
n! & =n^{\underline{n}}=1^{\bar{n}} \\
\binom{n}{k} & =\frac{n^{\underline{k}}}{k!}
\end{aligned}
$$

$$
\begin{aligned}
x \frac{m+n}{} & =x^{\underline{m}}(x-m)^{\underline{n}} \\
x^{\underline{m}} & =\frac{x \frac{m+1}{x-m}}{x-1} x \neq m \\
x \frac{-m}{} & =\frac{1}{(x+1)^{\bar{m}}}=\frac{1}{(x+1)(x+2) \cdots(x+m)} \text { FALCH }
\end{aligned}
$$

Falling factorials with negative exponents

We want to define $x \underline{m}$ with $m \leqslant 0$ integer so that the expansion rule:

$$
x^{\underline{m+n}}=x^{\underline{m}} \cdot(x-m)^{\underline{n}}
$$

is satisfied for every $m, n \in \mathbb{Z}$ and $x \in \mathbb{C}$.

- First of all, it must be $x^{\frac{0+n}{n}}=x^{\underline{0}}(x-0)^{n}$ for every $x \in \mathbb{C}$ and $n \in \mathbb{N}$.

Then it must be:

$$
x^{0}=1
$$

This is also consistent with defining an empty product as equal to 1 .

- Next it must be $x^{0}=x-m \cdot(x+m)^{\underline{m}}$ for every $x \in \mathbb{C}$ and $m \in \mathbb{N}$ such that the right-hand side is nonzero.
Then it must be:

$$
x \frac{-m}{}=\frac{1}{(x+m)^{\underline{m}}}=\frac{1}{(x+1)^{m}} \text { for every } x \notin\{1, \ldots, m\}
$$

Dually,

$$
x^{\overline{-m}}=\frac{1}{(x-1)^{\underline{m}}} \text { for every } x \notin\{-1, \ldots,-m\}
$$

Difference of falling factorial with positive exponent

$$
\begin{aligned}
\Delta\left(x^{\underline{m}}\right) & =(x+1)^{\underline{m}}-x^{\underline{m}} \\
& =(x+1) \cdot(x \cdots(x-m+2))-(x \cdots(x-m+2)) \cdot(x-m+1) \\
& =(x+1-(x-m+1)) \cdot(x \cdots(x-m+2)) \\
& =m \cdot x \underline{m-1}
\end{aligned}
$$

Hence:

$$
\Delta\left(x^{\underline{m}}\right)=m x^{\underline{m-1}} \forall m \geqslant 1
$$

Differences of falling factorials with negative exponents

First, a simple example:

$$
\begin{aligned}
\Delta x \frac{-2}{} & =(x+1)^{-2}-x \underline{-2} \\
& =\frac{1}{(x+2)(x+3)}-\frac{1}{(x+1)(x+2)} \\
& =\frac{(x+1)-(x+3)}{(x+1)(x+2)(x+3)} \\
& =\frac{-2}{(x+1)(x+2)(x+3)} \\
& =-2 \cdot x-3
\end{aligned}
$$

Differences of falling factorials with negative exponents

Now, for the general rule: let $m \in \mathbb{N}$. Then:

$$
\begin{aligned}
\Delta x \frac{-m}{-m} & =(x+1)^{\frac{-m}{}}-x \frac{-m}{1} \\
& =\frac{1}{(x+2) \cdots(x+m)(x+m+1)}-\frac{1}{(x+1)(x+2) \cdots(x+m)} \\
& =\frac{(x+1)-(x+m+1)}{(x+1)(x+2) \cdots(x+m)(x+m+1)} \\
& =\frac{-m}{(x+1)(x+2) \cdots(x+m)(x+m+1)} \\
& =-m x \underline{-(m+1)} \\
& =-m x-m-1
\end{aligned}
$$

Next subsection

1 Finite and Infinite Calculus

- Derivative and Difference Operators
- Integrals and Sums
- Summation by Parts

2 Infinite Sums

- Sums and lim ts
- Multiple infinite sums
- Other summation criteria

Indefinite Integrals and Sums

The Fundamental Theorem of Calculus

$$
\mathrm{D} f(x)=g(x) \text { iff } \quad \int g(x) \mathrm{d} x=f(x)+\mathrm{C}
$$

Definition

The indefinite sum of the function $g(x)$ is the class of functions f such that

$$
\Delta f(x)=g(x)
$$

$$
\Delta f(x)=g(x) \quad \text { iff } \quad \sum g(x) \delta x=f(x)+C(x)
$$

where $C(x)$ is a function such that $C(x+1)=C(x)$ for any integer value of x.

Definite Integrals and Sums

If $g(x)=\mathrm{D} f(x)$, then:

$$
\int_{a}^{b} g(x) \mathrm{d} x=\left.f(x)\right|_{a} ^{b}=f(b)-f(a)
$$

Similarly:

$$
\text { If } g(x)=\Delta f(x) \text {, then: }
$$

$$
\sum_{a}^{b} g(x) \delta x=\left.f(x)\right|_{a} ^{b}=f(b)-f(a)
$$

Definite sums

Some observations

- $\sum_{a}^{a} g(x) \delta x=f(a)-f(a)=0$
- $\sum_{a}^{a+1} g(x) \delta x=f(a+1)-f(a)=g(a)$
- $\sum_{a}^{b+1} g(x) \delta x-\sum_{a}^{b} g(x) \delta x=f(b+1)-f(b)=g(b)$

Hence, if $g(x)=\Delta f(x)$, then:

$$
\begin{aligned}
\sum_{a}^{b} g(x) \delta x & =\sum_{k=a}^{b-1} g(k)=\sum_{a \leqslant k<b} g(k) \\
= & \sum_{a \leqslant k<b}(f(k+1)-f(k)) \\
= & (f(a+1)-f(a))+(f(a+2)-f(a+1))+\ldots \\
& +(f(b-1)-f(b-2))+(f(b)-f(b-1)) \\
= & f(b)-f(a)
\end{aligned}
$$

