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Notation: Iverson brackets, ceiling, �oor, slices

The Iverson brackets are the function from the set {True,False} to the set {0,1}
de�ned as follows:

1 [True] = 1 and [False] = 0.

2 If a is either in�nite or unde�ned, then a · [False] = 0.

The ceiling of a real number x is the integer:

dxe= min{k ∈ Z | x 6 k}

Dually, the �oor of a real number x is the integer:

bxc= max{k ∈ Z | k 6 x}

For m,n ∈ Z the slice from m to n is the set:

[m : n] = {x ∈ Z |m 6 x 6 n}= [m,n]∩Z
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Recurrence equations

A sequence of complex numbers 〈an〉= 〈a0,a1,a2, . . .〉 is called recurrent if for
n > 1 its generic term an satis�es a recurrence equation

an = fn(an−1, . . . ,a0) ,

with initial condition a0 = α ∈ C, where fn : Cn→ C for every n > 1.

If there exists f : N×Ck → C such that:

fn = f (n;an−1, . . . ,an−k ) for every n > k ,

the number k is called the order of the recurrence equation. In this case,

a0 = α0,a1 = α1, . . . ,an−1 = αn−1

for suitable α0,α1, . . . ,αn−1 ∈ C are the initial conditions of the recurrence.

Solving a recurrence means determining a function f : N→ C, called a closed
form, such that an = f (n) for every n > 0.



Two examples of recurrences

A recurrence equation of order 2

a0 = 0 ;a1 = 1 ;
an = an−1 +an−2 for every n > 2

This recurrence de�nes the Fibonacci numbers.

A recurrence equation without a well-de�ned order

a0 = 1 ;
an = a0an−1 +a1an−2 + . . .+an−1a0 for every n > 1

This recurrence de�nes the Catalan numbers.



Notation

For a �nite set K = {k1,k2, · · · ,km} and a given sequence 〈an〉 of complex numbers:

∑
K

ak =
m

∑
i=1

aki = ∑
16i6m

aki = ak1 +ak2 + · · ·+akm

As addition of complex numbers is commutative, for every permutation p of the slice
[1 : m] we have:

m

∑
i=1

aki =
m

∑
i=1

akp(i)
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The Simplest Recurrences

The simplest nontrivial recurrences are those of the �rst order:

S0 = a0 ;
Sn = Sn−1 +an for every n > 1 .

Solving such a recurrence is the same as �nding a closed form for the (partial) sum:

Sn =
n

∑
k=0

ak = ∑
k∈[0:n]

ak



First: Don't panic!

A scary sum?

For n > 1 compute:

n

∑
k=1


√√√√⌊ k

∑
j=0

1

j!

⌋
+
[
3
√
k ∈ Z

]
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Then the �oor in the square root is always 2.

Next, we observe that
[
3
√
k ∈ Z

]
is always either 0 or 1:

Then the sum under the square root is always either 2 or 3.

But
⌈√

2
⌉

=
⌈√

3
⌉

= 2. We conclude:

n

∑
k=1


√√√√⌊ k

∑
j=0

1

j!

⌋
+
[
3
√
k ∈ Z

]= 2n .
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The Repertoire Method: Idea

Consider a recurrence of the �rst order of the form:

f (0) = α1 ,
f (n) = Φ(f (n−1)) + Ψ(n;α2,α3, . . . ,αm) for every n > 1 .

(1)

Suppose that the following happens:

1 Φ is linear; and

2 Ψ is linear in each αi (not necessarily in n).

Then can search a solution of the recurrence in the form:

f (n) = a1A1(n) +a2A2(n) + · · ·+amAm(n) (2)

where A1(n),A2(n), . . . ,Am(n) are determined by a system of equations

α1,1A1(n) + α1,2A2(n) + . . .+ α1,mAm(n) = g1(n)
α2,1A1(n) + α2,2A2(n) + . . .+ α2,mAm(n) = g2(n)

...
...

αm,1A1(n) + αm,2A2(n) + . . .+ αm,mAm(n) = gm(n)

(3)

where the αj ,k are suitable constants and the gj (n) are suitable functions.



