Fantastic Recurrences and How to Solve Them

Day 1: Sums

Recurrences
Sums and Recurrences
Manipulation of Sums
Multiple Sums
Original slides 2010-2014 Jaan Penjam; modified 2016-2020 Stlvio Capobianco
Last update: 11 March 2020

Contents

1 Recurrences

2 Sums and Recurrences

- The repertoire method
- The perturbation method
- Summation factors

3 Manipulation of Sums

4 Multiple sums

Notation: Iverson brackets, ceiling, floor, slices

The Iverson brackets are the function from the set $\{$ True, False $\}$ to the set $\{0,1\}$ defined as follows:

1 [True] $=1$ and [False] $=0$.
2 If a is either infinite or undefined, then $a \cdot[$ False $]=0$.
The ceiling of a real number x is the integer:

$$
\lceil x\rceil=\min \{k \in \mathbb{Z} \mid x \leqslant k\}
$$

Dually, the floor of a real number x is the integer:

$$
\lfloor x\rfloor=\max \{k \in \mathbb{Z} \mid k \leqslant x\}
$$

For $m, n \in \mathbb{Z}$ the slice from m to n is the set:

$$
[m: n]=\{x \in \mathbb{Z} \mid m \leqslant x \leqslant n\}=[m, n] \cap \mathbb{Z}
$$

Next section

3 Manipulation of Sums

4 Multiple sums

Recurrence equations

- A sequence of complex numbers $\left\langle a_{n}\right\rangle=\left\langle a_{0}, a_{1}, a_{2}, \ldots\right\rangle$ is called recurrent if for $n \geqslant 1$ its generic term a_{n} satisfies a recurrence equation

$$
a_{n}=f_{n}\left(a_{n-1}, \ldots, a_{0}\right),
$$

with initial condition $a_{0}=\alpha \in \mathbb{C}$, where $f_{n}: \mathbb{C}^{n} \rightarrow \mathbb{C}$ for every $n \geqslant 1$.

- If there exists $f: \mathbb{N} \times \mathbb{C}^{k} \rightarrow \mathbb{C}$ such that:

$$
f_{n}=f\left(n ; a_{n-1}, \ldots, a_{n-k}\right) \text { for every } n \geqslant k,
$$

the number k is called the order of the recurrence equation. In this case,

$$
a_{0}=\alpha_{0}, a_{\mathbf{1}}=\alpha_{1}, \ldots, a_{n-1}=\alpha_{n-\mathbf{1}}
$$

for suitable $\alpha_{0}, \alpha_{1}, \ldots, \alpha_{n-1} \in \mathbb{C}$ are the initial conditions of the recurrence.

- Solving a recurrence means determining a function $f: \mathbb{N} \rightarrow \mathbb{C}$, called a closed form, such that $a_{n}=f(n)$ for every $n \geqslant 0$.

Two examples of recurrences

A recurrence equation of order 2

$$
\begin{aligned}
& a_{0}=0 ; a_{1}=1 ; \\
& a_{n}=a_{n-1}+a_{n-2} \text { for every } n \geqslant 2
\end{aligned}
$$

This recurrence defines the Fibonacci numbers.

A recurrence equation without a well-defined order

$$
\begin{aligned}
& a_{0}=1 ; \\
& a_{n}=a_{0} a_{n-1}+a_{1} a_{n-2}+\ldots+a_{n-1} a_{0} \text { for every } n \geqslant 1
\end{aligned}
$$

This recurrence defines the Catalan numbers.

Notation

For a finite set $K=\left\{k_{1}, k_{2}, \cdots, k_{m}\right\}$ and a given sequence $\left\langle a_{n}\right\rangle$ of complex numbers:

$$
\sum_{K} a_{k}=\sum_{i=1}^{m} a_{k_{i}}=\sum_{1 \leqslant i \leqslant m} a_{k_{i}}=a_{k_{1}}+a_{k_{\mathbf{2}}}+\cdots+a_{k_{m}}
$$

As addition of complex numbers is commutative, for every permutation p of the slice [$1: m$] we have:

$$
\sum_{i=1}^{m} a_{k_{i}}=\sum_{i=1}^{m} a_{k_{p(i)}}
$$

Next section

1 Recurrences

2 Sums and Recurrences

- The repertoire method
- The perturbation method
- Summation factors

3 Manipulation of Sums

4 Multiple sums

The Simplest Recurrences

The simplest nontrivial recurrences are those of the first order:

$$
\begin{aligned}
& S_{0}=a_{0} ; \\
& S_{n}=S_{n-1}+a_{n} \text { for every } n \geqslant 1
\end{aligned}
$$

Solving such a recurrence is the same as finding a closed form for the (partial) sum:

$$
S_{n}=\sum_{k=0}^{n} a_{k}=\sum_{k \in[0: n]} a_{k}
$$

First: Don't panic!

A scary sum?
For $n \geqslant 1$ compute:

$$
\sum_{k=1}^{n}\left\lceil\sqrt{\left\lfloor\sum_{j=0}^{k} \frac{1}{j!}\right\rfloor+[\sqrt[3]{k} \in \mathbb{Z}]}\right\rceil
$$

First: Don't panic!

A scary sum?
For $n \geqslant 1$ compute:

$$
\sum_{k=1}^{n}\left\lceil\sqrt{\left\lfloor\sum_{j=0}^{k} \frac{1}{j!}\right\rfloor+[\sqrt[3]{k} \in \mathbb{Z}]}\right\rceil
$$

- First, we note that, as $j!>2^{j-1}$ for $j>2$, it is $\sum_{j=0}^{k} \frac{1}{j!} \leqslant \frac{5}{2}+\sum_{i=3}^{k} 2^{1-i}<3$: Then the floor in the square root is always 2 .

