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Abstract

This reference manual documents SIMP/STEP, a Python environment for cellular and lattice gas automata. SIMP
(SIMP Interface to Matter Programming) provides user programming abstractions that target the essence of ’pro-
grammable matter’ via cellular and lattice gas automata. STEP (Space-Time Event Processor) is an abstract interface
to computational machinery (software, hardware etc.) for running the fine-grained, parallel dynamics specified by
SIMP programs.

The first chapter is a tutorial that uses examples of cellular automata, lattice gases and partitioning cellular automata
to explain how to program with simp . This includes methods and classes for declaring and initializing parallel state
variables, defining a local dynamics on them (ie. cellular automaton rules), rendering, viewing, creating user inter-
faces, scripting, and gathering statistics. The second is the reference manual that documents the SIMP programming
constructs made accessible to the user through the simp module. The third chapter documents the STEP interface,
the STEP implementations currently distributed with the software and software engineering and package structuring
issues relevant to the developer.

See http://pm.bu.edu/ for current versions of this document.

We thank Silvio Capobianco and our research advisor Tom Toffoli for insightful comments and the DOE for supporting
this work under grant 4097-5.
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CHAPTER

ONE

Tutorial

1.1 Introduction

Complex systems often arise as the macroscopic aggregate of the interaction of many simple, local, spatially-
distributed microscopic parts. Cellular automata (CA) and lattice gases (LG) can be used as a modeling paradigm
for such systems.

The state of a CA or LG is defined on a discrete grid (regular lattice) composed of a large number identical state-
variables, and evolves in discrete time steps according to a simple, local dynamics. Due to the simplicity and unifor-
mity of updates, CA models can be implemented very efficiently on a wide variety of computer architectures, allowing
the experimenter to deploy the large space-time swaths necessary for studying complex macroscopic phenomena.

The simplicity and uniformity of CA and LG models also makes them relatively easy to implement on a personal
computer. A web search for a popular rule like Conway’s Game of Life yields hundreds of implementations. However,
most are ad hoc, supporting only one rule or a small parameterized family of them and providing only rudimentary,
canned facilities for auxiliary tasks such as rendering, gathering statistics, and initializing data.

The researcher—as opposed to the hobbyist towards whom most CA software is directed—requires flexible tools
that endow her with the freedom to define her own CA rules and experiments. And, although the C programming
language is such a tool, she would rather concentrate on conceptual issues than be burdened with low-level issues—
optimization, visualizaton, boundary condition handling, et cetera—that writing a direct implementation would entail.
She will instead desire a CA programming environment that abstracts away accidental details and concentrates on
high-level modeling aspects.

Such environments exist, but they vary in their simplicity, efficiency, flexibility, and portability. For example, NetLogo
(Wilensky, 1999) has a relatively simple programming environment and is flexible in that it can handle a wide variety
of distributed systems other than CA; however, it is not efficient. Mathematica is flexible (Wolfram, 2002), however, it
is not simple or freely available. Of the many environments—note that we make no attempt to provide a comprehensive
survey of them here (see (Worsch, 1996) and (Talia, 2000) instead)—JCASim (Freiwald and Weimar, 2002) probably
comes the closest to the balance of simplicity, efficiency, flexibility, availability, and portability that we seek in SIMP;
however, its Java-based implementation and syntax, currently, are not entirely efficient or simple.

Based on collective past experience in programming and efficiently implementing CA experiments on various cellular
automata machines we have developed a programming environment called SIMP. With SIMP we aim to externalize the
abstractions and methods that have accrued in the CAM community and provide a nice mix of simplicity, efficiency,
generality, and portability. Besides, more than the hardware-oriented CAM projects of yore, SIMP is decoupled from
implementation-specific particulars.

SIMP supports multiple abstract user-level CA and LG programming interfaces to a low-level set of underlying space-
time event processing (STEP) primitives. When a SIMP program runs, the STEP runtime system marshals available
computational resources to implement the STEP primitives it invokes in an efficient, effective way. This allows the
user to work at a high level of abstraction, and the software to be more portable and widely accessible. Indeed, the
current STEP runtime system targets the resources of a regular PC and runs efficiently on Windows, Mac OS X, and
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Linux systems.

This tutorial presents several typical CA and LG experiments and demonstrates how they may be programmed using
SIMP constructs. Although it aspires to be self-contained, the tutorial is by no means a complete introduction to or an
overview of CA and LG modeling techniques. For this, we instead refer the interested reader to (Toffoli and Margolus,
1987; Weimar, 1997; Ilachinski, 2001).

Similar to (Weimar, 1997), we’ll first cover a simple CA excitable medium. By programming it in depth we’ll reveal
the general anatomy of a SIMP program. Next, we’ll extend the program in order to make a stochastic excitable
medium CA. After that we’ll move on to rendering techniques for one-dimensional CA’s and see how to program
lattice gases and partitioning cellular automata.

See Section 1.11 for information on how to obtain the code for the examples presented in this tutoral as well as further
examples.

1.2 Greenberg-Hastings: A basic CA

The dynamics is defined on a two-dimensional square grid having sites in one of three possible states—resting, ready,
and firing—and is summarized as follows:

Fire if ready and a neighbor is firing; rest after firing; and become ready after resting.

This dynamics is called the Greenberg–Hastings rule and is presented graphically in Fig. 1.1. To do an update, the
cellular automaton applies the local rule (a) using the neighborhood (b) to all cells simultaneously to get their next
state values. In general, CA updates are applied in lock-step parallel. (c) shows three consecutive updates starting
from a single firing point. This CA is an excitable medium that exhibits propagating firing-state waves that—due to
the inhibitory effect of resting—move forward but not backward.

Neighbor Firing

No Neighbor Firing

REST

READY

FIRE

c[0,0] c[0,1]

c[1,0]

c[−1,0]

c[0,−1]

(a) (b) (c)

Figure 1.1: Greenberg–Hastings: A Basic CA Excitable Medium We show the state transition graph (a), the (von
Neumann) neighborhood and state variable offsets that this CA uses (b), and four consecutive snapshots of the dynam-
ics evolving from a plane in the ready state with a single firing point in the middle (c).

To familiarize the reader with SIMP scripts we present the full code for the Greenberg-Hastings automaton and will
disect it in detail. Just glance over the code—a full explanation follows. (Although we make no attempt to provide a
full introduction to the Python language—for that, see the excellent tutorials at http://python.org—its clear syntax and
semantics should be intuitively understandable to even the moderately experienced programmer.)
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#--------------------------------------- ------ ---- HEADER
from simp import * # Import simp and helpers
Y,X = 200,200
initialize(size=[Y,X]) # Declare an YxX square grid
# -------------------------------------- ------ ---- STATE DECLARATION
c = Signal(SmallUInt(3)) # State variable (signal) declaration
READY=0; FIRE=1; REST=2; # Mnemonics for state interpretations
# -------------------------------------- ------ ---- DYNAMICS
def gh(): # Transition function definition

if c==READY:
if (c[-1,0]==FIRE or c[0, 1]==FIRE or # If north,east,south, or west firing.

c[ 1,0]==FIRE or c[0,-1]==FIRE): # (Subscripts indicate neigh coord)
c._ = FIRE # Transition to FIRE

elif c==FIRE: c._ = REST # If firing transition to REST
elif c==REST: c._ = READY # If resting transition to READY

gh_rule = Rule(gh) # Creates a Rule object for the transition function.
# -------------------------------------- ------ ---- STATE INITIALIZATION
c[:,:] = READY # Initialize all sites to READY
c[X/2,Y/2] = FIRE # Set site in the center to FIRE
# -------------------------------------- ------ ---- RENDERING
declarecolors() # Declares the color output signals
def tricolor(): # Function describing an appropriate color map

if c==READY:
red._=green._=blue._ = 255 # READY => white

if c==FIRE:
red._ = 255 # FIRE => red

elif c==REST:
blue._ = 255 # REST => blue

# Package tricolor into a rendering rule with red,green,blue as outputs
tricolor_rend = Renderer(Rule(tricolor),rgb)
# -------------------------------------- ------ ---- USER INTERFACE
ui = Console(tricolor_rend) # Instantiate a console called "ui"

# and initialize its renderer
ui.bind("STEP",gh_rule) # Bind the console’s STEP event to the update rule
ui.start() # Start the interactive interface

Many SIMP programs follow the same pattern as ‘greenberg hastings.py’. The script is divided into six sections:
header, state declaration, dynamics, initialization, rendering, and user interface. The header imports the SIMP pro-
gramming environment from the simp module and sets up the topology in which the CA will be defined. Together, the
state declaration and dynamics sections define the CA’s state variables and transition function. The state initialization
section sets up the inital state. The rendering section describes how the state is visulalized. The user interface section
declares a Console object for interactively running the dynamics and viewing rendering results on-screen. We’ll
now address each section in detail.

Header

The first line in the header section is a Python statement that imports simp and all of its definitions1. simp contains
various constructs—methods, functions, and constructors—that the rest of the program uses. Additionally, it maintains
global variables and defaults used by these constructs.

Calling initialize initializes SIMP’s global variables. In particular, size parameter declares the size of the two
dimensional grid where state variables will be allocated. In the example, the size is 200 × 200 and is stored two

1Although SIMP is designed to be used this way rather than as a module imported with ‘import simp ’, the latter will work, but all simp
definitions must be qualified as in simp.initialize . When multiple simp module instances are required, see import locally in Sec-
tion 2.9.