The Repertoire Method: Realization

In the hypotheses of the previous slides, suppose that m (m+1)-tuples
(αj ,1, . . . ,αj ,m,gj (n)) exist such that:

1 For every j from 1 to m, the function gj (n) is the solution of the original
recurrence with coe�cients αk = αj ,k , that is:

gj (0) = αj ,1 ,
gj (n) = Φ(gj (n−1)) + Ψ(n;αj ,2, . . . ,αj ,m) for every n > 1 .

2 The matrix A =
(
aj ,k
)
j ,k∈[1:m]

is nonsingular.

Then:

1 There exist functions A1(n), . . . ,Am(n) such that, for every choice of the
parameters α1, . . . ,αm, the recurrence (1) has the unique solution (2).

2 For every n > 0, the m-tuple (A1(n), . . . ,Am(n)) is the unique solution of the
linear system (3).

To �nd the m (m+1)-tuples (αj ,1, . . . ,αj ,m,gj (n)) one can proceed in two ways:

1 Choose the parameters αj ,1, . . . ,αj ,m and determine the solution gj (n).

2 Choose the function gj (n) and determine the parameters αj ,1, . . . ,αj ,m for which
gj (n) is the solution.



Simplifying by complicating

The repertoire method is a �rst example of a generic method of �simplifying by
complicating�:

See your problem as a speci�c instance of a more general problem.

This more general problem can be treated with more general methods.

It might be simpler to solve the general problem with the general methods, than
to solve the speci�c problem with the specialized methods.

The solution to the general problem can be reused to solve other speci�c
problems which are also speci�c instances of the general problem.



Example: Sums of an arithmetic progression

Solve the recurrence equation:

a0 = a ,
an = an−1 +a+bn for every n > 1 .

(4)

Note that an is the sum of the �rst n+1 terms of the arithmetic progression 〈a+nb〉.



Example: Sums of an arithmetic progression

Solve the recurrence equation:

a0 = a ,
an = an−1 +a+bn for every n > 1 .

(4)

Let us solve instead the more general system:

a0 = α1 ,
an = an−1 + α2 + α3n for every n > 1 .

This recurrence has the form an = Φ(an−1) + Ψ(n;α2,α3) with Φ(x) = x linear and
Ψ(x) = α2 + α3n linear in α2 and α3.
We can then try to apply the repertoire method.
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g1(n) = 1 for every n > 0 .
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Example: Sums of an arithmetic progression

Solve the recurrence equation:

a0 = a ,
an = an−1 +a+bn for every n > 1 .

(4)

Let us solve instead the more general system:

a0 = α1 ,
an = an−1 + α2 + α3n for every n > 1 .

The repertoire method leads us to the family of linear systems:

A1(n) = 1
A2(n) = n
−A2(n) +2A3(n) = n2

which has the unique solution:

A1(n) = 1 ; A2(n) = n ; A3(n) =
n2 +n

2
.



Example: Sums of an arithmetic progression

Solve the recurrence equation:

a0 = a ,
an = an−1 +a+bn for every n > 1 .

(4)

Let us solve instead the more general system:

a0 = α1 ,
an = an−1 + α2 + α3n for every n > 1 .

The repertoire method tells that the general solution is:

an = α0 + α1n+ α2 ·
n2 +n

2
.

The recurrence (4) corresponds to α1 = a,α2 = a,α3 = b. We conclude:

an = (n+1) ·a+
n2 +n

2
·b .
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The perturbation method

This method is useful to compute a closed form for the sequence of pre�x sums of a
given sequence 〈an〉:

Sn =
n

∑
k=0

ak

1 Perturb the equality by isolating the last summand on the left-hand side, and
the �rst summand on the right-hand side:

Sn +an+1 = a0 +
n+1

∑
k=1

ak

2 Rewrite the right-hand side so that it becomes a function of Sn.

3 Solve with respect to Sn.



Example 1: Sums of a geometric progression

For a 6= 1 compute: Sn = ∑
n
k=0 a

k .

1 Perturb the sum:

Sn +an+1 = 1+
n+1

∑
k=1

ak

2 Rewrite the right-hand side so that it depends on Sn:

1+
n+1

∑
k=1

ak = 1+a
n

∑
k=0

ak = 1+aSn

3 Solve with respect to Sn:

Sn +an+1 = 1+aSn

(1−a)Sn = 1−an+1

Sn =
1−an+1

1−a
=

an+1−1
a−1



Example 2: Sn = ∑
n
k=0 ka

k with a 6= 1

For x 6= 1:

Sn + (n+1)an+1 = 0+ ∑
06k6n

(k +1)ak+1

= ∑
06k6n

kak+1 + ∑
06k6n

ak+1

= aSn +
a(1−an+1)

1−a

From this we get:
n

∑
k=0

kak =
a− (n+1)an+1 +nan+2

(a−1)2



Example 3: When perturbation doesn't work . . .