Integrals and Sums of Powers

If $m \neq-1$, then:

$$
\int_{0}^{n} x^{m} \mathrm{~d} x=\left.\frac{x^{m+1}}{m+1}\right|_{0} ^{n}=\frac{n^{m+1}}{m+1}
$$

Analogous finite case:
If $m \neq-1$, then:

$$
\sum_{0}^{n} x^{\underline{m}} \delta x=\sum_{0 \leqslant k<n} k^{\underline{m}}=\frac{k \frac{m+1}{m+1}}{\left.\right|_{0} ^{n}}=\frac{n \frac{m+1}{m+1}}{m}
$$

Sums of Powers: applications

Case $m=1$

$$
\sum_{0 \leqslant k<n} k=\frac{n^{2}}{2}=\frac{n(n-1)}{2}
$$

Case $m=2$ Due to $k^{2}=k^{2}+k^{\underline{1}}$ we get:

$$
\begin{aligned}
\sum_{0 \leqslant k<n} k^{2} & =\frac{n^{3}}{3}+\frac{n^{2}}{2} \\
& =\frac{1}{3} n(n-1)(n-2)+\frac{1}{2} n(n-1) \\
& =\frac{1}{6} n(2(n-1)(n-2)+3(n-1)) \\
& =\frac{1}{6} n(n-1)(2 n-4+3) \\
& =\frac{1}{6} n(n-1)(2 n-1)
\end{aligned}
$$

Taking $n+1$ instead of n gives:

$$
\square_{n}=\frac{(n+1) n(2 n+1)}{6}
$$

Sums of Powers (case $m=-1$)

As a first step, we observe that:

$$
\begin{aligned}
\Delta H_{x} & =H_{x+1}-H_{x} \\
& =\left(1+\frac{1}{2}+\ldots+\frac{1}{x}+\frac{1}{x+1}\right)-\left(1+\frac{1}{2}+\ldots+\frac{1}{x}\right) \\
& =\frac{1}{x+1}=x \underline{-1}
\end{aligned}
$$

We conclude:

$$
\sum_{a}^{b} x-\frac{1}{-1} \delta x=\left.H_{x}\right|_{a} ^{b}
$$

Sums of Discrete Exponential Functions

- We have:

$$
D e^{x}=e^{x}
$$

The finite analogue should have $\Delta f(x)=f(x)$. This means:

$$
f(x+1)-f(x)=f(x), \text { that is, } f(x+1)=2 f(x), \text { only possible if } f(x)=2^{x}
$$

- For general base $c>0$, the difference of c^{x} is:

$$
\Delta\left(c^{x}\right)=c^{x+1}-c^{x}=(c-1) c^{x}
$$

and the "anti-difference" for $c \neq 1$ is $\frac{c^{x}}{c-1}$.
As an application, we compute the sum of the geometric progression:

$$
\sum_{a \leqslant k<b} c^{k}=\sum_{a}^{b} c^{x} \delta x=\left.\frac{c^{x}}{c-1}\right|_{a} ^{b}=\frac{c^{b}-c^{a}}{c-1}=c^{a} \cdot \frac{c^{b-a}-1}{c-1} .
$$

Differential equations and difference equations

Differential equation	Solution	Difference equation	Solution
$D f_{n}(x)=n f_{n-1}(x)$			
$f_{n}(0)=[n=0], n \geqslant 0$	$f_{n}(x)=x^{n}$	$\Delta u_{m}(x)=m u_{m-1}(x)$ $u_{m}(0)=[m=0], m \geqslant 0$	$u_{m}(x)=x^{\underline{m}}$
$D f_{n}(x)=n f_{n-1}(x)$	$f_{n}(x)=x^{n}$	$\Delta u_{m}(x)=m u_{m-1}(x)$ $u_{m}(0)=\frac{1}{\mid m!}, m<0$	$u_{m}(x)=x^{\underline{m}}$
$f_{n}(1)=1, n<0$		$\Delta u(x)=\frac{1}{x+1} \cdot[x \geqslant 1]$ $\Delta(1)=1$	$u(x)=H_{x}$
$D f(x)=\frac{1}{x} \cdot[x>0]$	$f(x)=\ln x$		$\Delta u(x)=u(x)$ $f(1)=1$
$D f(x)=f(x)$ $f(0)=1$	$f(x)=e^{x}$	$u(x)=2^{x}$	
$D f(x)=b \cdot f(x)$	$f(x)=a^{x}$ $f(0)=1$	$\Delta u(x)=b \cdot u(x)$ $u(0)=1$	$u(x)=c^{x}$ where $b=c-1$

I'Hôpital's rule and Stolz-Cesàro lemma

I'Hôpital's rule: Hypotheses

1 f(x) and $g(x)$ are both vanishing or both infinite at x_{0}.
$2 g^{\prime}(x)$ is always positive in some neighborhood of x_{0}.

I'Hôpital's rule: Thesis

- If $\lim _{x \rightarrow x_{0}} \frac{f^{\prime}(x)}{g^{\prime}(x)}=L \in \mathbb{R}$,
- then $\lim _{x \rightarrow x_{0}} \frac{f(x)}{g(x)}=L$.

Stolz-Cesàro lemma: Hypotheses

$1 u(n)$ and $v(n)$ are defined for every value $n \in \mathbb{N}$.
$2 v(n)$ is positive, strictly increasing, and divergent.

Stolz-Cesàro lemma: Thesis

- If $\lim _{n \rightarrow \infty} \frac{\Delta u(n)}{\Delta v(n)}=L \in \mathbb{R}$,
- then $\lim _{n \rightarrow \infty} \frac{u(n)}{v(n)}=L$.