1.2. Greenberg-Hastings: A basic CA 3



variables–Y and X–for later use. In general, the value of each element declares the size of the grid in that dimension
while the number of elements in the size vector specifies the number of dimensions. While size is the only parameter
that SIMP needs for an ordinary CA, initialize also has optional parameters. Among other things, they specify
the default lattice generator matrix and the runtime space-time event processor (STEP) implemetation to be used [XXX
cross reference].

The grid

The grid defines the geometry at the finest granularity. In two dimensions, one may think of it as a piece of graph
paper in which line intersections are coordinatized sites as shown in Fig. 1.2 (a). The grid is bounded by the size vector
beyond which it wraps around2 as a torus (Fig. 1.2 (b,c)). Other numbers of dimensions generalize directly.

(0,0)

(3,1)

(2,3)

(1,1)

(5,0)

(0,0)

(5,0)

(0,0)

(5,4)

(0,4)

(0,4)

(a) (b) (c)

Figure 1.2: The grid and wrap-around (a) shows a grid with size (6,6) marks some of its sites (line intersections) with
circles and gives their coordinates. To emulate a boundaryless space, the coordinates wrap-around with the bottom
wrapping to the top (b) and the left wrapping to the right (c) yielding a torus. Coordinates in (a) that wrap around at
the boundary are shaded gray.

Note that SIMP coordinate vectors are given in order from the most significant dimension to the least (ie. (y, x) in two
dimensions and (z, y, x) in three). This reflects the positional notation implicit in Arabic numbers where the number
one hundred and twenty three is written from left to right in decreasing order of significance as 123—more significant
digits are appended on the left. It also reflects the storage conventions of C and numarray where indices of lower
significance are stored closer together. When C and numarray map a multidimensional array to a 1D memory array,
the unit-stride dimension—the one with the highest degree of locality—is the least significant, right-most one. When
there is a choice, the programmer should align neighbor access with lower dimensions, because, depending on the
STEP implementation, doing so increases data locality and may make the computation more efficient. In accordance
with computer graphics and typographic conventions, for rendering and display purposes, X goes to the right, Y goes
down and Z goes ‘behind’.

State Declaration

SIMP state variables are called signals and are Signal objects. The line ‘c = Signal(SmallUInt(3)) ’ allo-
cates a signal with a ternary integer state set {0, 1, 2}. c has a ternary value at at every point on grid—it’s basically
a 200 × 200 array. For convenience, the code also creates some mnemonic names—READY , FIRE , and REST —for
each of c’s possible values.

Dynamics

The dynamics of a CA is defined locally by a transition function that is evaluated everywhere in parallel. In the
dynamics section, the code

2Currently, SIMP only supports boundaries that wrap around, however it is possible to emulate other types of boundaries such as fixed boundaries
(XXX give reference). In the future, SIMP may directly support other types of boundaries.
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def gh(): # Transition function definition
if c==READY:
if (c[-1,0]==FIRE or c[0, 1]==FIRE or # If north, east, south,

c[ 1,0]==FIRE or c[0,-1]==FIRE): # or west is firing.
c._ = FIRE # Transition to FIRE

elif c==FIRE: c._ = REST # If firing transition to REST
elif c==REST: c._ = READY # If resting transition to READY

defines the transition function for the Greenberg–Hastings rule. The statement ‘gh step = Rule(gh) ’ uses the
transition function gh —which is just an ordinary Python function—to create a parallel CA Rule object that, when
called (as in gh step() ), applies the transition function to all sites on the grid in parallel.

A transition function locally maps current-state input values to next-state output values. Inside a transition function,
signals are accessed locally, therefore, rather of referring to the entire parallel data allocation, as is normally the case,
accessing a signal name inside a transition function references its value at the site being updated. For example, to
check whether c at the site being updated is currently in the READY state, the transition function uses c==READY . To
write the output value of a signal, a transition function assigns values to a signal’s output attribute—the underscore
attribute. For example, to set the the next state value of c at the site being updated to firing the transition function
makes the assignment ‘c. = FIRE ’.

gh looks at the von Neumann neighborhood of c—the site itself and its neighbors at an offset of ±1 in the Y and X
directions as shown in Fig. 1.1 (b). The neighbor value of c to the right is c[0,1] , to the left is c[0,-1] , above
is c[-1,0] , and below is c[1,0] . SIMP subscripts are listed from the most significant to the least3; therefore the
subscript in the higher dimension, Y, comes before that of the lower dimension, X. In accordance with the conventions
of computer graphics—Y grows downwards while X grows rightwards (Z grows away from the viewer). Note: Within
a transition function, neighbor values are referenced by relative subscripts. Outside of transition functions, subscripts
are absolute coordinates.

Some comments and restrictions on rules and transition functions

gh does not always assign an output value of c. For example, if the current state is ready and no neighbors are firing,
the rule does not write a next state value. What, then is the next state value of c? There are two options—c is set
to some default constant value like 0, or c passes through unchanged (identity). In this function, either option would
yield correct behavior, but what is actually happening is that the default value is the input value of c. Thus the rule
specifies that if no neighbors are firing and c is ready then c remains ready.

Note: In general, the default value for a signal is its input value if and only if that signal appears as an input. Otherwise,
the default output value is zero. This behavior ensures that extra inputs to the rule are not generated in the case that a
signal is only written. If this were not the default behavior, all outputs would also be required to be made into inputs,
which would be bad since the cost of evaluating a transition function is exponential in the number of inputs when a
lookup table is used to implement the function. (This behavior applies only to signals that appear as outputs. The
values of signals that do not actually appear as outputs of a rule are not changed.)

When a Rule object is constructed, the transition function is strobed during which all global names (names assigned
outside the transition function) are bound to their values at that time. Because of the binding, unlike a normal Python
function, if a global value is subsequently changed, the Rule will not notice. Strobing can be used to make parameter-
ized sets of rules by changing global values before constructing each rule. [XXX reference an example demonstrating
this]

Neighbor coordinates must be constant within a transition function—they can not be modified as a function of the input
signals. SIMP does not allow neighbor coordinates to be computed on-the-fly as a function of the rule inputs because

3As of version 0.6 this convention replaces the prior least-significant-first convention inherited from physics and linear algebra. Although
the change was precipitated by the adoption of the numarray package for handling multidimensional arrays in Python, the most-significant-first
convention is more natural when subscripts are interpreted as a generalization of positional notation for numbers—subscripts, like digits, are ordered
from the most significant to the least.
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the doing so would mean that under different conditions, different neighbor values would need to be made available.
The input set would be dynamic. Such a situation would make it much more difficult to gather the inputs needed for
the transition function in a homogenous, optimized way. However, one can declare named neighbors outside of a rule
as in ‘nw = c[-1,1] ’ and such neighbors can be used freely within a rule as in ‘if nw==1: ... ’.

All references to signal objects must be contained within the top level of the transition function and a rule will ignore
any signal reads or writes carried out within sub-functions called by the transition function. This is because, when
a constructing a Rule object, SIMP only analyzes the code of the transition function itself and not the code of any
sub-functions that it may call. Therefore, accessing signals in sub-functions will yield incorrect behavior. (In the
future more recursive code analysis may allow signals to be accessed from sub-functions)

When accessing signals the transition function can only access signals using global names. This is because the code
analysis also does not currently perform the dynamic type analysis necessary to follow the assignment of signals to
alternate local names. Therefore, a statement like ‘a = c; a. =1 ’ inside of a transition function would fail.

Initialization

This section uses signal subscripts to assign initial values to the signals. As previously mentioned, the subscripts here
are global.

c[:,:] = READY # Initialize all sites to READY
c[X/2,Y/2] = FIRE # Set site in the center to FIRE

The first statement uses Python/numarray -style multi-dimensional slicing to assign all states to ready. The second
sets a single site in the center to firing.

One may also read out signal values using subscripts. For example,

a = c[0,5].scalar()

reads out the scalar integer value at coordinate (0, 5). Slices read out an array of values—for example, to read out the
5 × 5 array of values from (0, 0) up through, but not including (5, 5) one would use

values = c[0:5,0:5].array()

The array returned is a NumArray object. One can also assign slices using array values

c[15:20,10:15] = c[0:5,0:5].array()

To read the entire array, one can a statement like

c_arr = c[:,:].array()

SIMP usees the numarray module extensively for representing and manipulating Signal data. The numarray
module and classes provide full Python support for multidimensional arrays. This support includes utilities for gener-
ating arrays, saving them to files and performing all kinds of transformations and analyses.

For example, a NumArray object can be saved to a file in a variety of ways. One way is using the Python pickle
module.
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import pickle
pickle.dump(c_arr,open("state_file","wb" )) # dump the array to "state_file"

To read the file back, one can use

c_arr = pickle.load(open("state_file"))

Another option is to use the tofile method of the array. Certainly, there are many other ways as well. While
we mention some of the useful calls in this tutorial, one should see the Numarray documentation available at
http://www.stsci.edu/resources/software hardware/numarray for full details. SIMP also defines some additional helper
numarray functions such as makedistribution , getdistribution , array to ppm , magnify2d , see
Section 2.3.3 and Section 2.3.5 for details.

Rendering

The rendering section declares how to convert state information into images that can be displayed. Like the dynamics,
rendering behavior is defined by a Rule . Unlike the dynamics, however, the Rule does not output to oridnary signals.
Instead it writes to special OutputSignal objects—they are just like Signal objects, except that they are write-
only. SIMP also supplies special Renderer classes to manage the conversion and output of rendering data to image
arrays. The Renderer provides an interface that’s suitable for on-screen display by a Console user–interface.