Compute: Sn = ∑
n
k=0 k

2.

1 Perturb the sum:

Sn +n2 = 0+
n+1

∑
k=1

k2

Um . . . that shifted k2 sounds bad . . .



Example 3: When perturbation doesn't work . . .

Compute: Sn = ∑
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1 Perturb the sum:

Sn +n2 = 0+
n+1

∑
k=1

k2

Um . . . that shifted k2 sounds bad . . .

2 Rewrite the right-hand side so that it depends on Sn:

n+1

∑
k=1

k2 =
n

∑
k=0

(k +1)2

=
n

∑
k=0

(k2 +2k +1)

= Sn +
n

∑
k=0

(2k +1)

= Sn +2
n(n+1)

2
+n+1



Example 3: When perturbation doesn't work . . .

Compute: Sn = ∑
n
k=0 k

2.

1 Perturb the sum:

Sn +n2 = 0+
n+1

∑
k=1

k2

Um . . . that shifted k2 sounds bad . . .

2 Rewrite the right-hand side so that it depends on Sn:

n+1

∑
k=1

k2 = Sn +2
n(n+1)

2
+n+1

3 Solve with respect to Sn:

Sn + (n+1)2 = Sn + (n+1) +2
n(n+1)

2

(n+1)2 = (n+1) +2
n(n+1)

2

. . . which is true, but where is Sn?



. . . try perturbing another sum!

In addition to Sn, consider the sum: Tn = ∑
n
k=0 k

3.

1 Perturb Tn:

Tn + (n+1)3 = 0+
n+1

∑
k=1

k3



. . . try perturbing another sum!

In addition to Sn, consider the sum: Tn = ∑
n
k=0 k

3.

1 Perturb Tn:

Tn + (n+1)3 = 0+
n+1

∑
k=1

k3

2 Rewrite the right-hand side so that it depends on Tn and on Sn:

n+1

∑
k=1

k3 =
n

∑
k=0

(k +1)3

=
n

∑
k=0

(k3 +3k2 +3k +1)

= Tn+3Sn +
n

∑
k=0

(3k +1)



. . . try perturbing another sum!

In addition to Sn, consider the sum: Tn = ∑
n
k=0 k

3.

1 Perturb Tn:

Tn + (n+1)3 = 0+
n+1

∑
k=1

k3

2 Rewrite the right-hand side so that it depends on Tn and on Sn:

n+1

∑
k=1

k3 = Tn+3Sn +
n

∑
k=0

(3k +1)

3 Solve with respect to Sn:

(n+1)3 = 3Sn + (n+1) +3
n(n+1)

2

= 3Sn + (n+1)

(
1+

3

2
n

)
3Sn = (n+1)

(
n2 +2n+1−1− 3

2
n

)
Sn =

1

3
(n+1)

(
n2 +

n

2

)
=

n(n+1)(2n+1)

6
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Solving anTn = bnTn−1+ cn with initial condition T0

The idea:

Find a summation factor sn satisfying the following property:

snbn = sn−1an−1 for every n > 1

If such a factor exists, one can do following transformations:

1 Multiply by sn and get: snanTn = snbnTn−1 + sncn = sn−1an−1Tn−1 + sncn.

2 Set Sn = snanTn and rewrite the equation as:

S0 = s0a0T0

Sn = Sn−1 + sncn

3 Obtain an �almost closed� formula for the solution:

Tn =
1

snan

(
s0a0T0 +

n

∑
k=1

skck

)
=

1

snan

(
s1b1T0 +

n

∑
k=1

skck

)



Finding a summation factor

Assuming that bn 6= 0 for every n:

1 Set s0 = 1.

2 Compute the next elements using the property snbn = sn−1an−1:

s1 =
a0
b1

s2 =
s1a1
b2

=
a0a1
b1b2

s3 =
s2a2
b3

=
a0a1a2
b1b2b3

= . . .