First: Don't panic!

A scary sum?
For $n \geqslant 1$ compute:

$$
\sum_{k=1}^{n}\left\lceil\sqrt{\left\lfloor\sum_{j=0}^{k} \frac{1}{j!}\right\rfloor+[\sqrt[3]{k} \in \mathbb{Z}]}\right\rceil
$$

- First, we note that, as $j!>2^{j-1}$ for $j>2$, it is $\sum_{j=0}^{k} \frac{1}{j!} \leqslant \frac{5}{2}+\sum_{i=3}^{k} 2^{1-i}<3$:

Then the floor in the square root is always 2 .

- Next, we observe that $[\sqrt[3]{k} \in \mathbb{Z}]$ is always either 0 or 1 :

Then the sum under the square root is always either 2 or 3 .

First: Don't panic!

A scary sum?

For $n \geqslant 1$ compute:

$$
\sum_{k=1}^{n}\left\lceil\sqrt{\left\lfloor\sum_{j=0}^{k} \frac{1}{j!}\right\rfloor+[\sqrt[3]{k} \in \mathbb{Z}]}\right\rceil
$$

- First, we note that, as $j!>2^{j-1}$ for $j>2$, it is $\sum_{j=0}^{k} \frac{1}{j!} \leqslant \frac{5}{2}+\sum_{i=3}^{k} 2^{1-i}<3$:

Then the floor in the square root is always 2 .

- Next, we observe that $[\sqrt[3]{k} \in \mathbb{Z}]$ is always either 0 or 1 :

Then the sum under the square root is always either 2 or 3 .

- But $\lceil\sqrt{2}\rceil=\lceil\sqrt{3}\rceil=2$. We conclude:

$$
\sum_{k=1}^{n}\left\lceil\sqrt{\left\lfloor\sum_{j=0}^{k} \frac{1}{j!}\right\rfloor+[\sqrt[3]{k} \in \mathbb{Z}]}\right]=2 n
$$

Next subsection

1 Recurrences

2 Sums and Recurrences

- The repertoire method
- The perturbation method
- Summation factors

3 Manipulation of Sums

4 Multiple sums

The Repertoire Method: Idea

Consider a recurrence of the first order of the form:

$$
\begin{align*}
& f(0)=\alpha_{1} \\
& f(n)=\Phi(f(n-1))+\Psi\left(n ; \alpha_{2}, \alpha_{3}, \ldots, \alpha_{m}\right) \text { for every } n \geqslant 1 . \tag{1}
\end{align*}
$$

Suppose that the following happens:
1Φ is linear; and
2Ψ is linear in each α_{i} (not necessarily in n).
Then can search a solution of the recurrence in the form:

$$
\begin{equation*}
f(n)=a_{1} A_{1}(n)+a_{2} A_{2}(n)+\cdots+a_{m} A_{m}(n) \tag{2}
\end{equation*}
$$

where $A_{1}(n), A_{2}(n), \ldots, A_{m}(n)$ are determined by a system of equations

$$
\begin{align*}
\alpha_{1,1} A_{1}(n)+\alpha_{1,2} A_{2}(n)+\ldots+\alpha_{1, m} A_{m}(n) & =g_{1}(n) \\
\alpha_{2,1} A_{1}(n)+\alpha_{2,2} A_{2}(n)+\ldots+\alpha_{2, m} A_{m}(n) & =g_{2}(n) \tag{3}\\
\vdots & \vdots \\
\alpha_{m, 1} A_{1}(n)+\alpha_{m, 2} A_{2}(n)+\ldots+\alpha_{m, m} A_{m}(n) & =g_{m}(n)
\end{align*}
$$

where the $\alpha_{j, k}$ are suitable constants and the $g_{j}(n)$ are suitable functions.

The Repertoire Method: Realization

In the hypotheses of the previous slides, suppose that $m(m+1)$-tuples ($\alpha_{j, 1}, \ldots, \alpha_{j, m}, g_{j}(n)$) exist such that:

1 For every j from 1 to m, the function $g_{j}(n)$ is the solution of the original recurrence with coefficients $\alpha_{k}=\alpha_{j, k}$, that is:

$$
\begin{aligned}
& g_{j}(0)=\alpha_{j, 1}, \\
& g_{j}(n)=\Phi\left(g_{j}(n-1)\right)+\Psi\left(n ; \alpha_{j, 2}, \ldots, \alpha_{j, m}\right) \text { for every } n \geqslant 1 .
\end{aligned}
$$

2 The matrix $A=\left(a_{j, k}\right)_{j, k \in[1: m]}$ is nonsingular.
Then:
1 There exist functions $A_{1}(n), \ldots, A_{m}(n)$ such that, for every choice of the parameters $\alpha_{1}, \ldots, \alpha_{m}$, the recurrence (1) has the unique solution (2).
2 For every $n \geqslant 0$, the m-tuple $\left(A_{1}(n), \ldots, A_{m}(n)\right)$ is the unique solution of the linear system (3).
To find the $m(m+1)$-tuples $\left(\alpha_{j, 1}, \ldots, \alpha_{j, m}, g_{j}(n)\right)$ one can proceed in two ways:
1 Choose the parameters $\alpha_{j, 1}, \ldots, \alpha_{j, m}$ and determine the solution $g_{j}(n)$.
2 Choose the function $g_{j}(n)$ and determine the parameters $\alpha_{j, 1}, \ldots, \alpha_{j, m}$ for which $g_{j}(n)$ is the solution.

Simplifying by complicating

The repertoire method is a first example of a generic method of "simplifying by complicating":

- See your problem as a specific instance of a more general problem.
- This more general problem can be treated with more general methods.
- It might be simpler to solve the general problem with the general methods, than to solve the specific problem with the specialized methods.
- The solution to the general problem can be reused to solve other specific problems which are also specific instances of the general problem.