The output of a rendering rule is an array containing color information. Color channels are encoded with 8 bit color
OutputSignal objects of type UInt8 (8 bit unsigned integer). Although one may directly declare output signal
objects with the OutputSignal class, SIMP provides a special function called declarecolors which automat-
ically declares the color channels—red,green,blue,white, and alpha—in the global namespace. (white is for grayscale
rendering and alpha is for opacity in three–dimensional rendering.) So instead of having to write a statement like
‘red = OutputSignal(UInt8) ’ for each color channel, one can instead simply call declarecolors .

The RGB rendering function was defined as follows

declarecolors() # Declares the color output signals

def tricolor(): # Function giving a color mapping
if c==READY:

red._=green._=blue._ = 255 # READY => white
if c==FIRE:

red._ = 255 # FIRE => red
elif c==REST:

blue._ = 255 # REST => blue

The default value for an output signal is 0. This is also the minimum intensity for a color. Because the colors are
UInt8 , the maximum value is 255 (this corresponds to 24 bit RGB color image).

After declaring the color map function the program creates a Renderer object as follows

rend = Renderer(Rule(tricolor),rgb)

The first parameter is the rendering rule, the second is the set of outputs that are rendered. The name rgb was
declared by declarecolors . It is a tuple consisting of the output signals (red,green,blue) . Notice that in
this code, rather than using the white channel to write a white output when ‘c==READY ’, the function assigns the
RGB values. This is because white is reserved for grayscale mode. For grayscale rendering, declarecolors also
declares grayscale as (white,) so that the renderer may render grayscale images from rules that only set the
white intensity value. For an example of grayscale rendering, see Section 1.4.

1.2. Greenberg-Hastings: A basic CA 7



User Interface

All of the example SIMP programs instantiate a Console object to perform on-screen rendering and provide an
interactive user-interface. In the current example, the code for declaring and initializing a Cosole is

ui = Console(tricolor_rend) # Instantiate a console called "ui"
# and initialize its renderer

ui.bind("STEP",gh_rule) # Bind the console console’s STEP event to the update rule
ui.start() # Start the interactive interface

The first line creates a Console object called ui and brings up an on-screen viewer using tricolor rend , the
renderer previously defined. Because tricolor rend implements the Renderer interface, the the Console
knows how to use it to generate rendered image arrays and control the region that is rendered.

The next line binds gh rule to the ’STEP’ events. The console generates a ‘STEP ’ event and will call gh rule
when it wants to update the dynamics. After a ’STEP’ it calls the renderer and displays the result on-screen. ‘STEP ’
events are generated when the user presses Space to do a single step or Enter to run them continuously. Finally,
calling ui.start() starts the interactive interface, and does not return until the user quits by pressing q .

The bind method can also be used to bind custom commands to keypress events. For example, to re-initialize the CA
state when S is pressed,

def seed():
"Initialize all sites to READY with a FIREING site in the center"
c[:,:] = READY # Set all sites to READY
c[Y/2,X/2] = FIRE # Set the center site to FIRE

ui.bind("S",seed) # Bind ’seed’ to key "S"

Lower case keys are reserved for predefined commands so user-defined commands should be bound to upper case keys.
Brief documentation derived from the documentation strings of bound commands is printed when the user presses the
help key, h . For this reason, it is a good idea to define documentation string as is done above.

Scripting

One need not define an interactive user interface if the program is meant to run in script mode. For example, the
following code runs several iterations and generates a sequence of portable pixmap (‘.ppm’) images like the ones
shown in Fig. 1.1 (c)

for i in range(4):
img_arr = tricolor_rend() # get an array containing the current state
open("gh%i.ppm" % i,"wb").write(array_to_ppm(img_arr)) # save to file
gh_rule() # do a step of the dynamics

Calling a renderer object returns the contents of the renderer’s current view (of course, the renderer has methods for
changing the view see Section 2.7). Arrays returned by the renderers are three-dimensional numarrays indexed by Y,X,
and the color outputs. The SIMP helper function array to ppm converts such arrays to ‘.ppm’ formatted strings,
which is a handy because the format is easy to read and write and can be converted to many other formats using Jef
Poskanzer’s widely available netpbm library and command-line tools.

One may also drive the Console from a script. For example, to display a sequence of four updates on-screen before
starting the console, one could use the code,
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for i in range(4):
ui.render() # render the current state
gh_rule() # do a step of the dynamics

ui.start() # begin running the console

1.3 A stochastic excitable-medium CA

Now that we have seen how to program a simple CA and have a basic idea of how the SIMP environment works,
let’s now consider a randomized (stochastic) version of the Greenberg–Hastings rule where state transitions occur
probabilistically. We’ll show how to program it efficiently with SIMP and how to gather statistics. The new rule
statement is:

Transition to firing with probability p if ready and a neighbor is firing; transition to resting with probability
q if firing; and transition to ready with probability r if resting.

We can interpret this dynamics as a model of a prairie fire—a ready site ‘has grass’, a firing site is one that’s ‘on fire’,
and a resting site is ‘burned out’. The transition probabilities p, q, and r give the flammability, burn rate, and regrowth
rate. The Poisson statistics of the transitions have an average ignition, burning, and regrowth time of 1/p, 1/q, and
1/r. By modulating p, q, and r one arrives at different dynamics as discussed and demonstrated in Fig. 1.3.
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Figure 1.3: Stochastic Greenberg–Hastings Parameter Space On the left we show several snapshots of the system
taken at different points in the (p, q, r) parameter space. When the flammability p is high and the regrowth rate r is
low as in (.7, 1, .05) and (.7, 1, .1) sustained waves form and endlessly propagate over the torroidal space—in a way it
is similar to the Belousov–Zhabotinsky chemical reaction. Notice that the regrowth rate affects the wavelength. When
the regrowth rate is zero as in (.51, 1, 0) and (.54, 1, 0) a ‘forest-fire’ situation arises where the vegetation does not
have time to grow back. The amount of forest burned depends critically upon the flammability parameter as evidenced
by the amount burned in the two figures. On the right, we have used SIMP to perform a kind of percolation experiment
in which we show the fraction of forest burned by a single spark over ten trials as a function of the flammability
coefficient. Dots indicate the fraction burned on each trial, and the solid line marks the average over the trials.

Implementing the new dynamics in SIMP amounts to adding stochastic transitions to the basic rule. We’ll create
three signals—P, Q , and R—as binary random variables with the desired distribution—Pr(P=1)=p, Pr(Q=1)=q, and
Pr(R=1)=r. We’ll use these signals as ‘unfair coin tosses’ when deciding whether to take a transition—if a signal’s
value is 1 the transition will be taken, otherwise it will not. The new signal declarations are4

4Mastering Python helps one to master SIMP. For example, a more succinct way to declare the three signals is with the line ‘P,Q,R =
map(Signal,[binary]*3) ’ The code [binary]*3 constructs a list with three references to the binary type, map is a builtin Python function
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binary = SmallUInt(2) # Binary state variable type with values in 0,1
P = Signal(binary) # Declare the three signals
Q = Signal(binary)
R = Signal(binary)

The modified rule is

def stochastic_gh():
if c==READY and P==1:
if (c[-1,0]==FIRE or c[0, 1]==FIRE or

c[ 1,0]==FIRE or c[0,-1]==FIRE):
c._ = FIRE # Stochastic transition to FIRE

elif c==FIRE and Q==1: c._ = REST # Stochastic transition to REST
elif c==REST and R==1: c._ = READY # Stochastic transition to READY

We have not explained yet how P , Q , and R implement the desired random distributions. The most direct way is to
use a random number generator to assign random values to the signals so as to fulfill the desired distribution. SIMP
provides makedistribution to do this. The function takes two arguments—the shape of the output array and the
distribution of values. For example,

P[:,:] = makedistribution(P.shape,[1-p, p])

assigns the values of P to a newly generated random array with the same shape as P and having values of 0 and 1
distributed independently probability (1 − p) and p. (Distributions need not be normalized to one—for example, a
distribution parameter of [3,4] would create an array with a 3 to 4 ratio of zeros to ones.)

Although this strategy works, requires an expensive call to a random generator for each array element. Refilling
the distribution sites before each step slows the computation considerably. Fortunately, there is a less expensive
way. Because our rule can not ‘see’ long-range correlations—local information tends not to travel too far before
‘diffusing’—we can regenerate the local random variables by stirring them. By rearranging the same data in a non-
local way—say, by shifting it by a random amount5—we can cheaply recharge the patch of randomness that a locale
sees. It’s like a shell game in which a sequence of small patches from a much larger space are revealed randomly, and
unless the dynamics is an especially ‘smart’ adversary tuned to our game, it will not be able to tell that the patches it
is shown come from our cheaper source of stirred randomness.

To stir the distribution before each update, we use the Stir operation and create an update Sequence that stirs the
random signals before calling the stochastic rule.

stochastic_gh_step = Sequence([Stir([P,Q,R]),
Rule(stochastic_gh)])

We have introduced two new STEP operations—Stir , which we just explained and Sequence . A Sequence is
not really an operation in and of itself, but instead packages an ordered sequence of STEP operations. In addition to
being a useful programming construct, a Sequence informs the STEP about sequences of operations that will be
called together. A STEP may then optimize such a sequence.