sn =
sn−1an−1

bn
=

a0a1 · · ·an−1
b1b2 · · ·bn



Example: application of summation factor

an = cn = 1 and bn = 2 gives the Hanoi Tower sequence:

Evaluate the summation factor:

sn =
sn−1an−1

bn
=

a0a1 · · ·an−1
b1b2 · · ·bn

=
1

2n

The solution is:

Tn =
1

snan

(
s1b1T0 +

n

∑
k=1

skck

)
= 2n

n

∑
k=1

1

2k
= 2n(1−2−n) = 2n−1



Yet Another Example: constant coe�cients

Equation Zn = aZn−1 +b

Taking an = 1, bn = a and cn = b:

Evaluate summation factor:

sn =
sn−1an−1

bn
=

a0a1 . . .an−1
b1b2 . . .bn

=
1

an

The solution is:

Zn =
1

snan

(
s1b1Z0 +

n

∑
k=1

skck

)
= an

(
Z0 +b

n

∑
k=1

1

ak

)
= anZ0 +b

(
1+a+a2 + · · ·+an−1

)
= anZ0 +

an−1
a−1

b



Yet Another Example: check up on results

Equation Zn = aZn−1 +b

Zn = aZn−1 +b

= a2Zn−2 +ab+b

= a3Zn−3 +a2b+ab+b

· · · · · ·

= akZn−k + (ak−1 +ak−2 + . . .+1)b

= akZn−k +
ak −1
a−1

b (assuming a 6= 1)

Continuing until k = n:

Zn = anZn−n +
an−1
a−1

b

= anZ0 +
an−1
a−1

b



E�ciency of Quicksort

Average number of comparisons: Cn = n+1+ 2
n ∑

n−1
k=0Ck , C0 = 0.



E�ciency of Quicksort: Obtaining the recurrence

The following transformations reduce this equation

nCn = n2 +n+2
n−2

∑
k=0

Ck +2Cn−1

Write the last equation for n−1:

(n−1)Cn−1 = (n−1)2 + (n−1) +2
n−2

∑
k=0

Ck

and subtract to eliminate the sum:

nCn− (n−1)Cn−1 = n2 +n+2Cn−1− (n−1)2− (n−1)

nCn−nCn−1 +Cn−1 = n2 +n+2Cn−1−n2 +2n−1−n+1

nCn−nCn−1 = Cn−1 +2n

nCn = (n+1)Cn−1 +2n



E�ciency of Quicksort: Solving the recurrence

Equation nCn = (n+1)Cn−1 +2n

Evaluate summation factor with an = n, bn = n+1 and cn = 2n:

sn =
a1a2 · · ·an−1
b2b3 · · ·bn

=
1 ·2 · · ·(n−1)

3 ·4 · · ·(n+1)
=

2

n(n+1)

Then the solution of the recurrence is:

Cn =
1

snan

(
s1b1C0 +

n

∑
k=1

skck

)

=
n+1

2

n

∑
k=1

4k

k(k +1)
because C0 = 0

= 2(n+1)
n

∑
k=1

1

k +1
= 2(n+1)

(
n

∑
k=1

1

k
+

1

n+1
−1

)
= 2(n+1)Hn−2n

where Hn = 1+ 1
2 + 1

3 + . . .+ 1
n ≈ lnn is the nth harmonic number.
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Basic properties

If the set K is �nite, then the usual properties of addition hold:

Distributivity: ∑k∈K cak = c ∑k∈K ak .

Associativity: ∑k∈K (ak +bk ) = ∑k∈K ak + ∑k∈K bk .

Commutativity: ∑k∈K ak = ∑k∈K ap(k) where p : K → K is a permutation.

For example, the following derivation is valid:

S = ∑
06k6n

(a+bk)

= ∑
06k6n

(a+b(n−k)) by commutativity

2S = ∑
06k6n

(2a+b(k +n−k)) by associativity

= (2a+bn) ∑
06k6n

1 by distributivity

S = (n+1)a+
n(n+1)

2
b



The Inclusion-Exclusion Principle

Theorem

Let K and K ′ be �nite sets of indices. Then:

∑
k∈K

ak + ∑
k∈K ′

ak = ∑
k∈K∪K ′

ak + ∑
k∈K∩K ′

ak

Special cases:

a. For 16m 6 n:
m

∑
k=1

ak +
n

∑
k=m

ak = am +
n

∑
k=1

ak

b. For n > 0:

∑
06k6n

ak = a0 + ∑
16k6n

ak

c. For n > 0:
Sn +an+1 = a0 + ∑

06k6n

ak+1
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Multiple sums

De�nition

If K1 and K2 are index sets, then:

∑
i∈K1 ,j∈K2

ai ,j = ∑
i

(
∑
j

ai ,j [P(i , j)]

)

where P is the predicate P(i , j) = (i ∈ K1)∧ (j ∈ K2).