Example: Sums of an arithmetic progression

Solve the recurrence equation:

$$
\begin{align*}
& a_{0}=a, \tag{4}\\
& a_{n}=a_{n-1}+a+b n \text { for every } n \geqslant 1 .
\end{align*}
$$

Note that a_{n} is the sum of the first $n+1$ terms of the arithmetic progression $\langle a+n b\rangle$.

Example: Sums of an arithmetic progression

Solve the recurrence equation:

$$
\begin{align*}
& a_{0}=a, \\
& a_{n}=a_{n-1}+a+b n \text { for every } n \geqslant 1 . \tag{4}
\end{align*}
$$

Let us solve instead the more general system:

$$
\begin{aligned}
& a_{0}=\alpha_{1}, \\
& a_{n}=a_{n-1}+\alpha_{2}+\alpha_{3} n \text { for every } n \geqslant 1 .
\end{aligned}
$$

This recurrence has the form $a_{n}=\Phi\left(a_{n-1}\right)+\Psi\left(n ; \alpha_{2}, \alpha_{3}\right)$ with $\Phi(x)=x$ linear and $\Psi(x)=\alpha_{2}+\alpha_{3} n$ linear in α_{2} and α_{3}. We can then try to apply the repertoire method.

Example: Sums of an arithmetic progression

Solve the recurrence equation:

$$
\begin{align*}
& a_{0}=a, \\
& a_{n}=a_{n-1}+a+b n \text { for every } n \geqslant 1 . \tag{4}
\end{align*}
$$

Let us solve instead the more general system:

$$
\begin{aligned}
& a_{0}=\alpha_{1}, \\
& a_{n}=a_{n-1}+\alpha_{2}+\alpha_{3} n \text { for every } n \geqslant 1 .
\end{aligned}
$$

For this we use the repertoire method:

- 1. For $\alpha_{1,1}=1, \alpha_{1,2}=\alpha_{1,3}=0$ we have:

$$
g_{1}(n)=1 \text { for every } n \geqslant 0 .
$$

Example: Sums of an arithmetic progression

Solve the recurrence equation:

$$
\begin{align*}
& a_{0}=a, \\
& a_{n}=a_{n-1}+a+b n \text { for every } n \geqslant 1 . \tag{4}
\end{align*}
$$

Let us solve instead the more general system:

$$
\begin{aligned}
& a_{0}=\alpha_{1}, \\
& a_{n}=a_{n-1}+\alpha_{2}+\alpha_{3} n \text { for every } n \geqslant 1 .
\end{aligned}
$$

For this we use the repertoire method:

- 2. For $\alpha_{2,1}=0, \alpha_{2,2}=1, \alpha_{2,3}=0$ we have:

$$
g_{2}(n)=n \text { for every } n \geqslant 0 .
$$

Example: Sums of an arithmetic progression

Solve the recurrence equation:

$$
\begin{align*}
& a_{0}=a, \\
& a_{n}=a_{n-1}+a+b n \text { for every } n \geqslant 1 . \tag{4}
\end{align*}
$$

Let us solve instead the more general system:

$$
\begin{aligned}
& a_{0}=\alpha_{1}, \\
& a_{n}=a_{n-1}+\alpha_{2}+\alpha_{3} n \text { for every } n \geqslant 1 .
\end{aligned}
$$

For this we use the repertoire method:

- 3. For $g_{3}(n)=n^{2}$, as $n^{2}=(n-1)^{2}+2(n-1)+1=(n-1)^{2}+2 n-1$, we have:

$$
\alpha_{3,1}=0, \alpha_{3,2}=-1, \alpha_{3,3}=2
$$

Example: Sums of an arithmetic progression

Solve the recurrence equation:

$$
\begin{align*}
& a_{0}=a, \\
& a_{n}=a_{n-1}+a+b n \text { for every } n \geqslant 1 . \tag{4}
\end{align*}
$$

Let us solve instead the more general system:

$$
\begin{aligned}
& a_{0}=\alpha_{1}, \\
& a_{n}=a_{n-1}+\alpha_{2}+\alpha_{3} n \text { for every } n \geqslant 1 .
\end{aligned}
$$

The repertoire method leads us to the family of linear systems:

$$
\begin{array}{lll}
A_{1}(n) & =1 \\
& & =1 \\
A_{2}(n) & = & n \\
-A_{2}(n)+2 A_{3}(n) & = & n^{2}
\end{array}
$$

which has the unique solution:

$$
A_{1}(n)=1 ; \quad A_{2}(n)=n ; \quad A_{3}(n)=\frac{n^{2}+n}{2} .
$$

Example: Sums of an arithmetic progression

Solve the recurrence equation:

$$
\begin{align*}
& a_{0}=a, \tag{4}\\
& a_{n}=a_{n-1}+a+b n \text { for every } n \geqslant 1 .
\end{align*}
$$

Let us solve instead the more general system:

$$
\begin{aligned}
& a_{0}=\alpha_{1}, \\
& a_{n}=a_{n-1}+\alpha_{2}+\alpha_{3} n \text { for every } n \geqslant 1 .
\end{aligned}
$$

