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Notation: Iverson brackets, ceiling, floor, slices

The Iverson brackets are the function from the set {True,False} to the set {0,1}
defined as follows:

[True] =1 and [False] = 0.
If a is either infinite or undefined, then a-[False] = 0.
The ceiling of a real number x is the integer:

[x] =min{k € Z | x < k}
Dually, the floor of a real number x is the integer:

[x] =max{k € Z | k < x}
For m,n € Z the slice from m to n is the set:

[m:n={x€eZ|m<x<n}=[mnNZ

TAL
TECH



Next section

Recurrences
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Recurrence equations

m A sequence of complex numbers (a,) = (ag,a1,a2,...) is called recurrent if for
n>1 its generic term a, satisfies a recurrence equation

an = fn(an—1,~~~730)7

with initial condition ag = & € C, where f, : C" — C for every n> 1.
m If there exists f : N x Ck — C such that:

fo=f(n;an-1,...,a,_x) forevery n >k,
the number k is called the order of the recurrence equation. In this case,
ap = 0p,a1 = 01,...,ap-1 = Qp-1

for suitable ap,0t,...,a,-1 € C are the initial conditions of the recurrence.

m Solving a recurrence means determining a function f: N — C, called a closed
form, such that a, = f(n) for every n>0.
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Two examples of recurrences

A recurrence equation of order 2

ap 0;a1=1;
a, = ap-1+app foreveryn>2

This recurrence defines the Fibonacci numbers.

A recurrence equation without a well-defined order

a = 1;
a, = apap-1+aiap—2+...+ap_1a0 foreveryn>1

This recurrence defines the Catalan numbers.
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Notation

For a finite set K = {ki, k2, --,km} and a given sequence (a,) of complex numbers:

m
;akzzia/v: Y a=an +an, ++ak,
i=

1<i<m

As addition of complex numbers is commutative, for every permutation p of the slice
[1: m] we have:

m m
igi i 1;1 %ot
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Next section

Sums and Recurrences
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The Simplest Recurrences

The simplest nontrivial recurrences are those of the first order:

So
Sy

a0 ;
Sh—1+an foreveryn>1.

Solving such a recurrence is the same as finding a closed form for the (partial) sum:

n
Sn = Z akx = Z ak
k=0 kel0:n]
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First: Don't panic!

A scary sum?

For n > 1 compute:
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First: Don't panic!

A scary sum?

For n>1 compute:
ANERREE

m First, we note that, as j! > 2/~ for j > 2, it is ):J’-‘:o

1

5 .
a<3 +Xk 21 <3

Then the floor in the square root is always 2.
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First: Don't panic!

For n > 1 compute:

él Li” +[Vkez

i—0

. . ; . .. 1
m First, we note that, as jl > 2/~ for j > 2, it is Zj’f:o =

5 .
i < 5-1-2}‘:321—' <3

Then the floor in the square root is always 2.

= Next, we observe that [\B/Ee Z] is always either 0 or 1:
Then the sum under the square root is always either 2 or 3.
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First: Don't panic!

A scary sum?

For n > 1 compute:
i \j LZJlJ +[€/Eez}

1
m First, we note that, as jl > 2/~ for j > 2, it |sZ J=o iy < +Zk 22 < &
Then the floor in the square root is always 2.

m Next, we observe that [\S/Ee Z] is always either 0 or 1:
Then the sum under the square root is always either 2 or 3.

= But ]—ﬂ = ]—\/ﬂ = 2. We conclude:

g Mx J [¥kez]| =2n.
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Next subsection

Sums and Recurrences
m The repertoire method
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The Repertoire Method: Idea

Consider a recurrence of the first order of the form:

a1, (1)
d(f(n—1))+W(n;02,03,...,0m) forevery n>1.

Suppose that the following happens:
& is linear; and
WV is linear in each ¢; (not necessarily in n).