Finally, we outline the methods used to obtain data plotted in Fig. 1.3. The data was gathered by running an outer
loop that iterated over the p values in increments of .01 from 0 to 1. For each value, ten trials were run. At the

that, in this example, calls the Signal constructor on each list element and returns a list with three new binary signals. Finally, Python list
comprehension handles the assignment of P,Q,R to the three signals returned by map .

5This is the policy that SIMP actually employs under the hood.
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beginning of each set of trials, a randomized assignment was used to load a new distribution corresponding to the
new value of p into P . At the beginning of an individual trial, c was initialized to all ready except for a single
firing spark in the center. Next, an inner loop repeatedly invoked stochastic gh step() , checking every
tenth step to determine whether ‘the fire had burned out’ by examing the distribution of states returned by ‘dist
= getdistribution(c[:,:],0,3) ’. getdistribution is a SIMP helper function that—given an array
and a range of integer values—returns a histogram vector with the number of elements having each value in the range
(values between 0 and 3). Once it was determined that the fire had burned out, the fraction burned was computed from
dist .

1.4 A one-dimensional CA and space-time renderer

One-dimensional systems are usally rendered using space-time diagrams in which the history of several states is
displayed as a two dimensional image with the horizontal axis representing space and the vertical representing time.
The XTRenderer provides special support for space-time rendering. We present a simple CA called PARITY as an
example. We define it on a one-dimensional lattice with binary signals. The transition function adds the left, right, and
center values and transitions to 1 if the sum is odd or 0 if the sum is even.

1.4.1 The program

The code for PARITY’s dynamics is

from simp import *
X=50
initialize(size=[X]) # 1D grid
# -------------------------------- SIGNAL DECLARATION
c = Signal(SmallUInt(2)) # binary state
# -------------------------------- TRANSITION FUNCTION
l,r = c[-1],c[1] # declare the neighbor directions
def parity():

c._ = lˆcˆr # ˆ denotes ’xor’, sets bit if ’l+c+r’ is odd.
parity = Rule(parity)

The code declares l and r to represent c[-1] and c[1] (left and right)—although c[-1] and c[1] could instead
have been used in the transition function we wanted to demonstrate the use of named SignalRegion objects. The
code below declares a space-time renderer, initializes the state to zero with a single one point in the middle, and creates
a console.

# -------------------------------- RENDERING
declarecolors()
def bw():

if not c: white._ = 255
bw_xt = XTRenderer(Rule(bw),grayscale,time=X/2 )
# -------------------------------- INITIALIZE
c[X/2]=1 # point seed in the center.
# -------------------------------- CONSOLE
ui = Console(bw_xt,mag=8) # set the renderer and the default magnification
ui.bind(’STEP’,parity) # Specifies the 1D renderer.
ui.start()

Rather than employing the usual renderer, we employ a XTRenderer to capture the space-time history of the CA. An
XTRenderer object defines a special method called record for capturing the space-time diagram over a sequence
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of time steps. Every time the Console does a STEP , it looks for and automatically calls a renderer’s record method
if it’s defined. The image in Fig. 1.4 depicts a space-time diagram generated by the console. Space runs horizontally
while time runs vertically. The window of time recorded by the XTRenderer is set with the time parameter. In this
diagram, time increases downwards. By using a negative value for time one can make time increase going upwards.

Figure 1.4: 1D Parity CA space-time diagram Initalized with single point in the center and updated 24 times.

In the example, the magnification was set to 8 using the mag parameter of the Console . Grid lines were drawn
because the magnification was high. (To turn grid lines off, use the showgrid parameter.) The image was collected
interactively using the CaptureView command (c ), but could have ben captured using the script discussed below.

1.4.2 Using a script to record the history

Instead of using the console, one might capture the image of Fig. 1.4 using a script

bw_xt.record() # Record the initial state
for i in xrange(24): # Do 24 updates

parity() # call the rule (does a step of the dynamics)
bw_xt.record() # record the state

arr = bw_xt() # get the output array
rescaled_arr = magnify2d(arr,scaling=8,grid=1) # magnify with grid lines
open("out.ppm","wb").write(array_to_ppm( rescal ed_arr )) # output image file

First it records the initial state, then it runs the dynamics 24 times, calling the record method of the XTRenderer
after each update. Next, using magnify2d , it gets the output array, magnifies it, and adds grid lines. Finally, it
converts the array to a ‘.ppm’ string and saves it to the file, ‘out.ppm’.

1.5 A simple 1D lattice-gas

Using a simple 1D example, this section introduces the concept a lattice-gas and related SIMP programming constructs.
To motivate this discussion, suppose we want a one-dimensional dynamics that supports particles moving with unit
inertia. At each time step, we want particles to move left and right with unit velocity depending on their inertia.

One way to program such a dynamics is as a CA. One could declare a Signal to encode the presence of a particle
moving to the left, to the right, and the absence of particles. To do updates, one might use a Rule that looks to the
left and right to decide whether a particle moves into its cell. (If there is a right-moving particle on the left, it sets its
next-state value to indicate the presence of a right-moving particle and so on.) To handle the case where there is both
a left moving and right moving pariticle in the cell, Signal needs a total of four states.

This CA would have a Signal with four states and Rule that looks at the left and right neighbors with a total of six
bits of inputs. Because the number and size of inputs has an effect on the performance of a Rule , we are motivated
to do better if possible. It turns out that we can write a simpler, more efficient program by expressing the dynamics
as a lattice-gas automaton. In a lattice-gas data movement is expressed directly with a special data transport operation
that shifts data without the need to evaluate a transition function. Instead of packing particle state into a single signal,
under the lattice-gas approach we make two signals—one to encode the presence of a particle moving in each of the
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two directions—and transport them to neighboring sites by shifting them left and right independently. Assuming the
one-dimensional size was already initialized, the following code snipet completely specifies this dynamics.

l = Signal(SmallUInt(2))
r = Signal(SmallUInt(2))
dynamics = Shift(kvdict(l=[-1],r=[1])) # make l move left and r move right

In SIMP, data transport is described by a Shift object. The Shift constructor expects a dictionary mapping
Signal objects to vectors giving shift amounts. kvdict is a SIMP helper function for constructing dictionar-
ies that are keyed on values (hence the ‘kv ’ prefix). An equivalent declaration without kvdict is ‘dynamics
= Shift({L:[-1],R:[1]}) ’. Expressed in this way, the program need only operate on two (rather than six)
bits and no transition rule is required—data is only shifted. The shift is a data-blind operation that—in its simplest
implementation—requires only updating registers holding the current offsets of the signals.

This dynamics is not very interesting in and of itself. We can make it more interesting by introducting an interaction
rule—in the parlance of LG an interaction rule affects particle states. A simple dynamics is random-swap based
diffusion. Particles move with unit velocity, but may change velocity randomly. Assuming the random variable coin
is declared, initialized and stirred using the method discussed in Section 1.3, the code for such a dynamics is

def swap_randomly(): # change inertia if ’coin’ is 1
if coin: l._ = r; r._ = l

dynamics = Sequence([Shift(kvdict(l=[-1],r=[1])),Sti r([coi n]),
Rule(swap_randomly)])

In Fig. 1.5 (a) and (b) we render this dynamics with the time axis going up (this axis direction is specified by passing
a negative time parameter to the XTRenderer ). Fig. 1.5 (c) shows the histogram of final particle positions after 20
iterations when (b) is repeated 1000 times. The histogram is a decent appoximation of a Gaussian, which is what one
would expect for a diffusive random walk.

Note: We used the matplotlib (http://matplotlib.sourceforge.net/) in a SIMP script to generate Fig. 1.5 (c). The
source code for generating it is included in XXX. Basically, after initializing with two centered, isolated particles, a
loop iterates the dynamics a specified number of times and then numarray.nonzero is called on l.array()
and r.array() get the positions of the non-zero (particle bearing) elements and matplotlib.pylab.hist is
called to create a histogram plot from a combined list of the particle positions gathered over the trials.
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Figure 1.5: Simple 1D Diffusion LG (a) shows a space-time diagram of a block of particles strobed every fourth
iteration and (b) shows two particles doing a random walk. In these diagrams space is horizontal, time increases
upwards, and signals are rendered as the grayscale of the number of particles at a site—white means no particles, gray
means one and black means two. (c) shows a histogram of the final positions of a two-particle random walk after 20
steps when the experiment is repeated 1000 times.
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1.5.1 Interleaved, non-communicating sublattices

Notice, that there are gaps in the histogram of Fig. 1.5 (c). This is because odd positions never have any particles.
Why? The reason is simple, but not obvious6. Particles move left and right in units of 1 and alternate between odd
and even sites as they move. A particle that started on an even site will be on even sites at even times and odd sites at
odd times and vice-versa. This can be seen by closely examining the walks of the two isolated particles of Fig. 1.5 (b).
The situation is shown more clearly in Fig. 1.6.
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Figure 1.6: The diffusion LG has two non-communicating sublattices (a) shows the space-time signal transport
and interaction structure (it’s a space-time crystal) of the basic diffusion LG. The trajectory of a sample particle that
moves left twice, switches tracks to move right and then switches tracks again to move left is shown in gray. As
time increases, particles move left and right along the black arcs that indicate the trajectories of l and r and land
on grid sites (intersections of gray lines) at successive time steps. The black nodes mark the positions where the
swap randomly rule is applied and particles may change trajectories. Using thick red dashed lines and thin black
lines (b) shows the two interleaved, non-communicating sublattices of the dynamics. A particle that starts on one
of these sublattices can’t move onto the other. (c) shows the red highlighted sublattice by itself. Notice that (c) is
essentially a scaled version (a) in which there are interaction nodes every time that signals cross paths rather than
every-other time. (coin is not shown on these diagrams or those that follow because it is not a true state variable—it
merely serves to randomize the transition function.)