The repertoire method tells that the general solution is:

$$
a_{n}=\alpha_{0}+\alpha_{1} n+\alpha_{2} \cdot \frac{n^{2}+n}{2} .
$$

The recurrence (4) corresponds to $\alpha_{1}=a, \alpha_{2}=a, \alpha_{3}=b$. We conclude:

$$
a_{n}=(n+1) \cdot a+\frac{n^{2}+n}{2} \cdot b .
$$

Next subsection

1 Recurrences

2 Sums and Recurrences

- The perturbation method
- Summation factors

3 Manipulation of Sums

4 Multiple sums

The perturbation method

This method is useful to compute a closed form for the sequence of prefix sums of a given sequence $\left\langle a_{n}\right\rangle$:

$$
S_{n}=\sum_{k=0}^{n} a_{k}
$$

1 Perturb the equality by isolating the last summand on the left-hand side, and the first summand on the right-hand side:

$$
S_{n}+a_{n+1}=a_{0}+\sum_{k=1}^{n+1} a_{k}
$$

2 Rewrite the right-hand side so that it becomes a function of S_{n}.
3 Solve with respect to S_{n}.

Example 1: Sums of a geometric progression

For $a \neq 1$ compute: $S_{n}=\sum_{k=0}^{n} a^{k}$.
1 Perturb the sum:

$$
S_{n}+a^{n+1}=1+\sum_{k=1}^{n+1} a^{k}
$$

2 Rewrite the right-hand side so that it depends on S_{n} :

$$
1+\sum_{k=1}^{n+1} a^{k}=1+a \sum_{k=0}^{n} a^{k}=1+a S_{n}
$$

3 Solve with respect to S_{n} :

$$
\begin{aligned}
S_{n}+a^{n+1} & =1+a S_{n} \\
(1-a) S_{n} & =1-a^{n+1} \\
S_{n} & =\frac{1-a^{n+1}}{1-a}=\frac{a^{n+1}-1}{a-1}
\end{aligned}
$$

Example 2: $S_{n}=\sum_{k=0}^{n} k a^{k}$ with $a \neq 1$

- For $x \neq 1$:

$$
\begin{aligned}
S_{n}+(n+1) a^{n+1} & =0+\sum_{0 \leqslant k \leqslant n}(k+1) a^{k+1} \\
& =\sum_{0 \leqslant k \leqslant n} k a^{k+1}+\sum_{0 \leqslant k \leqslant n} a^{k+1} \\
& =a S_{n}+\frac{a\left(1-a^{n+1}\right)}{1-a}
\end{aligned}
$$

- From this we get:

$$
\sum_{k=0}^{n} k a^{k}=\frac{a-(n+1) a^{n+1}+n a^{n+2}}{(a-1)^{2}}
$$

Example 3: When perturbation doesn't work .. .

Compute: $S_{n}=\sum_{k=0}^{n} k^{2}$.
1 Perturb the sum:

$$
S_{n}+n^{2}=0+\sum_{k=1}^{n+1} k^{2}
$$

Um ... that shifted k^{2} sounds bad ...

Example 3: When perturbation doesn't work .. .

Compute: $S_{n}=\sum_{k=0}^{n} k^{2}$.
1 Perturb the sum:

$$
S_{n}+n^{2}=0+\sum_{k=1}^{n+1} k^{2}
$$

Um ...that shifted k^{2} sounds bad ...
2 Rewrite the right-hand side so that it depends on S_{n} :

$$
\begin{aligned}
\sum_{k=1}^{n+1} k^{2} & =\sum_{k=0}^{n}(k+1)^{2} \\
& =\sum_{k=0}^{n}\left(k^{2}+2 k+1\right) \\
& =S_{n}+\sum_{k=0}^{n}(2 k+1) \\
& =S_{n}+2 \frac{n(n+1)}{2}+n+1
\end{aligned}
$$

Example 3: When perturbation doesn't work . . .

Compute: $S_{n}=\sum_{k=0}^{n} k^{2}$.
1 Perturb the sum:

$$
S_{n}+n^{2}=0+\sum_{k=1}^{n+1} k^{2}
$$

Um ...that shifted k^{2} sounds bad ...
2 Rewrite the right-hand side so that it depends on S_{n} :

$$
\sum_{k=1}^{n+1} k^{2}=S_{n}+2 \frac{n(n+1)}{2}+n+1
$$

3 Solve with respect to S_{n} :

$$
\begin{aligned}
S_{n}+(n+1)^{2} & =S_{n}+(n+1)+2 \frac{n(n+1)}{2} \\
(n+1)^{2} & =(n+1)+2 \frac{n(n+1)}{2}
\end{aligned}
$$

... which is true, but where is S_{n} ?

try perturbing another sum!

In addition to S_{n}, consider the sum: $T_{n}=\sum_{k=0}^{n} k^{3}$.
1 Perturb T_{n} :

$$
T_{n}+(n+1)^{3}=0+\sum_{k=1}^{n+1} k^{3}
$$

try perturbing another sum!

In addition to S_{n}, consider the sum: $T_{n}=\sum_{k=0}^{n} k^{3}$.
1 Perturb T_{n} :

$$
T_{n}+(n+1)^{3}=0+\sum_{k=1}^{n+1} k^{3}
$$

2 Rewrite the right-hand side so that it depends on T_{n} and on S_{n} :

$$
\begin{aligned}
\sum_{k=1}^{n+1} k^{3} & =\sum_{k=0}^{n}(k+1)^{3} \\
& =\sum_{k=0}^{n}\left(k^{3}+3 k^{2}+3 k+1\right) \\
& =T_{n}+3 S_{n}+\sum_{k=0}^{n}(3 k+1)
\end{aligned}
$$

try perturbing another sum!