Then can search a solution of the recurrence in the form:
f(n)=ai1A1(n)+a2Az(n)+---+amAm(n) (2)

where Aj(n),Az2(n),...,Am(n) are determined by a system of equations

a1 1A1(n)+ 0 2A2(n) +... + 1 mAm(n) = gi(n)
a21A1(n)+ 0 2A2(n)+ ...+ 02 mAm(n) = ga(n) @)
. . 3

Om1AL(n) + Um2A2(n)+ ...+ CmmAm(n) = gm(n)

TAL
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The Repertoire Method: Realization

In the hypotheses of the previous slides, suppose that m (m+ 1)-tuples
(&1,---,04,m,8(n)) exist such that:

For every j from 1 to m, the function gj(n) is the solution of the original
recurrence with coefficients oy = o «, that is:

&i(0)
gi(n)

ajyly
®(gi(n—1))+V(maj2,...,05m) foreveryn>1.

The matrix A= (ajvk)j,ke[l:m] is nonsingular.
Then:

There exist functions Az (n),...,Am(n) such that, for every choice of the
parameters o4, ..., 0y, the recurrence (1) has the unique solution (2).

For every n> 0, the m-tuple (A1(n),...,Am(n)) is the unique solution of the
linear system (3).

To find the m (m—+1)-tuples (e 1,...,®; m,gj(n)) one can proceed in two ways:
Choose the parameters ¢ 1,...,; » and determine the solution gj(n).

Choose the function gj(n) and determine the parameters o 1,...,a; , for which
gj(n) is the solution.
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Simplifying by complicating

The repertoire method is a first example of a generic method of “simplifying by
complicating™

m See your problem as a specific instance of a more general problem.

m This more general problem can be treated with more general methods.

m It might be simpler to solve the general problem with the general methods, than
to solve the specific problem with the specialized methods.

m The solution to the general problem can be reused to solve other specific
problems which are also specific instances of the general problem.
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Example: Sums of an arithmetic progression

Solve the recurrence equation:

ao
an

a7
ap-1+a-+bn foreveryn>1.

(4)

Note that a, is the sum of the first n+1 terms of the arithmetic progression (a+ nb).
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Example: Sums of an arithmetic progression

Solve the recurrence equation:

n o= o (4)
a, = ap-1+a+bnforeveryn>1.

Let us solve instead the more general system:

ao ai,
a, = ap-1+0x+ozn foreveryn=>1.

This recurrence has the form a, = ®(a,—1) + V(n; 02,a3) with ®(x) = x linear and
V(x) = a2+ azn linear in o and o3.
We can then try to apply the repertoire method.
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Example: Sums of an arithmetic progression

Solve the recurrence equation:

ao = a,
a, = ap-1+a+bnforeveryn=>1.

Let us solve instead the more general system:

ao a,
a, = ap-1t+op+oznforeveryn>1.

For this we use the repertoire method:

= 1. For 01,1 = 1,0112 =013 = 0 we have:

g1(n) =1 forevery n>0.
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Example: Sums of an arithmetic progression

Solve the recurrence equation:

ao = a,
a, = ap-1+a+bnforeveryn=>1.

Let us solve instead the more general system:

ao a,
a, = ap-1t+op+oznforeveryn>1.

For this we use the repertoire method:

m 2. For 021 = 0,022 = 1,0523 =0 we have:

g2(n) =n forevery n>0.
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Example: Sums of an arithmetic progression

Solve the recurrence equation:

aa = a,
a, = ap-1+a-+bn foreveryn>1.

(4)

Let us solve instead the more general system:

ao ay,
a, = ap-1t+0x+ozn foreveryn>1.

For this we use the repertoire method:
m 3. For g3(n)=n? as n> =(n—1)2+2(n—1)+1=(n—1)2+2n—1, we have:

031=0,032=-1,033=2
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Example: Sums of an arithmetic progression

Solve the recurrence equation:

ao
an

% (4)
an—1+a+bn foreveryn>1.