Rather than making a dynamics with two non-interacting lattices one can use SIMP to program a dynamics on the
sublattice of Fig. 1.6 (c). We cover this in depth in the next section.

1.6 Defining the 1D diffusion lattice-gas on a sublattice

In SIMP one can define Signal and Rule objects on sublattices of the integer grid and thereby construct systems
whose space-time crystal is a sublattice of the grid. As an example, we show how to do this for 1D diffusion on
the space-time crystal of Fig. 1.6 (c). First we’ll show how to declare Signal and Rule objects on a sublattice.
Then we’ll discuss the implications that using a sublattice has for SIMP’s indexing, slicing, and shifting conventions.
Finally, we’ll examine a few options for rendering.

Signal and Rule objects are both defined on lattices. The lattice of a Signal defines the set of points of where its
data elements are allocated. The lattice of a Rule defines the points where the local transition function is evaluated.
In terms of the software engineering, both the Signal and Rule classes inherit from the base LatticeArray
class. By default LatticeArray objects define lattices that coincide with all points of the the grid. To override this
default behavior one specifies an alternate lattice by giving its generator matrix. The generator matrix is an ordered
set of vector strides that, in each dimension, generates the lattice points through repeated additions and subtractions.

In the present example we need a 1D lattice that has strides of 2 in X. The corresponding generator matrix is [[2]] .
In higher dimensions, the generator matrices have more structure, but we postpone this discussion until Section 1.7.

6Indeed, it took some time before the non-communicating sublattices of the HPP lattice gas were discovered.
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We recode the previous example, specifying the generator matrix using the generator parameter

l = Signal(SmallUInt(2),generator=[[2]])
r = Signal(SmallUInt(2),generator=[[2]])
coin = Signal(SmallUInt(2),generator=[[2]])
def swap_randomly(): # change inertia if ’coin’ is 1

if coin: l._ = r; r._ = l
dynamics = Sequence([Shift(kvdict(l=[-1],r=[1])),Sti r([coi n]),

Rule(swap_randomly,generator=[[2]])])

Each of the Signal and Rule declarations now have a generator matrix of [[2]] . The same generator argu-
ment is used four times in the code above. To eliminate such redundancy in the common case that many objects
have the same generator, initialize has its own generator argument. Setting it overrides the default generator
for LatticeArray objects. For example, ‘initialize(size=[40],generator=[[2 ]] ’ sets the default
generator to [[2]] so that it need not be passed to every LatticeArray constructor7.

1.6.1 Implications: Lattice positions, coordinates, sizes and rounding up

We have defined the dynamics for the sublattice version of 1D diffusion, however there are a number of issues relating
to the sublattice yet to consider. First we consider the starting position of a lattice.

Lattice starting positions

The STEP keeps track of the starting positions of LatticeArray objects. The starting positon is the position of the
lattice site that’s closest to the origin. As shown in Fig. 1.7 (a) the starting position of the signals varies with time. At
time 0, the lattice starts at position [0] , at time 1, it starts at [1] and at time 2 it returns to [0] —the starting position
is always smaller than 2—the lattice spacing.

The current position may be queried by calling a LatticeArray object’s getposition method and modified
using setposition . The Shift operation shifts a lattice and may change its starting position, one can use the
SetPosition operation to explicitly set the starting position. As explained below, the starting position plays an
important rule in subscripting signals.

Coordinates round up to the nearest lattice site

Having sparse sublattices raises the question of what to do when a coordinate subscript of a signal does not actually hit
a lattice site. In our example, at time 0 the lattice of the signal l starts at [0] . It is clear that making the assignment
‘l[0]=1 ’ sets the first element in the lattice, but what happens if one writes ‘l[1]=1 ’? The answer is simple.
Coordinates round up to the nearest lattice site. Therefore, the value at l[2] is the one that’s actually written. Fig. 1.7
(a) demonstrates this behavior for the coordinate [2] .

In SIMP, the policy is to always round up to the nearest lattice site. Let’s discuss how the program declared above.
In the specification of the dynamics, the signals move left and right as shown in Fig. 1.7 (b). However, the rule is
actually applied at the sites marked by circles in (c); this is because, unlike the signals, the rule is not shifted between
steps and therefore remains stationary. Nevertheless, the result is equivalent to (b), because, when the transition
function accesses a signal, its coordinates are automatically rounded up to the nearest lattice. That the two versions
are equivalent can be seen in Fig. 1.7 (d) which uses rounded boxes to group grid coordinates that round up to the
same site of the lattices of l and r. Because the rule accesses the signals at an offset of zero8, the boxes also group the
function nodes with the signals that they affect. One can easily verify that both the shifted and unshifted rule lattices

7Setting the generator also gives the STEP implementation a hint about the preferred lattice. The STEP may employ this information when
making data allocation decisions.

7Recall that the default offset for a signal is zero.
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Figure 1.7: Coordinates and idexing on the sublattice Figure (a) labels the alternating starting positions of the
signals (blue squares) and shows the site that the coordinate [2] maps to at two different times when the lattice starts
at different positions. (b) shows the desired space-time crystal while (c) shows the one described by our code. In it,
the position of the rule’s lattice where swap randomly is applied (marked by dots) does not shift. Half of the time,
the rule’s lattice does not coencide with the signal lattices. However, because coordinates are rounded up, the result
is the same as (b). This can be seen in (d) where rounded boxes enclose the groups of coordinates that round up to
the same signal lattice site. The rule—which accesses signals at an offset of 0—operates on the same sets of signals
whether it is shifted or not.

affect the same set of signals. Although the rule’s position does not matter in this particular case, it does matter in
certain situations as we’ll see when we discuss rendering in Section 1.6.2

Subscripting with slices

SIMP also has some special conventions when it comes slicing a LatticeArray . Clearly, r[1:5].array()
returns an array of 2 elements because that’s how many elements fall within the range. At even times it returns the
elements at r[2] and r[4] and on odd those at r[1] and r[3] . In general, one should make sure that the extent
of a slice is a multiple of the lattice spacing in order to avoid the ambiguity and unpredictablity of a call like r[1:6]
which, taken at face value would return different numbers of elements depending on when it’s called—it would return
two elements (r[2] ,r[4] ) on even times and three elements (r[1] ,r[3] ,r[5] ) on odd times. To eliminate this
ambiguity, SIMP takes the policy of always rounding the extent up if it is not a multiple of the lattice spacing, therefore
r[1:6] would automatically be rounded up to r[1:7]

Wrap-around compatible sizes

When a LatticeArray object is declared, SIMP also checks to ensure that it wraps around properly on the grid.
One can not, for example, have a grid with an odd size, say 11, and then declare signals with a generator of [[2]]
because there would be a remainder of 1 mod 2—if the starting position were 0, 12 would wrap around to 1 and begin
a new interleaved lattice on the odd sites. When one trys to declare a LatticeArray that does not wrap properly,
simp raises a StepError with a suggestion for a size that is compatible with the lattice generator.

1.6.2 Rendering

There are a few different ways to render a sparse sublattice signal. The first decision is what kind of lattice to render
onto. One controls this with the choice of lattice generator for the color OutputSignal objects. This can be declared
using the generator argument of an OutputSignal or the same argument of declarecolors . First, we’ll
declare the colors on the grid using a generator of [[1]] and a rendering function that maps the sublattice signals to
two grayscale outputs—white[0] and white[1] .

To make the rendered result reflect the alternating odd/even sublattice that the signals are on we’ll be making a ren-
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dering rule that shades the pixels on the unused sublattice light gray and shades the pixels on the used sublattice white
if there are no particles, gray if there is one, and black if there are two. To do this we need a rendering rule that
has a spacing of 2. (In general, SIMP requires that a rule’s lattice be a sublattice of all of the signals it acts upon.)
Based upon the number of particles present, the rendering rule will set the value of white[0] (the site on the used
sublattice) to white, gray or black. The value of white[1] (the site on the unused sublattice) is always set to light
gray. To make the rendering rule’s lattice coencide with alternating locations of the signals we’ll shift the rule. The
space-time diagram and results of this rendering stratetgy are shown in Fig. 1.8 (a) and (b) and the code appears below.

declarecolors(generator=[[1]]) # declare colors on the sublattice
def bw(): # rendering function

white[0]._ = (2-(l+r))*127 # render the value where the rule is evaluated
white[1]._ = 192 # shade the site to the right light gray

bw_rule = Rule(bw,generator=[[2]]) # render on same sublattice as the signals
bw_rend = XTRenderer(bw_rule,grayscale,time=-5 ) # space-time rendering, T going up
dynamics = Sequence([dynamics,Shift({bw_rule:[1]})]) # render where signals are

The statement ‘Sequence([dynamics,Shift(bw rule:[1])]) ’ augments the dynamics so that it shifts the
rendering rule in the same way that the signals are shifted. If we didn’t do this, the rendering would appear like Fig. 1.8
(c),(d).
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Figure 1.8: Rendering space-time diagrams and results (a) and (c) show two different space-time structures for
rendering and (b) and (c) show the their results. In (a) and (c) triangles denote the white output signal, the blue
rectangles denote the locations where the rendering rule is applied, and wide gray line shows an example trajectory
of a single particle. The size of the grid is [4] (the coordinates are 0-3; 4 wraps so it is the same as 0) and we keep a
history of 5 states. (a) and (b) show the space-time structure and results using a rendering rule that sets the grayscale
value of white[0] based upon the number of particles present and always shades the value of white[1] gray. (c)
and (d) show the same rendering rule and the unsatisfactory result when the rule’s lattice (the rectangles) is not shifted
with the signals (diagonal lines).