Proof of Stolz-Cesàro lemma in the case of real limit

Suppose $\lim _{n \rightarrow \infty} \frac{\Delta u(n)}{\Delta v(n)}=L \in \mathbb{R}$. Fix $\varepsilon>0$.

- As $\langle v(n)\rangle$ is strictly increasing, for n large enough we have:

$$
(v(n+1)-v(n))\left(L-\frac{\varepsilon}{2}\right)<u(n+1)-u(n)<(v(n+1)-v(n))\left(L+\frac{\varepsilon}{2}\right)
$$

- Summing p consecutive terms, we find:

$$
(v(n+p)-v(n))\left(L-\frac{\varepsilon}{2}\right)<u(n+p)-u(n)<(v(n+p)-v(n))\left(L+\frac{\varepsilon}{2}\right)
$$

- As $\langle v(n)\rangle$ is positive, we can divide by $v(n+p)$ and obtain:

$$
\left(1-\frac{v(n)}{v(n+p)}\right)\left(L-\frac{\varepsilon}{2}\right)<\frac{u(n+p)}{v(n+p)}-\frac{u(n)}{v(n+p)}<\left(1-\frac{v(n)}{v(n+p)}\right)\left(L+\frac{\varepsilon}{2}\right)
$$

- As $\lim _{n \rightarrow \infty} v(n)=+\infty$, for every p large enough we have:

$$
L-\varepsilon<\frac{u(n+p)}{v(n+p)}<L+\varepsilon
$$

As $\varepsilon>0$ is arbitrary, the thesis follows.

A useful corollary

Arithmetic mean theorem

If $\lim _{n \rightarrow \infty} a_{n}=L$, then $\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=0}^{n-1} a_{k}=L$ too.
That is:
If a sequence converges,
then the sequence of its arithmetic means converges to the same limit.
Proof:

- Let $u(x)=\sum_{k=0}^{x-1} a_{k}$ and $v(x)=x$.
- Then $\Delta u(x)=a_{x}$ and $\Delta v(x)=1$.
- Apply the Stolz-Cesàro lemma.

Next subsection

1 Finite and Infinite Calculus

- Derivative and Difference Operators
- Integrals and Sums
- Summation by Parts

2 Infinite Sums

- Sums and limits
- Multiple infinite sums
- Other summation criteria

Summation by Parts

Infinite analogue: integration by parts

$$
\int u(x) v^{\prime}(x) \mathrm{d} x=u(x) v(x)-\int u^{\prime}(x) v(x) \mathrm{d} x
$$

Difference of a product

$$
\begin{aligned}
\Delta(u(x) v(x)) & =u(x+1) v(x+1)-u(x) v(x) \\
& =u(x+1) v(x+1)-u(x) v(x+1)+u(x) v(x+1)-u(x) v(x) \\
& =\Delta u(x) v(x+1)+u(x) \Delta v(x) \\
& =u(x) \Delta v(x)+E v(x) \Delta u(x)
\end{aligned}
$$

where E is the shift operator $E f(x)=f(x+1)$. We then have the:
Rule for summation by parts

$$
\sum u \Delta v \delta x=u v-\sum E v \Delta u \delta x
$$

Why the shift?

If we repeat our derivation with two continuous functions f and g of one real variable x, we find for any increment $h \neq 0$:

$$
\begin{aligned}
f(x+h) g(x+h)-f(x) g(x) & =f(x+h) g(x+h)-f(x) g(x+h)+f(x) g(x+h)-f(x) g(x) \\
& =f(x)(g(x+h)-g(x))+g(x+h)(f(x+h)-f(x))
\end{aligned}
$$

The incremental ratio is thus:

$$
\frac{f(x+h) g(x+h)-f(x) g(x)}{h}=f(x) \cdot \frac{g(x+h)-g(x)}{h}+g(x+h) \cdot \frac{f(x+h)-f(x)}{h}
$$

So there is a shift: but it is infinitesimal-and disappears by continuity of g.

Example: $S_{n}=\sum_{k=0}^{n} k c^{k}$ with $c \neq 1$

- We want to write $S_{n}=\sum_{0}^{n+1} u(x) \Delta v(x) \delta x$ for suitable $u(x)$ and $v(x)$.
- Let $u(x)=x$ and $v(x)=c^{x} /(c-1)$.
- Then $\Delta u(x)=1, \Delta v(x)=c^{x}$, and $E v(x)=c^{x+1} /(c-1)$.
- Summing by parts:

$$
\begin{aligned}
\sum_{0}^{n+1} x c^{x} \delta x & =\left.\frac{x c^{x}}{c-1}\right|_{0} ^{n+1}-\sum_{0}^{n+1} \frac{c^{x+1}}{c-1} \delta x \\
& =\frac{(n+1) c^{n+1}}{c-1}-\frac{c}{c-1} \sum_{0}^{n+1} c^{x} \delta x \\
& =\frac{(n+1) c^{n+1}}{c-1}-\frac{c}{(c-1)^{2}}\left(c^{n+1}-1\right) \\
& =\frac{n c^{n+2}-(n+1) c^{n+1}+c}{(c-1)^{2}}
\end{aligned}
$$

Example: $S_{n}=\sum_{k=0}^{n} k H_{k}$

- We want to write $S_{n}=\sum_{0}^{n+1} u(x) \Delta v(x) \delta x$ for suitable $u(x)$ and $v(x)$.
- Let $u(x)=H_{x}$ and $v(x)=x^{2} / 2$.
- Then $\Delta u(x)=x=\frac{-1}{}, \Delta v(x)=x$, and $E v(x)=(x+1)^{\frac{2}{2}} / 2$.
- Summing by parts:

$$
\begin{aligned}
\sum_{0}^{n+1} x H_{x} \delta x & =\left.\frac{x^{\underline{2}}}{2} H_{x}\right|_{0} ^{n+1}-\sum_{0}^{n+1} \frac{(x+1)^{\underline{2}}}{2} x-\frac{-1}{} \delta x \\
& =\frac{(n+1) n}{2} H_{n+1}-\frac{1}{2} \sum_{0}^{n+1} x \frac{-1}{}(x-(-1))^{-} \delta x \\
& =\frac{(n+1) n}{2} H_{n+1}-\frac{1}{2} \sum_{0}^{n+1} x^{\underline{1}} \delta x \\
& =\frac{(n+1) n}{2} H_{n+1}-\frac{(n+1) n}{4} \\
& =\frac{(n+1) n}{2}\left(H_{n+1}-\frac{1}{2}\right)
\end{aligned}
$$

Next section

1 Finite and Infinite Calculus

- Derivative and Difference Operators
 - Integrals and Sums
 - Summation by Parts

2 Infinite Sums

- Sums and limits
- Multiple infinite sums
- Other summation criteria

How to sum infinite number sequences?