Let us solve instead the more general system:

ao
an

o,
an—1+ 02+ o3n foreveryn>1.

The repertoire method leads us to the family of linear systems:

A1(n) = 1
Az(n) = n
—Ax(n)  +2A3(n) = n?
which has the unique solution:
n?+n
Ai(n)=1; Ax(n)=n; As(n)= 5
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Example: Sums of an arithmetic progression

Solve the recurrence equation:

n = o (4)
a, = ap_1+a-+bn foreveryn>1.

Let us solve instead the more general system:

a = 01,
a, = ap-1+0zx+asnforeveryn>1.

The repertoire method tells that the general solution is:

n2+n
an=0p+03n+0p - 5

The recurrence (4) corresponds to @1 = a,0 = a,03 = b. We conclude:

2
a,,:(n+1)-a+n +n-b.
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Next subsection

Sums and Recurrences

m The perturbation method
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The perturbation method

This method is useful to compute a closed form for the sequence of prefix sums of a
given sequence (ap):

Perturb the equality by isolating the last summand on the left-hand side, and
the first summand on the right-hand side:

n+1
Sn+an+1 =ao+ Z ak
k=1

Rewrite the right-hand side so that it becomes a function of S,.
Solve with respect to S,,.
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Example 1: Sums of a geometric progression

For a#1 compute: S, =Y7_,a*.

Perturb the sum:

n+1 __ T k
Sh+a _1+Za
k=1

Rewrite the right-hand side so that it depends on S,:

n+1 n
1+ Z ak:1+az a¥=1+as,
k=1 k=0
Solve with respect to Sj:
Sp+a"t = 1+aS,
(1-a)s, = 1-a"!
sn _ 1— an+1 _ an+1 1

1-a a—1
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Example 2: S, =37 _, ka* with a # 1

m For x#1:

Sp+(n+1)a" =0+ Z (k+1)ak+?
0<k<n
— Z kak+1+ Z ak+1
0<k<n 0<k<n
1— n+1
_ g, 0=
1-a
m From this we get:
K ai(n+1)an+1+nan+2

) ka (a_1)2
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Example 3: When perturbation doesn’t work . ..

Compute: S, =Y7_o k2.
Perturb the sum:
n+1
Sn+n*=0+Y K
k=1

Um . ..that shifted k2 sounds bad ...
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Example 3: When perturbation doesn’t work . ..

Compute: S, =Y}_o k2.

Perturb the sum:
n+1
Sntn®=0+)Y K
k=1

Um ...that shifted k2 sounds bad ...
Rewrite the right-hand side so that it depends on Sj:

n+1 n
Y k¥ = Y (k+1)?
k=1 k=0
n
= Y (K+2k+1)
k=0

= S+ Y (2k+1)
k=0
n(n+1)
2

= S,+2 +n+1
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Example 3: When perturbation doesn’t work . ..

Compute: S, =Y7_, k2.

Perturb the sum:
n+1

Sn+n*=0+ Y K?
k=1
Um . ..that shifted k2 sounds bad ...
Rewrite the right-hand side so that it depends on S,:

n+1
Y o= 5220,
k=1
Solve with respect to S,:
Sp+(n+1? = sn+(n+1)+2w
(412 = (a+1)+220HD

... which is true, but where is S,?
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... try perturbing another sum!

In addition to S,, consider the sum: T,=Y7_g k.
Perturb T,:

n+1
To+(n+12=0+Y &3
k=1
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.try perturbing another sum!

In addition to S,, consider the sum: T, =Y7_g k3.

Perturb T,:
n+1
To+(n+1)*=0+Y £
k=1

Rewrite the right-hand side so that it depends on T, and on S,:

n+1 n
YK = Y (k+1)®
k=1 k=0

n

= Y (K®*+3Kk*+3k+1)
k=0

= Ta+3S,+ Y (3k+1)
k=0
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.try perturbing another sum!