In addition to S_{n}, consider the sum: $T_{n}=\sum_{k=0}^{n} k^{3}$.
1 Perturb T_{n} :

$$
T_{n}+(n+1)^{3}=0+\sum_{k=1}^{n+1} k^{3}
$$

2 Rewrite the right-hand side so that it depends on T_{n} and on S_{n} :

$$
\sum_{k=1}^{n+1} k^{3}=T_{n}+3 S_{n}+\sum_{k=0}^{n}(3 k+1)
$$

3 Solve with respect to S_{n} :

$$
\begin{aligned}
(n+1)^{3} & =3 S_{n}+(n+1)+3 \frac{n(n+1)}{2} \\
& =3 S_{n}+(n+1)\left(1+\frac{3}{2} n\right) \\
3 S_{n} & =(n+1)\left(n^{2}+2 n+1-1-\frac{3}{2} n\right) \\
S_{n} & =\frac{1}{3}(n+1)\left(n^{2}+\frac{n}{2}\right)=\frac{n(n+1)(2 n+1)}{6}
\end{aligned}
$$

Next subsection

1 Recurrences

2 Sums and Recurrences

- The repertoire method
- The perturbation method
- Summation factors

3 Manipulation of Sums

4 Multiple sums

Solving $a_{n} T_{n}=b_{n} T_{n-1}+c_{n}$ with initial condition T_{0}

The idea:

Find a summation factor s_{n} satisfying the following property:

$$
s_{n} b_{n}=s_{n-1} a_{n-1} \text { for every } n \geqslant 1
$$

If such a factor exists, one can do following transformations:

1 Multiply by s_{n} and get: $s_{n} a_{n} T_{n}=s_{n} b_{n} T_{n-1}+s_{n} c_{n}=s_{n-1} a_{n-1} T_{n-1}+s_{n} c_{n}$.
2 Set $S_{n}=s_{n} a_{n} T_{n}$ and rewrite the equation as:

$$
\begin{aligned}
& S_{0}=s_{0} a_{0} T_{0} \\
& S_{n}=S_{n-\mathbf{1}}+s_{n} c_{n}
\end{aligned}
$$

3 Obtain an "almost closed" formula for the solution:

$$
T_{n}=\frac{1}{s_{n} a_{n}}\left(s_{0} a_{0} T_{0}+\sum_{k=1}^{n} s_{k} c_{k}\right)=\frac{1}{s_{n} a_{n}}\left(s_{1} b_{1} T_{0}+\sum_{k=1}^{n} s_{k} c_{k}\right)
$$

Finding a summation factor

Assuming that $b_{n} \neq 0$ for every n :
1 Set $s_{0}=1$.
2 Compute the next elements using the property $s_{n} b_{n}=s_{n-1} a_{n-1}$:

$$
\begin{aligned}
s_{1} & =\frac{a_{0}}{b_{1}} \\
s_{2} & =\frac{s_{1} a_{1}}{b_{2}}=\frac{a_{0} a_{1}}{b_{1} b_{2}} \\
s_{3} & =\frac{s_{2} a_{2}}{b_{3}}=\frac{a_{0} a_{1} a_{2}}{b_{1} b_{2} b_{3}} \\
& =\ldots \\
s_{n} & =\frac{s_{n-1} a_{n-1}}{b_{n}}=\frac{a_{0} a_{1} \cdots a_{n-1}}{b_{1} b_{2} \cdots b_{n}}
\end{aligned}
$$

Example: application of summation factor

$a_{n}=c_{n}=1$ and $b_{n}=2$ gives the Hanoi Tower sequence:

Evaluate the summation factor:

$$
s_{n}=\frac{s_{n-1} a_{n-1}}{b_{n}}=\frac{a_{0} a_{1} \cdots a_{n-1}}{b_{1} b_{2} \cdots b_{n}}=\frac{1}{2^{n}}
$$

The solution is:

$$
T_{n}=\frac{1}{s_{n} a_{n}}\left(s_{1} b_{1} T_{0}+\sum_{k=1}^{n} s_{k} c_{k}\right)=2^{n} \sum_{k=1}^{n} \frac{1}{2^{k}}=2^{n}\left(1-2^{-n}\right)=2^{n}-1
$$

Yet Another Example: constant coefficients

Equation $Z_{n}=a Z_{n-1}+b$
Taking $a_{n}=1, b_{n}=a$ and $c_{n}=b$:

- Evaluate summation factor:

$$
s_{n}=\frac{s_{n-1} a_{n-1}}{b_{n}}=\frac{a_{0} a_{1} \ldots a_{n-1}}{b_{1} b_{2} \ldots b_{n}}=\frac{1}{a^{n}}
$$

- The solution is:

$$
\begin{aligned}
Z_{n} & =\frac{1}{s_{n} a_{n}}\left(s_{1} b_{1} Z_{0}+\sum_{k=1}^{n} s_{k} c_{k}\right)=a^{n}\left(Z_{0}+b \sum_{k=1}^{n} \frac{1}{a^{k}}\right) \\
& =a^{n} Z_{0}+b\left(1+a+a^{2}+\cdots+a^{n-1}\right) \\
& =a^{n} Z_{0}+\frac{a^{n}-1}{a-1} b
\end{aligned}
$$

Yet Another Example: check up on results

$$
\begin{aligned}
Z_{n} & =a Z_{n-1}+b \\
& =a^{2} Z_{n-2}+a b+b \\
& =a^{3} Z_{n-3}+a^{2} b+a b+b \\
& =a^{k} Z_{n-k}+\left(a^{k-1}+a^{k-2}+\ldots+1\right) b \\
& =a^{k} Z_{n-k}+\frac{a^{k}-1}{a-1} b \quad(\text { assuming } a \neq 1)
\end{aligned}
$$

Continuing until $k=n$:

$$
\begin{aligned}
Z_{n} & =a^{n} Z_{n-n}+\frac{a^{n}-1}{a-1} b \\
& =a^{n} Z_{0}+\frac{a^{n}-1}{a-1} b
\end{aligned}
$$

Efficiency of Quicksort

Average number of comparisons: $C_{n}=n+1+\frac{2}{n} \sum_{k=0}^{n-1} C_{k}, C_{0}=0$.