Instead of rendering in grayscale, one could render in color. One may also use the OutputSignal offsets in different
ways. In the example below (Fig. 1.9 (a) (b)) we use red[0] and blue[1] to denote l and r .

def rgb_block():
if l: red[0]._=255; # pixel [0] => red
else: red[0]._ = green[0]._ = blue[0]._ = 255 # pixel [0] => white
if r: blue[1]._ = 255; # pixel [1] => blue
else: red[1]._ = green[1]._ = blue[1]._ = 230 # pixel [1] => white

Finally, one need not declare the colors on the grid. One could, for example, declare them on the same sparse lattice as
l and r and make a rendering rule that does not render sites on the unused sublattice at all. Fig. 1.9 (c) and (d) show
the space-time diagram and the results for the code below.
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Figure 1.9: Two more rendering options for 1D diffusion This figure is similar to Fig. 1.8, but depicts two more
rendering options. (a) and (b) show the space-time diagram and results for a rule called rgb block that renders l
and r to red[0] and blue[1] . (c) and (d) show grayscale rendering with output signals that are on the same sparse
sublattice (spacing 2) of the grid that the signals are on.

declarecolors(generator=[[2]]) # declare colors on the sublattice
def bw():

white[0]._ = (2-(l+r))*127
bw_rule = Rule(bw,generator=[[2]])
bw_rend = XTRenderer(bw_rule,grayscale,time=-5 )

This strategy presents a compressed view that does not take the position of the signals into account, but is useful when
one would like to economize the number of pixels in the display.

1.7 HPP, a 2D Lattice Gas

We now present and program the HPP lattice gas9. It is a simple particle-level model of a gas dynamics in which
particles move at unit velocity on one of four ‘tracks’ between lattice sites and scatter at right angles when they collide
head-on. The dynamics of HPP is detailed in Fig. 1.10.

t = 0 t = 1

(Propagation) (Collision)

Figure 1.10: HPP Dynamics The HPP lattice gas is defined on a two-dimensional lattice. Up to four particles—one
ready to move in each of four directions as indicated by the arrows in our example—may occupy each site. As labeled
in the middle and right diagrams, an update occurs in two phases—propagation (data-transport) during which the state
variables move to adjacent sites and collision (data-interaction) during which the collision rule is applied. On the right,
we show the evolution of the dynamics starting with particles moving in random directions and a ‘vacuum’ with no
particles in the center.

The dynamics in the figure is straightforward; but, on close inspection, one comes to the realization that it results
9HPP is named after Hardy, de Pazzis and Pomeau who first presented it in (Hardy et al., ).
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in two interleaved, independent sublattices. By moving only left, right, up, or down a particle will alternate in time
between the solid and hollow marked sublattice sites shown in Fig. 1.10. Particles that started on a hollow site will
never interact with those that started on a solid site. The whole dynamics is contained in each of the sublattices. We
prefer to model just one of them.

1.7.1 HPP sublattice generator matrix

To program HPP we will use a sublattice generator for the signals and the rule. The appropriate sublattice is one that
has a generator vector of g2 = (0, 2) in X and thus skips every other element, and a generator vector g1 = (1, 1) in Y
and thus has a skew of 1 in the X direction. The generator vectors are shown graphically in Fig. 1.11(a).

[0,2]

[1,1]

x

y

x

y

x

y

[0,1]

[3,2]

[2,2] [2,3]

x

y
(a) (b) (c) (d)

Figure 1.11: HPP Sublattice We allocate the HPP rule and its signals on a sublattice of the grid with generators
g1 = (1, 1), g2 = (0, 2). The generators are shown with labeled arrows in (a) and the rectangular unit cell, given
by the spacing of the lattice (1, 2), is shaded. (b) gives an equivalent generator g1 = (1, 1) ≡ (1, 3). Although this
generator is equivalent, its skew, 3, is larger than the X dimension of g2 (the X generator) therefore it can not be used
in SIMP. (c) shades the lattice’s least common rectangle . The least-common rectangle is the smallest rectangle that’s
a multiple of the rectangular unit cell and has sites at each of its corners. If the size is a multiple of the least-commmon
rectangle, the lattice wraps around to itself, otherwise it does not and the size/lattice combination is invalid. (d) shows
the lattice when it’s starting position is (0, 1). The starting position of a lattice is the coordinate of the lattice site inside
of the rectangular unit cell. (d) also demonstrates how the coordinates (2, 2) and (3, 2) round up on this lattice.

The two generator vectors form the rows of the generator matrix. The generator matrix for the lattice is G =

[

g1

g2

]

=
[

1 1
0 2

]

. We use a matrix in this form for technical reasons. Mathematically, an n dimensional lattice Λ is defined

as the set of points generated by multiplying the generator vectors gi by integers ai,

Λ = {
n

∑

i=1

aigi : ai ∈ Z},

or in the matrix formulation by multiplying the generator matrix G by an integer (row) vector a,

Λ = {aG : a ∈ Z
n}.

Notice that we have the given generator matrix as an upper triangular matrix. Mathematically speaking, a generator
matrix need not be upper-triangular, however, for SIMP it must be. An advantage of the upper triangular form is that
the diagonal of generator matrix gives the spacing of the lattice in the Y and X dimensions while the off diagonal
upper elements give the skew. In our example, the spacing is (1, 2) and the skew is 1.

One reason that a lattice’s spacing is important is that it defines the lattice’s rectangular unit cell. The signal slice
extents are rounded up to the next multiple of the spacing. For example, with a HPP’s spacing, (1, 2), sig[0:3,0:5]
becomes sig[0:3,0:6] . Coordinate indexes are also rounded up in the same way—when the lattice starts at
[0,0] , sig[1,2] references the site sig[1,3] . Fig. 1.11 gives more examples.
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SIMP also requires that all generator matrix elements be positive integers and that the skew elements be less than the
spacing of the dimension they skew. For example, although a Y generator of g1 = (1, 3) would generate HPP’s lattice,
it does not satisfy the skew constraint because the skew in X is 3, which is greater than the X spacing, 2. However, an
equivalent choice that satisfies our constraints is 1 ≡ 3 (mod 2). Fig. 1.11 (b) shows this graphically.

In all, SIMP restricts the generator matrix to an integer upper-triangular form having strictly positive diagonal (spacing)
elements and positive upper (skew) elements that are smaller than the diagonal element of their column (smaller
than the spacing of the dimension they skew). SIMP requires this form because it is mathematically convenient
(computations on upper triangular matrices are simpler), expressive (the spacing and skew in an arbitrary generator
matrix are not obvious), and yields lattices that, other than their skew, map naturally into multidimensional memory
arrays.

This restriction does not limit the types of integer lattices that may be expresed. Mathematically speaking, SIMP
requires that the generator matrix be in an integer Hermite Normal Form (iHNF). It is a theorem of linear algebra that
any integer generator matrix can be converted to iHNF using unimodular transformations and a uniform scaling. Geo-
metrically, this corresponds to successively rotating the lattice until its generators are in alignment with the Cartesian
coordinate axes (X, then Y, then Z ...), selecting generator vectors having skew elements smaller than the dimension
they skew, and applying a uniform scaling so the generators hit integer grid sites. iHNF is not only general, but is a
natural way to express a lattice’s generators.

For a given generator matrix, there is also a restriction on the allowable sizes. This is necessary for the lattice to
wrap-around properly. In particular, the size must be a multiple of what we call the lattice’s least common rectangle.
The least-common rectangle is the smallest rectangle (in two or higher dimensions) that has a lattice point on all of its
corners. If the size were not a multiple of the least-common rectangle, points of the lattice would not wrap-around to
themselves. In our example, the least common rectangle is (2, 2) and is shaded in Fig. 1.11 (c). For it, a grid size of
(4, 4) works, but a size of (4, 3) does not. simp raises a StepError with a new suggestion for size if one tries to
declare a generator that has a least-common rectangle of which the size is not a multiple.

In our examples we have seen that in going from one dimension to two, expressing a lattice becomes more complicated
in that one must use the integer HNF for the generator matrix, the lattice may have skew components, and the size
must be a multiple of the least-common rectangle. In three and higher dimensions, the concepts from two dimensions
generalize directly.