The following law of interchange of the order of summation holds:

∑
j

∑
k

aj ,k [P(j ,k)] = ∑
P(j ,k)

aj ,k = ∑
k

∑
j

aj ,k [P(j ,k)]

If aj ,k = ajbk , then:

∑
j∈J,k∈K

ajbk =

(
∑
j∈J

aj

)(
∑
k∈K

bk

)



. . . but what is a recurrence with multiple indices?

We can rephrase the de�nition of recurrent sequences by saying that:

Each term is a function of the previous ones.

With two (or more) indices, we cannot say anymore of any two pairs of indices, which
one come �rst:

Which one between (1,2) or (2,1) should be �larger�?

However, we still have a notion of for every pair of indices, which pairs are previous:

(j1,k1) 6 (j2,k2) if and only if j1 6 j2 and k1 6 k2



Multiple sums with independent indices

If P(j ,k) = Q(j)∧R(k), where Q and R are properties and ∧ indicates the logical
conjunction (AND), then the indices j and k are independent and the double sum can
be rewritten:

∑
j ,k

aj ,k = ∑
j ,k

aj ,k ([Q(j)∧R(k)])

= ∑
j ,k

aj ,k [Q(j)][R(k)]

= ∑
j

[Q(j)]∑
k

aj ,kR(k) = ∑
j

∑
k

aj ,k

= ∑
k

aj ,k [R(k)]∑
j

[Q(j)] = ∑
k

∑
j

aj ,k



Multiple sums with dependent indices

In general, the indices are not independent, but we can write:

P(j ,k) = Q(j)∧R ′(j ,k) = R(k)∧Q ′(j ,k)

In this case, we can proceed as follows:

∑
j ,k

aj ,k = ∑
j ,k

aj ,k [Q(j)][R ′(j ,k)]

= ∑
j

[Q(j)]∑
k

aj ,k [R ′(j ,k)] = ∑
j∈J

∑
k∈K ′

aj ,k

= ∑
k

[R(k)]∑
j

aj ,k [Q ′(j ,k)] = ∑
k∈K

∑
j∈J ′

aj ,k

where:

J = {j |Q(j)},K ′ = {k | R ′(j ,k)}= K ′(j)

K = {k | R(k)},J ′ = {j |Q ′(j ,k)}= J ′(k)



What's wrong with this sum?

(
n

∑
j=1

aj

)
·

(
n

∑
k=1

1

ak

)
=

n

∑
j=1

n

∑
k=1

aj
ak

=
n

∑
k=1

n

∑
k=1

ak
ak

=
n

∑
k=1

n

∑
k=1

1

= n2



What's wrong with this sum?

(
n

∑
j=1

aj

)
·

(
n

∑
k=1

1

ak

)
=

n

∑
j=1

n

∑
k=1

aj
ak

=
n

∑
k=1

n

∑
k=1

ak
ak

=
n

∑
k=1

n

∑
k=1

1

= n2

Solution

The second passage is seriously wrong:
It is not licit to turn two independent variables into two dependent ones.



Examples of multiple summation: Mutual upper bounds

How are the two sums below related?

n

∑
j=1

n

∑
k=j

aj ,k and
n

∑
k=1

k

∑
j=1

aj ,k



Examples of multiple summation: Mutual upper bounds

How are the two sums below related?

n

∑
j=1

n

∑
k=j

aj ,k and
n

∑
k=1

k

∑
j=1

aj ,k

Step 1: Rewrite with Iverson brackets

We move the conditions on the indices from the sums to the summands:

n

∑
j=1

n

∑
k=j

aj ,k = ∑
16j ,k6n

aj ,k [16 j 6 n] [j 6 k 6 n]

n

∑
k=1

k

∑
j=1

aj ,k = ∑
16j ,k6n

aj ,k [16 k 6 n] [16 j 6 k]



Examples of multiple summation: Mutual upper bounds

How are the two sums below related?

n

∑
j=1

n

∑
k=j

aj ,k and
n

∑
k=1

k

∑
j=1

aj ,k

Step 2: Observe that the summands are equal term by term

We only need to do so for the Iverson brackets:

[16 j 6 n] [j 6 k 6 n] = [16 j 6 k 6 n] = [16 k 6 n] [16 j 6 k]

We conclude that the two sums must be equal.