Setting $\sum_{k \in \mathbb{N}} a_{k}=\lim _{n \rightarrow \infty} \sum_{k=0}^{n} a_{k}$ seems meaningful \ldots

Example 1

Let

$$
S=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}+\cdots .
$$

Then

$$
2 S=2+1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\cdots=2+S
$$

and

$$
S=2
$$

How to sum infinite number sequences?

Setting $\sum_{k \in \mathbb{N}} a_{k}=\lim _{n \rightarrow \infty} \sum_{k=0}^{n} a_{k}$ seems meaningful
Example 1
Let

$$
S=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}+\cdots .
$$

Then

$$
2 S=2+1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\cdots=2+S,
$$

and

$$
S=2
$$

But can we manipulate such sums like we do with finite sums?

How to sum infinite number sequences?

Example 2

Let

$$
T=1+2+4+8+16+32+64+\ldots
$$

Then

$$
2 T=2+4+8+16+32+64+128 \ldots=T-1
$$

and

$$
T=-1
$$

How to sum infinite number sequences?

Example 2

Let

$$
T=1+2+4+8+16+32+64+\ldots
$$

Then

$$
2 T=2+4+8+16+32+64+128 \ldots=T-1
$$

and

$$
T=-1
$$

Problem:

- The sum T is infinite ...
- and we cannot subtract an infinite quantity from another infinite quantity.

How to sum infinite number sequences?

Example 3

Let

$$
\sum_{k \geqslant 0}(-1)^{k}=1-1+1-1+1-1+1-1+\ldots
$$

Different ways to sum

$$
(1-1)+(1-1)+(1-1)+(1-1)+\ldots=0+0+0+0+\ldots=0
$$

and

$$
1-(1-1)-(1-1)-(1-1)-(1-1)-\ldots=1-0-0-0-0-0-\ldots=1
$$

How to sum infinite number sequences?

Example 3

Let

$$
\sum_{k \geqslant 0}(-1)^{k}=1-1+1-1+1-1+1-1+\ldots
$$

Different ways to sum

$$
(1-1)+(1-1)+(1-1)+(1-1)+\ldots=0+0+0+0+\ldots=0
$$

and

$$
1-(1-1)-(1-1)-(1-1)-(1-1)-\ldots=1-0-0-0-0-0-\ldots=1
$$

Problem:

- The sequence of the partial sums does not converge...
- and we cannot manipulate something that does not exist.

Defining Infinite Sums: Nonnegative Summands

Definition 1

$$
\begin{gathered}
\text { If } a_{k} \geqslant 0 \text { for every } k \geqslant 0 \text {, then: } \\
\sum_{k \geqslant 0} a_{k}=\lim _{n \rightarrow \infty} \sum_{k=0}^{n} a_{k}=\sup _{K \subseteq \mathbb{N},|K|<\infty} \sum_{k \in K} a_{k}
\end{gathered}
$$

Note that:

- The definition as a limit is (sort of) a Riemann integral.
- The definition as a least upper bound is a Lebesgue integral with respect to the counting measure

$$
\mu(X)=\text { if }|X|=n \in \mathbb{N} \text { then } n \text { else }+\infty
$$

- The limit / least upper bound above can be finite or infinite, but are always equal.
Exercise: Prove this fact.

Defining Infinite Sums: Riemann Summation

Definition 2 (Riemann sum of a series)

A series $\sum_{k \geqslant 0} a_{k}$ with complex coefficients converges to a complex number S, called the sum of the series, if:

$$
\lim _{n \rightarrow \infty} \sum_{k=0}^{n} a_{k}=S .
$$

In this case, we write: $\sum_{k \geqslant 0} a_{k}=S$.
The values $S_{n}=\sum_{k=0}^{n} a_{k}$ are called the partial sums of the series.
The series $\sum_{k \geqslant 0} a_{k}$ converges absolutely if $\sum_{k \geqslant 0}\left|a_{k}\right|$ converges.
Note that the series $\sum_{k \geqslant 0} a_{k}=\sum_{k \geqslant 0}\left(b_{k}+i c_{k}\right)$ converges to $S=T+i U$ if and only if $\sum_{k \geqslant 0} b_{k}$ converges to T and $\sum_{k \geqslant 0} c_{k}$ converges to U.

A series that converges, but not absolutely

Let $a_{k}=\frac{(-1)^{k-1}}{k}[k>0]$. Then $\sum_{k \geqslant 0} a_{k}=\ln 2$.
However, it is easy to prove by induction that $\sum_{k=0}^{2^{n}}\left|a_{k}\right|=H_{2^{n}}>\frac{n}{2}$ for every $n \geqslant 1$.