[XXX perhaps show the other HNF generator matrix examples here]

1.7.2 Programming HPP

Having defined the proper generator matrix for HPP—[[1,1],[0,2]] —programming it is now relatively straight-
forward. The code below sets the default generator using initialize and declares four signals—one for each
direction as shown in Fig. 1.13 (a).

from simp import *
initialize(size=[200,200],generator=[[1, 1],[0, 2]])
p0,p1,p2,p3 = map(Signal,[SmallUInt(2)]*4) # make 4 binary signals for particles

In the HPP dynamics, particles continue with unit velocity unless two collide head-on, in which case particle (and
hole) trajectories are rotated by 90◦ as shown in Fig. 1.10.
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#-------------------------------- COLLISION
def hpp(): # scatter at right angles on collision

if ( (p0==p2) and (p1==p3) ):
p0._ = p3; p1._ = p0 # rotate by 90 degrees
p3._ = p2; p2._ = p1

dynamics = Sequence([
Shift(kvdict(p0=[ 1, 0],

p1=[ 0, 1], p3=[ 0,-1],
p2=[-1, 0])),

Rule(hpp)])

We render to the grid and color the unused lattice sites black and set the white intensity of sites that could have particles
to a value that denotes the number of particles present (maximum occupation of 4). In the code below, we declare the
white output signal directly rather than using declarecolors .

white = OutputSignal(UInt8,generator=[1,1])
def intensity():

white[0,0]._ = (p0+p1+p2+p3)*255/4
white[0,1]._ = 0

render_rule = Rule(intensity)
rend = Renderer(render_rule,outputs=(white,))
dynamics = Sequence(dynamics,Shift({render_rule:[0,1 ]}))

The offsets (0, 0) and (0, 1) are two different cosets of white with respect to the rendering rule’s lattice. A coset
is the position of the offsets modulo the rendering rule’s lattice. [XXX note the restriction on writing values out to
cosets]

Rather than coloring the unused coset position white[0,1] black, one could instead output the particle count as in

def intensity():
white[0,0]._ = (p0+p1+p2+p3)*255/4
white[0,1]._ = (p0+p1+p2+p3)*255/4

(a) (b) (c) (d)

Figure 1.12: Two HPP rendering options (a) shows a HPP configuration when we only render the state to one coset
(white[0,0] ) and color the other coset white[1,0] black. (b) shows a closeup zoom of the center of the image.
(c) shows the same configuration when we render the state to both cosets. (d) shows a closeup zoom of the center of
the image.

Again, we shift the rendering rule so that it’s sublattice starts at the same place as the signals. To set the initial
conditions, we randomize each signal and then use an ellipsoidal mask created with ellipsemask to clear the values
and make a circle in the center of the space.
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for sig in [p0,p1,p2,p3]: # for each signal
sig[:,:] = makedistribution(sig.shape,[1,1]) # randomize the entire state
ellipse_region = sig[200*3/8:200*5/8,200*3/8:200*5/8] # select ellipse rect
arr = ellipse_region.array() # get the current value for the ellipse
numarray.putmask(arr,ellipsemask(ellipse _regio n),0) # clear an ellipse
ellipse_region._ = arr # set the values in the region
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Figure 1.13: Mapping HPP from a LGA to a BPCA (a) depicts the lattice and signal transport vectors for our
original formulation of HPP while (b) shows the same lattice rotated by 45◦ and scaled by

√
2. As shown by (c) and

(d), the lattice-gas geometry of (b) is the basis for programming HPP as a Margolus neighborhood block partitioning
cellular automaton (BPCA). (c) depicts the unit cell of HPP’s 3D space-time crystal when it’s programmed using
the geometry of (b). The shaded plane intersects the signals half-way between interaction nodes. We can use these
intersection points to give the signals a spatial representation. (d) uses small rectangles to show a splayed spatial
representation of the signals at the points that they intersect plane. In this representation, the original signals p0 ,
p1 , p2 , and p3 are now represented by cosets p[0,0] , p[0,1] , p[1,1] , and p[1,0] of a single signal p that’s
allocated on the grid. The thick and thin lines partition the signals into blocks of 4 that are updated together by the
lattice gas. In the BPCA version, the blocks of four are updated together using a rule that has a lattice spacing of (2, 2).
On odd phases, blocks partitioned by the thick lines are updated and on even blocks partitioned by the thin lines are
updated. The rule moves particles horizontally and vertically by swapping diagonally as shown by the arrows.

1.8 HPP programmed as a Margolus neighborhood block partitioning CA

We’ll program the same dynamics using the block partitioning CA (BPCA) approach. A block partitioning cellular
automaton is like an ordinary cellular automaton except that it updates blocks of state concurrently. In SIMP one
programs a BPCA by giving the lattice that defines the block and writing a rule that updates the block.

Probably the most well-known way to program the HPP lattice gas is as a BPCA. The strategy is due to Margolus
(Toffoli and Margolus, 1987). To arrive at this formulation imagine rotating the HPP lattice gas by 45◦ and scaling it’s
lattice to a grid with a lattice of (2, 2). At this point, one may program HPP as above on a lattice whose generator is
[

2 0
0 2

]

and with p0 , p1 , p2 , and p3 shifted by (1, 1), (1,−1), (−1,−1), (−1, 1) as shown in Fig. 1.13 (b). The
essential modifications to the program are
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initialize(size=[200,200],generator=[[2, 0],[0, 2]])
p0,p1,p2,p3 = map(Signal,[SmallUInt(2)]*4)
....
dynamics = Sequence([

Shift(kvdict(p0=[ 1, 1], p1=[ 1,-1],
p3=[-1, 1], p2=[-1,-1])),

Rule(hpp)])

This form of HPP can also be programmed as a BPCA. The transformation from the LG to a BPCA is described in
Fig. 1.13. Rather than having four signals that shift, the BPCA approach uses a single signal that’s updated in blocks
of four using the Margolus neighborhood. Between updates, the blocks alternate between the two block partitionings
shown by the thick and thin lines in Fig. 1.13 (d). Fig. 1.14 (a) and (b) shows the two phases of the BPCA version of
the HPP rule from the standpoint of the signals and the rule’s lattice. The code for the BPCA version of HPP appears
below.
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p[1,1]

p[0,1]p[0,0]
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p[1,1]p[1,0]

p[0,0] p[0,1]

(a) (b) (c)

Figure 1.14: The Margolus neighborhood HPP BPCA (a) and (b) depict the lattices employed in the BPCA version
of HPP and the partitionings imposed by the rule’s lattice. The signal lattice is allocated on the grid and depicted
using small squares while the rule’s lattice has a spacing of (2, 2) and is depicted using large red circles. (c) shows the
rendering results when the signal cosets are rendered directly to an image.

from simp import *
initialize(size=[Y,X]) # grid size
p = Signal(SmallUInt(2)) # signal allocated on the grid
hpp_mesh = [2,2] # define processing on a coarser mesh---lattice with

# spacing of (2,2)
def hpp():

if ( (p[0,0]==p[1,1]) and (p[0,1]==p[1,0]) ): # head-on collision
p[0,0]._ = p[0,1]; p[0,1]._ = p[1,1] # particles rotate 90 degrees
p[1,0]._ = p[0,0]; p[1,1]._ = p[1,0]

else: # keep moving
p[0,0]._ = p[1,1]; p[0,1]._ = p[1,0] # particles swap diagonally
p[1,0]._ = p[0,1]; p[1,1]._ = p[0,0]

hpp_rule = Rule(hpp,generator=hpp_mesh) # Declare the hpp_rule on the mesh
dynamics = Sequence(hpp_rule, # Apply the rule and

Shift({hpp_rule:[1,1]}) ) # shift it to next block

Rendering becomes simpler using the partitioning CA. One can render at the level of particles by allocating the color
output signals and the rendering rule directly on the same grid. The code used to render Fig. 1.14 (c) appears below.
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white = OutputSignal(UInt8)
def bw():

white._ = p*255
renderer = Renderer(Rule(bw),outputs=(white,))

1.9 FHP Lattice Gas—a hexagonal lattice gas

HPP exibits some spurious symmetries that are not present in a real gas. The FHP lattice gas, which is defined on
a hexagonal lattice correctly yields the Navier–Stokes equation in the macroscopic limit(Frisch et al., 1986). In this
section we show how one may approximate a hexagonal lattice with SIMP. SIMP can not implement a true hexagonal
lattice directly because a hexagonal lattice has rationals in it’s generator matrix and SIMP requires the generator matrix
elements to be rationals.

In a true hexagonal lattice, the generators are such that lattice sites are spaced at a distance of one from each-other and
each site has six sites at a distance of one from it. The generator matrix is

G =

[
√

3

2

1

2

0 1

]

[XXX perhaps put a diagram here]

The best we can do is to approximate the matrix. One approximation is

G ≈
[

1 0
0 1

]

but this approximation is poor because it incorrectly modifies both the skew and the spacing of the Y generator.

To get a better approximation, we can scale the generator by 2. With this scaling we have

2G =

[ √
3 1

0 2

]

which, when we round to the nearest integer is

2G ≈
[

2 1
0 2

]

This approximation expands Y by 13 percent, however the ratio of the skew to the X generator is correct. For rendering
this is more important since the eye will more readily pick up skew than a slight scaling. To render onto the grid,
2 × 2 = 4 pixels are required.

Another approximation that preserves the ratio of the skew to its generator is

2G ≈
[

1 1
0 2

]

This time Y skrinks by 73 percent, but only two pixels are needed.

The next best approximation with the skew remaining exact is not until 6 with 6G ≈
[

5 3
0 6

]

. Y only shrinks by 4

percent, however 5 × 6 = 30 pixels are needed for rendering the approximation.

For simplicity, we program the dynamics here with the ’brick wall’ approximation 2G ≈
[

1 1
0 2

]

.

[XXX put code here[
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1.10 A BPCA model of polymers undergoing thermal relaxation

We presented this model in a past (Toffoli and Bach, 2001) and using the BPCA capabilities of SIMP can now program
it in a simple fashion.

1.11 Obtaining and using SIMP example code

The example code from this tutorial is available at http://pm.bu.edu. You may download it there. For convenience, we
list the files included with the examples and offer a brief description of each.