Efficiency of Quicksort: Obtaining the recurrence

The following transformations reduce this equation

$$
n C_{n}=n^{2}+n+2 \sum_{k=0}^{n-2} C_{k}+2 C_{n-1}
$$

Write the last equation for $n-1$:

$$
(n-1) C_{n-1}=(n-1)^{2}+(n-1)+2 \sum_{k=0}^{n-2} C_{k}
$$

and subtract to eliminate the sum:

$$
\begin{aligned}
n C_{n}-(n-1) C_{n-1} & =n^{2}+n+2 C_{n-1}-(n-1)^{2}-(n-1) \\
n C_{n}-n C_{n-1}+C_{n-1} & =n^{2}+n+2 C_{n-1}-n^{2}+2 n-1-n+1 \\
n C_{n}-n C_{n-1} & =C_{n-1}+2 n \\
n C_{n} & =(n+1) C_{n-1}+2 n
\end{aligned}
$$

Efficiency of Quicksort: Solving the recurrence

Equation $n C_{n}=(n+1) C_{n-1}+2 n$

- Evaluate summation factor with $a_{n}=n, b_{n}=n+1$ and $c_{n}=2 n$:

$$
s_{n}=\frac{a_{1} a_{2} \cdots a_{n-1}}{b_{2} b_{3} \cdots b_{n}}=\frac{1 \cdot 2 \cdots(n-1)}{3 \cdot 4 \cdots(n+1)}=\frac{2}{n(n+1)}
$$

- Then the solution of the recurrence is:

$$
\begin{aligned}
C_{n} & =\frac{1}{s_{n} a_{n}}\left(s_{1} b_{1} C_{0}+\sum_{k=1}^{n} s_{k} c_{k}\right) \\
& =\frac{n+1}{2} \sum_{k=1}^{n} \frac{4 k}{k(k+1)} \text { because } C_{0}=0 \\
& =2(n+1) \sum_{k=1}^{n} \frac{1}{k+1}=2(n+1)\left(\sum_{k=1}^{n} \frac{1}{k}+\frac{1}{n+1}-1\right) \\
& =2(n+1) H_{n}-2 n
\end{aligned}
$$

where $H_{n}=1+\frac{1}{2}+\frac{1}{3}+\ldots+\frac{1}{n} \approx \ln n$ is the nth harmonic number.

Next section

1 Recurrences

2 Sums and Recurrences
\square The repertoire method
\square The perturbation method
Summation factors

3 Manipulation of Sums

4 Multiple sums

Basic properties

If the set K is finite, then the usual properties of addition hold:

- Distributivity: $\sum_{k \in K} c a_{k}=c \sum_{k \in K} a_{k}$.
- Associativity: $\sum_{k \in K}\left(a_{k}+b_{k}\right)=\sum_{k \in K} a_{k}+\sum_{k \in K} b_{k}$.
- Commutativity: $\sum_{k \in K} a_{k}=\sum_{k \in K} a_{p(k)}$ where $p: K \rightarrow K$ is a permutation.

For example, the following derivation is valid:

$$
\begin{aligned}
S & =\sum_{0 \leqslant k \leqslant n}(a+b k) \\
& =\sum_{0 \leqslant k \leqslant n}(a+b(n-k)) \text { by commutativity } \\
2 S & =\sum_{0 \leqslant k \leqslant n}(2 a+b(k+n-k)) \text { by associativity } \\
& =(2 a+b n) \sum_{0 \leqslant k \leqslant n} 1 \text { by distributivity } \\
S & =(n+1) a+\frac{n(n+1)}{2} b
\end{aligned}
$$

The Inclusion-Exclusion Principle

Theorem

Let K and K^{\prime} be finite sets of indices. Then:

$$
\sum_{k \in K} a_{k}+\sum_{k \in K^{\prime}} a_{k}=\sum_{k \in K \cup K^{\prime}} a_{k}+\sum_{k \in K \cap K^{\prime}} a_{k}
$$

Special cases:

a. For $1 \leqslant m \leqslant n$:

$$
\sum_{k=1}^{m} a_{k}+\sum_{k=m}^{n} a_{k}=a_{m}+\sum_{k=1}^{n} a_{k}
$$

b. For $n \geqslant 0$:

$$
\sum_{0 \leqslant k \leqslant n} a_{k}=a_{0}+\sum_{1 \leqslant k \leqslant n} a_{k}
$$

c. For $n \geqslant 0$:

$$
S_{n}+a_{n+1}=a_{0}+\sum_{0 \leqslant k \leqslant n} a_{k+1}
$$

Next section

1 Recurrences

2 Sums and Recurrences - The repertoire method - The perturbation method - Summation factors

3 Manipulation of Sums

4 Multiple sums

Multiple sums

Definition

If K_{1} and K_{2} are index sets, then:

$$
\sum_{i \in K_{\mathbf{1}}, j \in K_{\mathbf{2}}} a_{i, j}=\sum_{i}\left(\sum_{j} a_{i, j}[P(i, j)]\right)
$$

where P is the predicate $P(i, j)=\left(i \in K_{1}\right) \wedge\left(j \in K_{2}\right)$.
The following law of interchange of the order of summation holds:

$$
\sum_{j} \sum_{k} a_{j, k}[P(j, k)]=\sum_{P(j, k)} a_{j, k}=\sum_{k} \sum_{j} a_{j, k}[P(j, k)]
$$

If $a_{j, k}=a_{j} b_{k}$, then:

$$
\sum_{j \in J, k \in K} a_{j} b_{k}=\left(\sum_{j \in J} a_{j}\right)\left(\sum_{k \in K} b_{k}\right)
$$

but what is a recurrence with multiple indices?