Infinite Sums: Associativity within a series

Associativity

A series $\sum_{k \geqslant 0} a_{k}$ has the associative property if for every two strictly increasing sequences

$$
\begin{aligned}
& i_{0}=0<i_{1}<i_{2}<\ldots<i_{k}<i_{k+1}<\ldots \\
& j_{0}=0<j_{1}<j_{2}<\ldots<j_{k}<j_{k+1}<\ldots
\end{aligned}
$$

we have:

$$
\sum_{k \geqslant 0}\left(\sum_{i=i_{k}}^{i_{k+1}-1} a_{i}\right)=\sum_{k \geqslant 0}\left(\sum_{j=j_{k}}^{j_{k+1}-1} a_{j}\right)
$$

We have seen that the series $\sum_{k \geqslant 0}(-1)^{k}$ does not have the associative property.

Theorem

A series has the associative property if and only if it has a sum (finite or infinite).
Proof: Regrouping as in the definition means taking a subsequence of the sequence of partial sums, which can converge to any of the latter's limit points.

Defining Infinite Sums: Lebesgue Summation

Every real number can be written as $x=x^{+}-x^{-}$, where:

$$
x^{+}=x \cdot[x>0]=\max (x, 0) \text { and } x^{-}=-x \cdot[x<0]=\max (-x, 0)
$$

Note that: $x^{+} \geqslant 0, x^{-} \geqslant 0$, and $x^{+}+x^{-}=|x|$.

Definition 3 (Lebesgue sum of a series)

Let $\left\{a_{k}\right\}_{k}$ be an absolutely convergent sequence of real numbers. Then:

$$
\sum_{k} a_{k}=\sum_{k} a_{k}^{+}-\sum_{k} a_{k}^{-}
$$

The series $\sum_{k} a_{k}$:

- converges absolutely if $\sum_{k} a_{k}^{+}<+\infty$ and $\sum_{k} a_{k}^{-}<+\infty$;
- diverges positively if $\sum_{k} a_{k}^{+}=+\infty$ and $\sum_{k} a_{k}^{-}<+\infty$;
- diverges negatively if $\sum_{k} a_{k}^{+}<+\infty$ and $\sum_{k} a_{k}^{-}=+\infty$.

If both $\sum_{k} a_{k}^{+}=+\infty$ and $\sum_{k} a_{k}^{-}=+\infty$ then "Bad Stuff happens".

Infinite Sums: Bad Stuff

Riemann series theorem

Let $\sum_{k} a_{k}$ be a series with real coefficients which converges, but not absolutely. For every real number L there exists a permutation p of \mathbb{N} such that:

$$
\lim _{n \rightarrow \infty} \sum_{k=0}^{n} a_{p(k)}=L
$$

Example: The harmonic series

If we rearrange the terms of the series $1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\ldots$ as follows:

$$
\begin{aligned}
1-\frac{1}{2}-\frac{1}{4}+\frac{1}{3}-\frac{1}{6}-\frac{1}{8}+\ldots & =\ldots+\frac{1}{2 k-1}-\frac{1}{2(2 k-1)}-\frac{1}{4 k}+\ldots \\
& =\ldots+\frac{1}{2}\left(\frac{1}{2 k-1}-\frac{1}{2 k}\right)+\ldots
\end{aligned}
$$

we obtain:

$$
1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\ldots=\ln 2 \text { but } 1-\frac{1}{2}-\frac{1}{4}+\frac{1}{3}-\frac{1}{6}-\frac{1}{8}+\ldots=\ln \sqrt{2}
$$

Infinite Sums: Commutativity

Commutativity

A series $\sum_{k \geqslant 0} a_{k}$ has the commutative property if for every permutation p of \mathbb{N},

$$
\sum_{k \geqslant 0} a_{p(k)}=\sum_{k} a_{k}
$$

The Riemann series theorem says that any series which is convergent, but not absolutely convergent, does not have the commutative property.

Theorem

A convergent series has the commutative property if and only if it is absolutely convergent.

Proof: (Sketch) Think of Lebesgue summation.

Infinite Sums：Commutativity

Commutativity

A series $\sum_{k} \geqslant 0 a_{k}$ has the commutative property if for every permutation p of \mathbb{N} ，

$$
\sum_{k \geqslant 0} a_{p(k)}=\sum_{k} a_{k}
$$

The Riemann series theorem says that any series which is convergent，but not absolutely convergent，does not have the commutative property．

Theorem

A convergent series has the commutative property if and only if it is absolutely convergent．

If we want to manipulate infinite sums like finite ones， we must require absolute convergence．

Infinite sums: Associativity between two series

Definition

Two series $\sum_{k} a_{k}, \sum_{k} b_{k}$ satisfy the associative property if:

$$
\sum_{k}\left(a_{k}+b_{k}\right)=\sum_{k} a_{k}+\sum_{k} b_{k}
$$

Can we say that any two series have the associative property?

Infinite sums: Associativity between two series

Definition

Two series $\sum_{k} a_{k}, \sum_{k} b_{k}$ satisfy the associative property if:

$$
\sum_{k}\left(a_{k}+b_{k}\right)=\sum_{k} a_{k}+\sum_{k} b_{k}
$$

Can we say that any two series have the associative property? In general, no:

- Let $a_{k}=[k \geqslant m]$ and $b_{k}=-[k \geqslant n]$ with $m, n \in \mathbb{Z}$.
- Then $\sum_{k} a_{k}=+\infty$ and $\sum_{k} b_{k}=-\infty$, but $\sum_{k}\left(a_{k}+b_{k}\right)=n-m$.

However, we have again the $+\infty-\infty$ issue...

Infinite sums: Associativity between two series

Definition

Two series $\sum_{k} a_{k}, \sum_{k} b_{k}$ satisfy the associative property if:

$$
\sum_{k}\left(a_{k}+b_{k}\right)=\sum_{k} a_{k}+\sum_{k} b_{k}
$$

Can we say that any two series have the associative property?