A nice trick for symmetric summands

Write the summands in a matrix:
a1,1 a1,2 a1,3 . . . a1,n
a2,1 a2,2 a2,3 . . . a2,n
a3,1 a3,2 a3,3 . . . a3,n
...

...
...

. . .
...

an,1 an,2 an,3 . . . an,n


so that j is the row index and k is the column index.

Then the sum of the values of the upper triangular part of the matrix is:

SU = ∑
16j6k6n

aj ,k

Dually, the sum of the values of the lower triangular part of the matrix is:

SL = ∑
16k6j6n

aj ,k

Adding SU to SL and applying the inclusion-exclusion principle:

∑
16j6k6n

aj ,k + ∑
16k6j6n

aj ,k = ∑
16j ,k6n

aj ,k + ∑
16k6n

ak,k



A nice trick for symmetric summands

Write the summands in a matrix:
a1,1 a1,2 a1,3 . . . a1,n
a2,1 a2,2 a2,3 . . . a2,n
a3,1 a3,2 a3,3 . . . a3,n
...

...
...

. . .
...

an,1 an,2 an,3 . . . an,n


so that j is the row index and k is the column index.

Adding SU to SL and applying the inclusion-exclusion principle:

∑
16j6k6n

aj ,k + ∑
16k6j6n

aj ,k = ∑
16j ,k6n

aj ,k + ∑
16k6n

ak,k

If aj ,k = ak,j for every j and k, then SU = SL and we have:

∑
16j6k6n

aj ,k =
1

2

(
∑

16j ,k6n

aj ,k +
n

∑
k=1

ak,k

)



A nice trick for symmetric summands

Write the summands in a matrix:
a1,1 a1,2 a1,3 . . . a1,n
a2,1 a2,2 a2,3 . . . a2,n
a3,1 a3,2 a3,3 . . . a3,n
...

...
...

. . .
...

an,1 an,2 an,3 . . . an,n


so that j is the row index and k is the column index.

Adding SU to SL and applying the inclusion-exclusion principle:

∑
16j6k6n

aj ,k + ∑
16k6j6n

aj ,k = ∑
16j ,k6n

aj ,k + ∑
16k6n

ak,k

In the special case aj ,k = ajak we can apply distributivity and obtain:

∑
16j6k6n

ajak =
1

2

( n

∑
k=1

ak

)2

+
n

∑
k=1

a2k





Multiple sums for ordinary sums

Suppose we have a sum of the form ∑
n
k=1 ak which is �di�cult� to compute with the

methods from the previous section.

Write the term ak in the form bk ·
(

∑
k
j=1 cj

)
. Then the original sum becomes:

n

∑
k=1

ak =
n

∑
k=1

bk
k

∑
j=1

cj =
n

∑
j=1

cj
n

∑
k=j

bk

If the summand dj = cj ∑
n
k=j bk is �easy to manage�, we may obtain a new sum

∑
n
j=1 dj which is easier to compute.



Example 2: ∑
n
k=1 ka

k with a 6= 1

Clearly k = ∑
k
j=1 1, so we can expand:

n

∑
k=1

kak =
n

∑
k=1

ak
k

∑
j=1

1 =
n

∑
j=1

n

∑
k=j

ak

The sum over j is easy to manage:

n

∑
k=j

ak =
n

∑
k=0

ak −
j−1

∑
k=0

ak =
an+1−aj

a−1

Then:

n

∑
k=1

kak =
1

a−1

n

∑
j=1

(
an+1−aj

)
=

1

a−1

(
nan+1−a

n−1

∑
j=0

aj

)

=
1

a−1

(
nan+1− an+1−a

a−1

)
=

nan+2− (n+1)an+1 +a

(a−1)2
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