We can rephrase the definition of recurrent sequences by saying that:
Each term is a function of the previous ones.
With two (or more) indices, we cannot say anymore of any two pairs of indices, which one come first:

Which one between $(1,2)$ or $(2,1)$ should be "larger"?
However, we still have a notion of for every pair of indices, which pairs are previous:

$$
\left(j_{1}, k_{1}\right) \leqslant\left(j_{2}, k_{2}\right) \text { if and only if } j_{1} \leqslant j_{2} \text { and } k_{1} \leqslant k_{2}
$$

Multiple sums with independent indices

If $P(j, k)=Q(j) \wedge R(k)$, where Q and R are properties and \wedge indicates the logical conjunction (AND), then the indices j and k are independent and the double sum can be rewritten:

$$
\begin{aligned}
\sum_{j, k} a_{j, k} & =\sum_{j, k} a_{j, k}([Q(j) \wedge R(k)]) \\
& =\sum_{j, k} a_{j, k}[Q(j)][R(k)] \\
& =\sum_{j}[Q(j)] \sum_{k} a_{j, k} R(k)=\sum_{j} \sum_{k} a_{j, k} \\
& =\sum_{k} a_{j, k}[R(k)] \sum_{j}[Q(j)]=\sum_{k} \sum_{j} a_{j, k}
\end{aligned}
$$

Multiple sums with dependent indices

In general, the indices are not independent, but we can write:

$$
P(j, k)=Q(j) \wedge R^{\prime}(j, k)=R(k) \wedge Q^{\prime}(j, k)
$$

In this case, we can proceed as follows:

$$
\begin{aligned}
\sum_{j, k} a_{j, k} & =\sum_{j, k} a_{j, k}[Q(j)]\left[R^{\prime}(j, k)\right] \\
& =\sum_{j}[Q(j)] \sum_{k} a_{j, k}\left[R^{\prime}(j, k)\right]=\sum_{j \in J} \sum_{k \in K^{\prime}} a_{j, k} \\
& =\sum_{k}[R(k)] \sum_{j} a_{j, k}\left[Q^{\prime}(j, k)\right]=\sum_{k \in K} \sum_{j \in J^{\prime}} a_{j, k}
\end{aligned}
$$

where:

- $J=\{j \mid Q(j)\}, K^{\prime}=\left\{k \mid R^{\prime}(j, k)\right\}=K^{\prime}(j)$
- $K=\{k \mid R(k)\}, J^{\prime}=\left\{j \mid Q^{\prime}(j, k)\right\}=J^{\prime}(k)$

What's wrong with this sum?

$$
\begin{aligned}
\left(\sum_{j=1}^{n} a_{j}\right) \cdot\left(\sum_{k=1}^{n} \frac{1}{a_{k}}\right) & =\sum_{j=1}^{n} \sum_{k=1}^{n} \frac{a_{j}}{a_{k}} \\
& =\sum_{k=1}^{n} \sum_{k=1}^{n} \frac{a_{k}}{a_{k}} \\
& =\sum_{k=1}^{n} \sum_{k=1}^{n} 1 \\
& =n^{2}
\end{aligned}
$$

What's wrong with this sum?

$$
\begin{aligned}
\left(\sum_{j=1}^{n} a_{j}\right) \cdot\left(\sum_{k=1}^{n} \frac{1}{a_{k}}\right) & =\sum_{j=1}^{n} \sum_{k=1}^{n} \frac{a_{j}}{a_{k}} \\
& =\sum_{k=1}^{n} \sum_{k=1}^{n} \frac{a_{k}}{a_{k}} \\
& =\sum_{k=1}^{n} \sum_{k=1}^{n} 1 \\
& =n^{2}
\end{aligned}
$$

Solution

The second passage is seriously wrong:
It is not licit to turn two independent variables into two dependent ones.

Examples of multiple summation: Mutual upper bounds

How are the two sums below related?

$$
\sum_{j=1}^{n} \sum_{k=j}^{n} a_{j, k} \text { and } \sum_{k=1}^{n} \sum_{j=1}^{k} a_{j, k}
$$

Examples of multiple summation: Mutual upper bounds

How are the two sums below related?

$$
\sum_{j=1}^{n} \sum_{k=j}^{n} a_{j, k} \text { and } \sum_{k=1}^{n} \sum_{j=1}^{k} a_{j, k}
$$

Step 1: Rewrite with Iverson brackets

We move the conditions on the indices from the sums to the summands:

$$
\begin{aligned}
\sum_{j=1}^{n} \sum_{k=j}^{n} a_{j, k} & =\sum_{1 \leqslant j, k \leqslant n} a_{j, k}[1 \leqslant j \leqslant n][j \leqslant k \leqslant n] \\
\sum_{k=1}^{n} \sum_{j=1}^{k} a_{j, k} & =\sum_{1 \leqslant j, k \leqslant n} a_{j, k}[1 \leqslant k \leqslant n][1 \leqslant j \leqslant k]
\end{aligned}
$$

Examples of multiple summation: Mutual upper bounds

How are the two sums below related?

$$
\sum_{j=1}^{n} \sum_{k=j}^{n} a_{j, k} \text { and } \sum_{k=1}^{n} \sum_{j=1}^{k} a_{j, k}
$$

Step 2: Observe that the summands are equal term by term

We only need to do so for the Iverson brackets:

$$
[1 \leqslant j \leqslant n][j \leqslant k \leqslant n]=[1 \leqslant j \leqslant k \leqslant n]=[1 \leqslant k \leqslant n][1 \leqslant j \leqslant k]
$$

We conclude that the two sums must be equal.

A nice trick for symmetric summands

Write the summands in a matrix:

$$
\left(\begin{array}{ccccc}
a_{1,1} & a_{1,2} & a_{1,3} & \ldots & a_{1, n} \\
a_{2,1} & a_{2,2} & a_{2,3} & \ldots & a_{2, n} \\
a_{3,1} & a_{3,2} & a_{3,3} & \ldots & a_{3, n} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
a_{n, 1} & a_{n, 2} & a_{n, 3} & \ldots & a_{n, n}
\end{array}\right)
$$

so that j is the row index and k is the column index.