Theorem

- If the a_{k} and the b_{k} are all nonnegative, then $\sum_{k}\left(a_{k}+b_{k}\right)=\sum_{k} a_{k}+\sum_{k} b_{k}$.
- If $\sum_{k} a_{k}$ and $\sum_{k} b_{k}$ both have a limit and at most one of those limits is infinite, then $\sum_{k}\left(a_{k}+b_{k}\right)=\sum_{k} a_{k}+\sum_{k} b_{k}$.
- If $\sum_{k} a_{k}$ and $\sum_{k} b_{k}$ both converge absolutely, then $\sum_{k}\left(a_{k}+b_{k}\right)$ also converges absolutely.

Next subsection

1 Finite and Infinite Calculus

- Derivative and Difference Operators
- Integrals and Sums
- Summation by Parts

2 Infinite Sums

- Sums and limits
- Multiple infinite sums
- Other summation criteria

Limits of sums, sums of limits

Consider the double indexed sequence:

$$
a_{j, k}=\frac{1}{j}[1 \leqslant k \leqslant j]
$$

Then on the one hand:

$$
\sum_{k} a_{j, k}=1 \text { for every } j, \text { hence } \lim _{j \rightarrow \infty} \sum_{k} a_{j, k}=1
$$

But on the other hand:

$$
\lim _{j \rightarrow \infty} a_{j, k}=0 \text { for every } k, \text { hence } \sum_{k} \lim _{j \rightarrow \infty} a_{j, k}=0
$$

A positive result

Monotone Convergence Theorem

If the $a_{j, k}$ are all nonnegative and for every k the sequence $\left\langle a_{j, k}\right\rangle_{j \geqslant 0}$ is monotone nondecreasing, then:

$$
\lim _{j \rightarrow \infty} \sum_{k} a_{j, k}=\sum_{k} \lim _{j \rightarrow \infty} a_{j, k}
$$

regardless of the two sides being finite or infinite.
Proof: Let $a_{k}=\lim _{j \rightarrow \infty} a_{j, k}=\sup _{j} a_{j, k}$ and $S_{j}=\sum_{k} a_{j, k}$.

- Then $\left\langle S_{j}\right\rangle$ is nondecreasing and $\lim _{j \rightarrow \infty} S_{j}=\sup _{j} S_{j} \leqslant \sum_{k} a_{k}=\sum_{k} \lim _{j \rightarrow \infty} a_{j, k}$.
- If the I.h.s. is $+\infty$ or the r.h.s. is 0 , we have nothing else to do.
- Otherwise, suppose $\sum_{k} a_{k}>\alpha>0$: We will prove that $\sup _{j} S_{j}>\alpha$ too.
- Fix $\delta>0$ such that $\sum_{k} a_{k}>\alpha+2 \delta$ too.
- Choose k_{1}, \ldots, k_{n} such that $\sum_{i=1}^{n} a_{k_{i}}>\alpha+\delta$.
- Choose j such that $a_{j, k_{i}}>a_{k_{i}}-\delta \cdot 2^{-i}$ for every $1 \leqslant i \leqslant n$. Then:

$$
S_{j} \geqslant \sum_{i=1}^{n} a_{j, k_{i}}>\sum_{k} a_{k_{i}}-\delta \cdot \sum_{i=1}^{n} \frac{1}{2^{i}}>\alpha+\delta-\delta=\alpha
$$

What can we be sure of, in general?

Fatou's Lemma

If the $a_{j, k}$ are all nonnegative, then:

$$
\sum_{k} \liminf _{j} a_{j, k} \leqslant \liminf _{j} \sum_{k} a_{j, k}
$$

Proof: (Sketch) Apply the monotone convergence theorem to $b_{j, k}=\inf _{i \geqslant j} a_{i, k}$.

What can we be sure of, in general?

Fatou's Lemma

If the $a_{j, k}$ are all nonnegative, then:

$$
\sum_{k} \liminf _{j} a_{j, k} \leqslant \liminf _{j} \sum_{k} a_{j, k}
$$

Dominated Convergence Theorem

If $a_{k}=\lim _{j \rightarrow \infty} a_{j, k}$ exists for every k and in addition there exists a sequence $\left\langle b_{k}\right\rangle$ such that:

1 | $\left|a_{j, k}\right| \leqslant b_{k}$ for every $j \geqslant 0$, and
$2 \sum_{k} b_{k}<\infty$,
then:

$$
\lim _{j \rightarrow \infty} \sum_{k}\left|a_{j, k}-a_{k}\right|=0 ;
$$

consequently,

$$
\lim _{j \rightarrow \infty} \sum_{k} a_{j, k}=\sum_{k} a_{k}=\sum_{k} \lim _{j \rightarrow \infty} a_{j, k} .
$$

Proof: (Sketch) Apply Fatou's lemma to $c_{j, k}=2 b_{k}-\left|a_{j, k}-a_{k}\right|$.

Divergence of the harmonic series ${ }^{1}$

By contradiction, assume $\sum_{k \geqslant 1} \frac{1}{k}=S<+\infty$.

- For, $j, k \geqslant 1$ put $a_{j, k}=\frac{1}{j}[1 \leqslant k \leqslant j]$ and $b_{k}=\frac{1}{k}$.
- Then for every j and $k,\left|a_{j, k}\right| \leqslant b_{k}$, and $\sum_{k \geqslant 1} b_{k}$ converges.
- Now, $\lim _{j \rightarrow \infty} a_{j, k}=0$ for every k, so $\sum_{k \geqslant 1} \lim _{j \rightarrow \infty} a_{j, k}=0$.
- But $\sum_{k \geqslant 1} a_{j, k}=1$ for every j, so $\lim _{j \rightarrow \infty} \sum_{k \geqslant 1} a_{j, k}=1$.
- This contradicts the Dominated Convergence Theorem.
${ }^{1}$ This proof is taken from the MathExchange thread "Awfully sophisticated TAL proofs of simple facts".