In addition to S,, consider the sum: T, =Y7_; k3.
Perturb T,:
n+1
To+(n+1)*=0+Y £
k=1

Rewrite the right-hand side so that it depends on T, and on S,:

n+1 n
Y K = T,43S,+ Y (3k+1)
k=1 k=0

Solve with respect to S,:

(n+1)® = 35,,+(n+1)+3n("2+1)
- 3sn+(n+1)(1+gn)
3S, = (n+1)<n2+2n+lflfgn)
1 n n(n+1)(2n+1)
Se = —(n+1)(mr+Z)=—"T"20 7 TAL
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Next subsection

Sums and Recurrences

= Summation factors

TAL
TECH



Solving an T, = b, T_1 + ¢, with initial condition Ty

Find a summation factor s, satisfying the following property:

Spbp = sp—1ap—1 foreveryn>1

If such a factor exists, one can do following transformations:

Multiply by s, and get: s,a, T, = spbp Th—1+SnCn = Sn—13n-1 T n—1 + SnCn-
Set S, = span T, and rewrite the equation as:

So = soao To

Sn=Sn-1+5nCn

Obtain an “almost closed” formula for the solution:

1 4 1 4
Th=— (Soao To+ ). Skck> = — <Slb1 To+ ). Skck>
Span Snéan

k=1 k=1
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Finding a summation factor

Assuming that b, # 0 for every n:
Set s = 1.
Compute the next elements using the property s,b, = sp_1ap-1:

do
S1= —
by
Si1a1 dpdi
D= —— =
b2 by b2
S2a2 apadi1a2
S3=—F— =
b3 by by b3
Sp—18np-1 4081 ‘- -an-1
Sp = =

bn b1b2'“bn

TAL
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Example: application of summation factor

ap =cp, =1 and b, =2 gives the Hanoi Tower sequence:

Evaluate the summation factor:

Sp—1dp-1 _ @0d1°'-ap-1 1
sn = = =

bn bibs---b, 27

The solution is:

3

1
2k

=27(1—-2"")=2"—1

1 n
Th= <51b1 To+ z Ska> =2"
Spa £

ndn k=1

il
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Yet Another Example: constant coefficients

Equation Z,=aZ, 1+b

Taking a, =1, b,=a and ¢, = b:

m Evaluate summation factor:

Sn—12@n—1 apdy ...-adp-1 1
Sp = = =

by, bibs...b, an

m The solution is:

n

1 71
Z, = P <S1b120+ Z skck> =a" (Zo-i—bkgl ak>

ndn k=1

=a"Zy+b(l+a+a*+---+a" 1)
n
-1
—a"Zg+ 2 "
a—1
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Yet Another Example: check up on results

Equation Z,=aZ,_1+b

Zn = aZn—l +b
=a?Z,_2+ab+b
=a3Z, 3+a’b+ab+b
=akZ,  + (@ a2 )b

k ak -1
=aZ, y+ P (assuming a # 1)

Continuing until kK = n:
n
-1
Zy=3"Zy + b
a—1

a"—1

=a"Zy+ b
a—1
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Efficiency of Quicksort

Average number of comparisons: C, =n+1+ %):Z;}J Cy, Co =0.

unsorted

pivot value = 7
pivot valus
122722, swap 12and 2
262727, swap 26 and 7

7z7z3 swap7and3

i> j, stop partition

run quick sort recursively

[
[
S
T
@
@
S
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Efficiency of Quicksort: Obtaining the recurrence

The following transformations reduce this equation

n—2
nC,=n>+n+2 Z Ci+2Ch1

k=0
Write the last equation for n—1:
n—2
(n—1)Chy=(n—1*+(n-1)+2 Y G
k=0

and subtract to eliminate the sum:

nCp—(n—1)Cp 1 =n*+n+2C, 1 —(n—1)>—(n—1)
nCp—nCn1+Cp1=n>+n+2Cyr1—n>+2n—1—n+1
nC,—nC,_1=Cp_1+2n
nCp,=(n+1)Ch_1+2n
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Efficiency of Quicksort: Solving the recurrence