- Then the sum of the values of the upper triangular part of the matrix is:

$$
S_{U}=\sum_{1 \leqslant j \leqslant k \leqslant n} a_{j, k}
$$

- Dually, the sum of the values of the lower triangular part of the matrix is:

$$
S_{L}=\sum_{1 \leqslant k \leqslant j \leqslant n} a_{j, k}
$$

- Adding S_{U} to S_{L} and applying the inclusion-exclusion principle:

$$
\sum_{1 \leqslant j \leqslant k \leqslant n} a_{j, k}+\sum_{1 \leqslant k \leqslant j \leqslant n} a_{j, k}=\sum_{1 \leqslant j, k \leqslant n} a_{j, k}+\sum_{1 \leqslant k \leqslant n} a_{k, k}
$$

A nice trick for symmetric summands

Write the summands in a matrix:

$$
\left(\begin{array}{ccccc}
a_{1,1} & a_{1,2} & a_{1,3} & \ldots & a_{1, n} \\
a_{2,1} & a_{2,2} & a_{2,3} & \ldots & a_{2, n} \\
a_{3,1} & a_{3,2} & a_{3,3} & \ldots & a_{3, n} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
a_{n, 1} & a_{n, 2} & a_{n, 3} & \ldots & a_{n, n}
\end{array}\right)
$$

so that j is the row index and k is the column index.

- Adding S_{U} to S_{L} and applying the inclusion-exclusion principle:

$$
\sum_{1 \leqslant j \leqslant k \leqslant n} a_{j, k}+\sum_{1 \leqslant k \leqslant j \leqslant n} a_{j, k}=\sum_{1 \leqslant j, k \leqslant n} a_{j, k}+\sum_{1 \leqslant k \leqslant n} a_{k, k}
$$

- If $a_{j, k}=a_{k, j}$ for every j and k, then $S_{U}=S_{L}$ and we have:

$$
\sum_{1 \leqslant j \leqslant k \leqslant n} a_{j, k}=\frac{1}{2}\left(\sum_{1 \leqslant j, k \leqslant n} a_{j, k}+\sum_{k=1}^{n} a_{k, k}\right)
$$

A nice trick for symmetric summands

Write the summands in a matrix:

$$
\left(\begin{array}{ccccc}
a_{1,1} & a_{1,2} & a_{1,3} & \ldots & a_{1, n} \\
a_{2,1} & a_{2,2} & a_{2,3} & \ldots & a_{2, n} \\
a_{3,1} & a_{3,2} & a_{3,3} & \ldots & a_{3, n} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
a_{n, 1} & a_{n, 2} & a_{n, 3} & \ldots & a_{n, n}
\end{array}\right)
$$

so that j is the row index and k is the column index.

- Adding S_{U} to S_{L} and applying the inclusion-exclusion principle:

$$
\sum_{1 \leqslant j \leqslant k \leqslant n} a_{j, k}+\sum_{1 \leqslant k \leqslant j \leqslant n} a_{j, k}=\sum_{1 \leqslant j, k \leqslant n} a_{j, k}+\sum_{1 \leqslant k \leqslant n} a_{k, k}
$$

- In the special case $a_{j, k}=a_{j} a_{k}$ we can apply distributivity and obtain:

$$
\sum_{1 \leqslant j \leqslant k \leqslant n} a_{j} a_{k}=\frac{1}{2}\left(\left(\sum_{k=1}^{n} a_{k}\right)^{2}+\sum_{k=1}^{n} a_{k}^{2}\right)
$$

Multiple sums for ordinary sums

Suppose we have a sum of the form $\sum_{k=1}^{n} a_{k}$ which is "difficult" to compute with the methods from the previous section.

- Write the term a_{k} in the form $b_{k} \cdot\left(\sum_{j=1}^{k} c_{j}\right)$. Then the original sum becomes:

$$
\sum_{k=1}^{n} a_{k}=\sum_{k=1}^{n} b_{k} \sum_{j=1}^{k} c_{j}=\sum_{j=1}^{n} c_{j} \sum_{k=j}^{n} b_{k}
$$

If the summand $d_{j}=c_{j} \sum_{k=j}^{n} b_{k}$ is "easy to manage", we may obtain a new sum $\sum_{j=1}^{n} d_{j}$ which is easier to compute.

Example 2: $\sum_{k=1}^{n} k a^{k}$ with $a \neq 1$

Clearly $k=\sum_{j=1}^{k} 1$, so we can expand:

$$
\sum_{k=1}^{n} k a^{k}=\sum_{k=1}^{n} a^{k} \sum_{j=1}^{k} 1=\sum_{j=1}^{n} \sum_{k=j}^{n} a^{k}
$$

The sum over j is easy to manage:

$$
\sum_{k=j}^{n} a^{k}=\sum_{k=0}^{n} a^{k}-\sum_{k=0}^{j-1} a^{k}=\frac{a^{n+1}-a^{j}}{a-1}
$$

Then:

$$
\begin{aligned}
\sum_{k=1}^{n} k a^{k} & =\frac{1}{a-1} \sum_{j=1}^{n}\left(a^{n+1}-a^{j}\right) \\
& =\frac{1}{a-1}\left(n a^{n+1}-a \sum_{j=0}^{n-1} a^{j}\right) \\
& =\frac{1}{a-1}\left(n a^{n+1}-\frac{a^{n+1}-a}{a-1}\right) \\
& =\frac{n a^{n+2}-(n+1) a^{n+1}+a}{(a-1)^{2}}
\end{aligned}
$$