Next subsection

1 Finite and Infinite Calculus

- Derivative and Difference Operators
- Integrals and Sums
- Summation by Parts

2 Infinite Sums

- Sums and limits
- Multiple infinite sums
- Other summation criteria

Multiple infinite sums

Definition: Double infinite sums

For every $j, k \geqslant 0$ let $a_{j, k} \geqslant 0$.
1 If $a_{j, k} \geqslant 0$ for every j and k, then:

$$
\sum_{j, k} a_{j, k}=\sup _{K \subseteq \mathbb{N} \times \mathbb{N},|K|<\infty} \sum_{K} a_{j, k}=\lim _{n \rightarrow \infty} \sum_{0 \leqslant j, k \leqslant n} a_{j, k} .
$$

(Recall that $\left.\sum_{0 \leqslant j, k \leqslant n} a_{j, k}=\sum_{j, k} a_{j, k}[0 \leqslant j \leqslant n][0 \leqslant k \leqslant n].\right)$
2 If $\sum_{j, k}\left|a_{j, k}\right|<+\infty$, then:

$$
\sum_{j, k} a_{j, k}=\sum_{j, k} a_{j, k}^{+}-\sum_{j, k} a_{j, k}^{-} .
$$

Multiple infinite sums

Definition: Double infinite sums

For every $j, k \geqslant 0$ let $a_{j, k} \geqslant 0$.
1 If $a_{j, k} \geqslant 0$ for every j and k, then:

$$
\sum_{j, k} a_{j, k}=\sup _{K \subseteq \mathbb{N} \times \mathbb{N},|K|<\infty} \sum_{K} a_{j, k}=\lim _{n \rightarrow \infty} \sum_{0 \leqslant j, k \leqslant n} a_{j, k} .
$$

(Recall that $\left.\sum_{0 \leqslant j, k \leqslant n} a_{j, k}=\sum_{j, k} a_{j, k}[0 \leqslant j \leqslant n][0 \leqslant k \leqslant n].\right)$
2 If $\sum_{j, k}\left|a_{j, k}\right|<+\infty$, then:

$$
\sum_{j, k} a_{j, k}=\sum_{j, k} a_{j, k}^{+}-\sum_{j, k} a_{j, k}^{-} .
$$

Can we use $\sum_{j \geqslant 0} \sum_{k \geqslant 0} a_{j, k}$ or $\sum_{k \geqslant 0} \sum_{j \geqslant 0} a_{j, k}$ instead?

Multiple infinite sums

Definition: Double infinite sums

For every $j, k \geqslant 0$ let $a_{j, k} \geqslant 0$.
1 If $a_{j, k} \geqslant 0$ for every j and k, then:

$$
\sum_{j, k} a_{j, k}=\sup _{K \subseteq \mathbb{N} \times \mathbb{N},|K|<\infty} \sum_{K} a_{j, k}=\lim _{n \rightarrow \infty} \sum_{0 \leqslant j, k \leqslant n} a_{j, k} .
$$

(Recall that $\left.\sum_{0 \leqslant j, k \leqslant n} a_{j, k}=\sum_{j, k} a_{j, k}[0 \leqslant j \leqslant n][0 \leqslant k \leqslant n].\right)$
2 If $\sum_{j, k}\left|a_{j, k}\right|<+\infty$, then:

$$
\sum_{j, k} a_{j, k}=\sum_{j, k} a_{j, k}^{+}-\sum_{j, k} a_{j, k}^{-} .
$$

Can we use $\sum_{j \geqslant 0} \sum_{k \geqslant 0} a_{j, k}$ or $\sum_{k \geqslant 0} \sum_{j \geqslant 0} a_{j, k}$ instead? In general, no:

- One writing is the limit on j of a limit on k which is a function of j;
- The other writing is the limit on k of a limit on j which is a function of k.
- There are no guarantees that the double limits be equal!

Multiple sums: An example of noncommutativity

From Joel Feldman's notes ${ }^{2}$
Let $a_{j, k}=[j=k=0]+[k=j+1]-[k=j-1]$:

	0	1	2	3	4	\ldots
0	1	1	0	0	0	\ldots
1	-1	0	1	0	0	\ldots
2	0	-1	0	1	0	\ldots
3	0	0	-1	0	1	\ldots
\vdots	\vdots	\vdots	\vdots	\vdots	\vdots	

Then:

- for every $j \geqslant 0, \sum_{k \geqslant 0} a_{j, k}=2 \cdot[j=0]$;
- for every $k \geqslant 0, \sum_{j \geqslant 0} a_{j, k}=0$; and
- for every $n \geqslant 0, \sum_{0 \leqslant j, k \leqslant n} a_{j, k}=1$.

Hence:

$$
\sum_{j \geqslant 0} \sum_{k \geqslant 0} a_{j, k}=2 ; \sum_{k \geqslant 0} \sum_{j \geqslant 0} a_{j, k}=0 ; \text { and } \lim _{n \rightarrow \infty} \sum_{0 \leqslant j, k \leqslant n} a_{j, k}=1 .
$$

${ }^{2}$ http://www.math.ubc.ca/~feldman/m321/twosum.pdf retrieved 21.02.2019.

Multiple infinite sums: Swapping indices

Theorem

For $j, k \geqslant 0$ let $a_{j, k}$ be real numbers.
Tonelli If $a_{j, k} \geqslant 0$ for every j and k, then:

$$
\sum_{j \geqslant 0} \sum_{k \geqslant 0} a_{j, k}=\sum_{k \geqslant 0} \sum_{j \geqslant 0} a_{j, k}=\sum_{j, k} a_{j, k},
$$

regardless of the quantities above being finite or infinite.
Fubini If $\sum_{j, k}\left|a_{j, k}\right|<+\infty$, then:

$$
\sum_{j \geqslant 0} \sum_{k \geqslant 0} a_{j, k}=\sum_{k \geqslant 0} \sum_{j \geqslant 0} a_{j, k}=\sum_{j, k} a_{j, k} .
$$

Fubini's theorem is proved in the textbook.