Equation nC, = (n+1)Ch_1+2n

m Evaluate summation factor with a, =n, b, =n-+1 and ¢, =2n:

_8132'”3,1_1_1~2~~~(n—1)_ 2
babz---b, ~ 3-4---(n+1)  n(n+1)

m Then the solution of the recurrence is:

1 n
Cn= s <51b1Co+ Y Ska>

n9n k=1

n
; k+1) because Co =0

no1 21
:2(n+1)k;1m =2(n+1) <Z ;+

k=1
=2(n+1)H,—

where H, =1+ % + % +...+ % =~ Inn is the nth harmonic number.
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Next section

Manipulation of Sums
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Basic properties

If the set K is finite, then the usual properties of addition hold:

m Distributivity: Y cx cax = cY kek ak-

m Associativity: Yick (ak +bk) = Lrek ak + Liek k-

m Commutativity: Yxcx ak = Ykek ap(k) Where p: K — K is a permutation.
For example, the following derivation is valid:

S = Y (atbk)
0<k<n
= Z (a+ b(n—k)) by commutativity
0<k<n
25 = Z (2a+ b(k+ n—k)) by associativity
0<k<n
= (2a+bn) Y 1 by distributivity
0<k<n
1
5 = (n+1)a—|— n(n+ )

TAL
TECH



The Inclusion-Exclusion Principle

Let K and K’ be finite sets of indices. Then:

Y a+ )Y a= Y a+ Y a

kek keK’ keKUK' keKNK'

Special cases:

a. Fori<m<n:
m n n
Zak-i- Zak:am-i-Zak
k=1 k=m k=1

b. For n>0:
Y a=a+ Y a
0<k<n 1<k<n
c. For n>0:
Sh+ant1 = a0+ a1
0<k<n
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TECH



Next section

Multiple sums

TAL
TECH



Multiple sums

If K1 and K> are index sets, then:
Y aiJ:Z<ZaiJ [P(i7f)]>
ieK1 jeEK2 i J

where P is the predicate P(i,j) = (i € K1) A(J € K2).

The following law of interchange of the order of summation holds:

Y Y ax[PUKI= Y ak=)Y ak[P(,k)]
J k P(j,k) k j

If aj k= ajbk, then:

% afim z) (Z bk>

jed keK kek
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. but what is a recurrence with multiple indices?

We can rephrase the definition of recurrent sequences by saying that:
Each term is a function of the previous ones.

With two (or more) indices, we cannot say anymore of any two pairs of indices, which
one come first:

Which one between (1,2) or (2,1) should be “larger”?

However, we still have a notion of for every pair of indices, which pairs are previous:

(1, k1) < (j2, k2) if and only if ji <j2 and k1 < k2

TAL
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Multiple sums with independent indices

If P(j,k) = Q(j) A R(k), where Q and R are properties and A indicates the logical
conjunction (AND), then the indices j and k are independent and the double sum can
be rewritten:

L):kaj,k = LZka,-,k ([QU)AR(K)
:j;k)aj,k[QU)][R(k)]
= ;[QU)];aj,kR(k) = ;;aj,k
= ;aj,k[R(k)];[Q(j)] = ;;afuk
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Multiple sums with dependent indices

In general, the indices are not independent, but we can write:
P(J’k) = Q(J)/\ R/(Jak) = R(k)/\ Q,(Jvk)
In this case, we can proceed as follows:
Z;,aj,k = Zaj,k[Q(j)][R'(jﬂk)]
Js
—Z[Q(J)]Zéy KIRGKI=Y Y ajk
jedkek!
—Z[R(k)]Zaj QUK=Y Y

keKjeJ

where:
m J={j| QU)},K ={k|R'(j,k)} = K'(j)
s K={k|R(k)},J' ={i1QU.K)}=J(k)

TAL
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What's wrong with this sum?