Multiple infinite sums: Swapping indices

Theorem

For $j, k \geqslant 0$ let $a_{j, k}$ be real numbers.
Tonelli If $a_{j, k} \geqslant 0$ for every j and k, then:

$$
\sum_{j \geqslant 0} \sum_{k \geqslant 0} a_{j, k}=\sum_{k \geqslant 0} \sum_{j \geqslant 0} a_{j, k}=\sum_{j, k} a_{j, k},
$$

regardless of the quantities above being finite or infinite.
Fubini If $\sum_{j, k}\left|a_{j, k}\right|<+\infty$, then:

$$
\sum_{j \geqslant 0} \sum_{k \geqslant 0} a_{j, k}=\sum_{k \geqslant 0} \sum_{j \geqslant 0} a_{j, k}=\sum_{j, k} a_{j, k} .
$$

Fubini's theorem is proved in the textbook. Again:

If we want to manipulate infinite sums like finite ones, we must require absolute convergence.

Next subsection

1 Finite and Infinite Calculus

- Derivative and Difference Operators
- Integrals and Sums
- Summation by Parts

2 Infinite Sums

- Sums and limits
- Multiple infinite sums
- Other summation criteria

Cesàro summation

Given a series $\sum_{k} a_{k}$, consider the sequence $S_{n}=\sum_{k=0}^{n} a_{k}$ of the partial sums.

- Put $u(x)=\sum_{k=0}^{x-1} S_{k}$ and $v(x)=x$. Then $\Delta u(x)=S_{x}$ and $\Delta v(x)=1$.
- Suppose $\sum_{k} a_{k}$ converges. Put $L=\sum_{k \geqslant 0} a_{k}=\lim _{n \rightarrow \infty} \frac{S_{n}}{1}$.
- We then have by the Stolz-Cesàro lemma: $\lim _{n \rightarrow \infty} \frac{\sum_{k=0}^{n-1} S_{k}}{n}=L$.

Given a (not necessarily convergent) series $\sum_{k} a_{k}$, the quantity:

$$
C \sum_{k} a_{k}=\lim _{n \rightarrow \infty} \frac{\sum_{k=0}^{n-1} S_{k}}{n},
$$

if it exists, is called the Cesàro sum of the series $\sum_{k} a_{k}$.

Cesàro sum without convergence

The series: $a_{k}=(-1)^{k}$ does not converge. However:

$$
S_{n}=\sum_{k=0}^{n}(-1)^{k}=[n \text { is even }]
$$

so for every $n \geqslant 1$:

$$
\begin{aligned}
\sum_{k=0}^{n-1} S_{k} & =\sum_{k=0}^{n-1}[k \text { is even }] \\
& =\frac{n}{2}[n-1 \text { is odd }]+\left(\frac{n-1}{2}+1\right)[n-1 \text { is even }] \\
& =\frac{n}{2}[n \text { is even }]+\frac{n+1}{2}[n \text { is odd }]=\frac{n+[n \text { is odd }]}{2}
\end{aligned}
$$

The Cesàro sum of $a_{k}=(-1)^{k}$ is thus:

$$
C \sum_{k}(-1)^{k}=\frac{1}{2}
$$

n	0	1	2	3	4	5	6	7	8	9
a_{n}	1	-1	1	-1	1	-1	1	-1	1	-1
S_{n}	1	0	1	0	1	0	1	0	1	0
$\sum_{k=0}^{n-1} S_{k}$	0	1	1	2	2	3	3	4	4	5

Abel summation

Abel's summation theorem

Let the series $S(x)=\sum_{k \geqslant 0} a_{k} x^{k}$ converge for every $0 \leqslant x<1$. If:

$$
S(1)=\sum_{k \geqslant 0} a_{k}
$$

converges, then:

$$
\lim _{n \rightarrow \infty} \sum_{k=0}^{n} a_{k} x^{k}=S(x) \text { uniformly in }[0,1]
$$

In particular:

$$
L=\lim _{x \rightarrow 1^{-}} S(x)=S(1)
$$

We can then define the Abel sum of a series as:

$$
A \sum_{k} a_{k}=\lim _{x \rightarrow 1^{-}} \sum_{k} a_{k} x^{k} \text { if the right-hand side exists }
$$

Abel sum without convergence

The series $a_{k}=(-1)^{k}$ does not converge. However, for $0 \leqslant x<1$ the series:

$$
S(x)=\sum_{k \geqslant 0}(-1)^{k} x^{k}=\sum_{k \geqslant 0}(-x)^{k}
$$

converges to $\frac{1}{1+x}$, and:

$$
\lim _{x \rightarrow 1^{-}} S(x)=\lim _{x \rightarrow 1^{-}} \frac{1}{1+x}=\frac{1}{2}
$$

The Abel sum of $a_{k}=(-1)^{k}$ is thus:

$$
A \sum_{k}(-1)^{k}=\frac{1}{2}
$$

Tauber's theorems

Tauber's first theorem (partial converse of Abel's summation theorem)

Let $S(x)=\sum_{k \geqslant 0} a_{k} x^{k}$ be such that $L=\lim _{x \rightarrow 1^{-}} S(x)$ exists. If:

$$
\lim _{k \rightarrow \infty} k a_{k}=0
$$

then $S(1)=\sum_{k \geqslant 0} a_{k}=L$.
The condition here is that a_{k} is infinitesimal of order greater than first.

Tauber's second theorem (full converse of Abel's summation theorem)

Let $S(x)=\sum_{k \geqslant 0} a_{k} x^{k}$ be such that $L=\lim _{x \rightarrow 1^{-}} S(x)$ exists. Then $\sum_{k \geqslant 0} a_{k}$ converges if and only if:

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n} k a_{k}=0
$$

In this case, $\sum_{k \geqslant 0} a_{k}=L$.
The condition here is that $k a_{k}$ converges to zero in arithmetic mean.
This is more general than the previous one because of the Stolz-Cesàro lemma.