5 (22) 8
a |- =) = 2
57 k=1 9k j=1k=1 %k
_ n n i

kgl kgl K

Il
™=
=

-
>
|

-

3 x
N

The second passage is seriously wrong:
It is not licit to turn two independent variables into two dependent ones.
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Examples of multiple summation: Mutual upper bounds

How are the two sums below related?
n n

Y Y awand Y Zajk

j=1k=j k=1j=

TAL
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Examples of multiple summation: Mutual upper bounds

How are the two sums below related?
n n

IPIETRUD 35 P

j=1k=j k=1j=

Step 1: Rewrite with lverson brackets

We move the conditions on the indices from the sums to the summands:

-
7=
[

Y aull<j<n]li<k<n]

J=1k=j 1<j,k<n

n k

Y Yax = 3kl <k <n[l <j<K]
k=1j=1 1<j,k<n

TAL
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Examples of multiple summation: Mutual upper bounds

How are the two sums below related?

™=
gl

aj x and Z Zafk

] k=1j=

1k

J

Step 2: Observe that the summands are equal term by term

We only need to do so for the lverson brackets:

I<j<nj<k<n=[1<j<k<n=[1<k<n[l1<j<K]

We conclude that the two sums must be equal.
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A nice trick for symmetric summands

Write the summands in a matrix:

11 @12 4d13 ... dinp
a1 a2 a3 ... axp
a1 a32 4a33 ... a3p
dn1l adn2 an3 ..« ann

so that j is the row index and k is the column index.
m Then the sum of the values of the upper triangular part of the matrix is:

Su= Y ajx

1<j<k<n
m Dually, the sum of the values of the lower triangular part of the matrix is:

SL = Z ajyk
1<k<j<n

m Adding Sy to S; and applying the inclusion-exclusion principle:

Yo oakt Y ak= Y akt Y, akk
1<<ksn 1<k<j<n 1<j,k<n 1<k<n
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A nice trick for symmetric summands

Write the summands in a matrix:

ai1 a2 a3 ... adin
a1 a2 a3 ... an
as1 as2 az3 ... a3n
anl an2 an3 -« ann

so that j is the row index and k is the column index.

m Adding Sy to S; and applying the inclusion-exclusion principle:

Y gkt Y oak= Y akt Y akk

1<j<k<n 1<k<j<n 1<j,k<n 1<k<n
m If a;, = ay; for every j and k, then Sy =S; and we have:

1 n
Y k=5 ( Y Akt ) ak,k>
k=1

1<<k<n 1<j,k<n
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A nice trick for symmetric summands

Write the summands in a matrix:

411 @12 @813 ... din
a1 a2 a3 ... ap
a31 a32 4d33 ... a3p
an1 an,2 an3 000 an,n

s

so that j is the row index and k is the column index.

m Adding Sy to S; and applying the inclusion-exclusion principle:

Y ookt Y, ak= Y aikt Y, ak«

1<j<k<n 1<k<j<n 1<j,k<n 1<k<n

= In the special case a;, = aja, we can apply distributivity and obtain:

2
1 n
Z ajak = 5 < ak> + Z ai
k=1

1<j<k<n

=
Lr1=
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Multiple sums for ordinary sums

Suppose we have a sum of the form Y7_; a, which is “difficult” to compute with the
methods from the previous section.

m Write the term aj in the form by - (Z}‘Zl cj->. Then the original sum becomes:

uM=
‘ﬂ[vpr

n["]z

If the summand d; = cj):Z:j by is “easy to manage”’, we may obtain a new sum
Z}':l d; which is easier to compute.

TAL
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Example 2: Y] ka* with a # 1

Clearly k= ):J’f::l 1, so we can expand:

Then:

nan+2 7(n+1)a”+1 +a
(a—-1)?
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