• ‘greenberg hastings.py’ 2D excitable medium

• ‘stochastic greenberg hastings.py’ A randomized (stochastic) excitable medium.

• ‘fhp.py’ The basic version of FHP described in Section 1.9.

• ‘hpp.py’ The basic version of HPP described in Section 1.7.

• ‘hpp pca.py’ A partitioning cellular automaton version of HPP described in Section 1.8.

• ‘hpp rotated.py’ A verion of HPP programmed as a lattice–gas that’s rotated by 45◦

• ‘parity1d.py’ One dimensional version of parity.

• ‘parity.py’ Two dimensional version of parity.

• ‘parity1d.py’ One dimensional lattice gas that implements diffusing particles.

• ‘parity.py’ Two dimensional lattice gas that implements diffusing particles using the dimension splitting tech-
nique.

• ‘parity.py’ Two dimensional

• ‘polymer.py’ A simple model of a polymer chains undergoing thermal relaxation.

• ‘life.py’ Conway’s game of life.

• ‘ising.py’ The Ising model of a spin system.

• ‘difference.py’ An parameterized rule example in which we make two copies of the same dynamics and run it
different signals whose initial state varies slightly and compare results.

1.12 A parameterized rule

When a Rule is constructed, the values stobed into its transition function can be parameterized by passing a names-
pace dictionary overrides the bindings of global names. This is useful for making sets of rules that apply the same
transition function to multiple signals.
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1.13 Remarks

The primary goal of the STEP interface and runtime system is to make the same SIMP program portable across
various machines, architectures, and implementation strategies. The goals, rationale, and implementation strategies of
the STEP framework are discussed in (Bach and Toffoli, 2003). Although SIMP programs are written in the Python
programming language—a scripting language—their performance is similar to that of a compiled programs. This is
due to the fact that the STEP runtime system translates the high-level constructs and function calls into lookup tables
and efficient C code. Currently, on an entry-level 400MHz Mobile Intel II Pentium, the PC STEP runtime distributed
with version 0.4 can perform HPP’s updates at a rate of 5 million sites-per-second (80 CPU cycles-per-site) and on a
2500 MHz Pentium 4 it achieves 41 million sites-per-second (60 CPU cycles-per-site). Memory requirements scale
with the size of the space, and interactive rendering with a modern video card typically only slows updates by a factor
of two.

Currently, SIMP only supports signals defined over small state sets and update functions are limited in the number of
signals that they may use as inputs. This is because STEP converts the update functions into lookup tables (LUTs) and
the size of a LUT is exponential in the number of input signals. One can get around this constraint by implementing
large updates with a set of smaller, independent updates having smaller LUTs. We are now implementing methods of
automating the compilation of LUTs and considering adding support for mixed integer and floating point types.

We thank Silvio Capobianco and Tom Toffoli for their insightful comments and DOE for supporting this work under
grant 4097-5.
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CHAPTER

TWO

Reference

simp is a user-level programming module that simplifies writing programmable matter experiments, instantiating run-
time STEPs (space-time event processors) to implement them, and making and calling the primitive STEP operations
(ops) that serve as a STEP’s instructions. In this chapter we document the user-level functions and classes defined by
simp and its sub-modules.

2.1 Importing and initializing SIMP

The simp module is meant to be imported directly with

from simp import *

Doing this imports the basic SIMP and STEP definitions. After importing simp , one must call first initialize .
It creates and initializes a STEP and sets up defaults used for further SIMP constructs. Typically, one will only need
to pass the size parameter to initialize . This parameter declares the number of dimensions and the extent of the
coordinates. size is the only parameter without a default value.

When writing rules with the usual orthogonal (square grid) geometries, one need not worry about the optional geo-
metric parameters. For lattice-gas, partitioned cellular automata, and non-orthogonal geometries (such as hexagonal
lattices) one will need them.

The generator matrix is a n × n (n is the number of dimensions) upper triangular integer matrix with strictly positive
integers on the diagonal and smaller, non-negative integer column elements specifying the default lattice for and signal
objects. May also be given as a rectangular size vector (diagonal of a HNF) as described in ??.

initialize ( size,generator=None, stepname=None,stepargs=None, verbose=1)
The SIMP module initialization function sets up the module’s global parameters.
Calling initialize instantiates a STEP. Therefore, initialize must be called before any step objects are instanti-
ated or step methods are called. initialize can only be called once per module, raises an Exception if called
twice.
Note: The parameters are stored in the simp module as private variables (eg. size is simp. size ) and
uses them first to load a STEP and later to construct default parameters for STEP ops and data types.
size

Vector giving the size of the grid. The length of the size vector sets the number of dimensions, n.
generator

The default generator (an n dimensional matrix or vector) for LatticeArray objects (eg. Rule and
Signal objects). Defaults to identity—the generator used for an ordinary CA.

stepname
String giving the name of the step implementation module. Defaults to the default module for the in-
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stallation or set the name set in the simp configuration file (see Section 2.1.1). Examples include
"reference" and "pc" .
The module must either exist in simp.stepmodules or be in the Python system path (sys.path) and
define the STEP interface as per Section 3.3. initialize raises an ImportError if the module can
not be found or does not export the STEP interface.

stepargs
A keyword dictionary containing arguments for initializing the STEP. The nature of the arguments depends
on the step module used. Defaults to no arguments.

verbose
Integer controling how much information simp and the step implementation module print. 0 prints noth-
ing. 1 prints the standard information, informing the user when tables are being compiled et cetera. 2
prints more detailed information and suggestions. 3 and above print debugging information. Defaults to 1.

2.1.1 The simp configuration file

You can create a configuration file that the simp module will read when it is imported. On UNIX systems
it’s ‘/home/username/.simp’ and on modern Windows systems it’s ‘C:/Documents and Settings/username/.simp’ or
‘C:/.simp’ if that path doesn’t exist.

The configuration file is just an ordinary Python file. Think of it as extra code sourced at the beginning of simp
module. Code in ‘.simp’ can’t override simp function definitions, however it may provide new definitions for your
scripts. But, the primary use is setting initialization defaults. A full description of the initialization parameters appears
in 2.1. Defaults that can be overridden include,

stepname
The name of the STEP implementation module.

verbose
Indicates what SIMP should print.

stepargs
Dictionary of optional arguments intended for the STEP implementation.

2.2 What the SIMP module does

simp initializes the STEP implementation, provides default parameters to the STEP operations, and provides the
operations with a reference to the STEP implementation. The reference is needed so that the objects may register
themselves with the STEP. These objects need a way to get a reference to the simp module. Usually they get this
constructor arguments (through the simp attribute), however, a few of the objects require that simp be passed
as an explicit parameter. In particular, Signal and OutputSignal require a simp instance as a constructor
parameter in order to get default values. Because of this, simp provides wrapper functions for declaring Signal and
OutputSignal objects.

Warning: simp.Signal and simp.OutputSignal are not classes. They are wrapper functions—
the actual classes are simp.step.Signal and simp.step.OutputSignal . Therefore calling
isinstance(ob,Signal) raises an error. Use isinstance(ob,simp.step.Signal) instead.

2.3 SIMP helper functions

The user might also use this function to get a reference to the module for accessing private variables when simp is
imported with ‘from simp import * ’.
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simpmodule ()
Returns the current simp module.

2.3.1 dictionary functions

kwdict (**kwargs)
Returns a keyword dictionary keyed on the keywords as strings. Allows one to construct string keyed dictionaries
with statements like

>>> kwdict(a=1,b=3)
{"a":1,"b":2}

kvdict (**kwargs)
Returns a dictionary keyed on objects and values.
Writing kvdict(a=1,b=3) is basically equivalent to {a:1,b:2} .

>>> a = 5
>>> b = "test"
>>> kvdict(a=1,b=3)
{5:1,"test":3}

The key values must be in the namespace, otherwise a NameError is raised. A TypeError is raised if an
object is not a hashable dictionary key.

2.3.2 Constructing subscripts

The subscript (subscr ) object is a syntax convenience object for constructing Python subscripts. Rather than using
the slice(start,stop,step) constructor, as in

sl = [slice(1,4),slice[4,4]]

with the subscr object, one may write

sl = subscr[1:4,1:4]

This is useful for building slices objects for simp constructs that expect them.

2.3.3 Image array helpers

SIMP provides some helper functions for manipulating images in by NumArray objects.

The expected image format for a 2D image array is a NumArray of type UInt8 . 0 is the lowest intensity and 255 is
the highest. If the array is two dimensional, it represents a Y,X grayscale image. If the array is three dimensional, the
least significant index is for the color chanel.

The simp helper function array to ppm can be used to create portable pixmap image strings (‘ppm’). One may
save such a string to a file and thereby create a ‘ppm’ file.

array to ppm (array)
Return a ‘ppm’ image string from an array.
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The function is suitable for rendering images to a file, as in

arr = rend()
ppm = array_to_ppm(arr)
open("out.ppm","wb").write(ppm)

magnify2d (arr,magnification,grid=0,out=None)
This function is used to magnify the two most significant dimensions of an image array, arr.
magnification is a non-zero integer scaling applied applied in the two most significant dimensions of arr. grid is
the size of the grid lines separating blocks. The out array will receive the result. By default a new output array
is created.
If magnification is negative, the output array is ‘decimated’ and only elements at strides of −magnification are
kept.
If the shape of the input array is (200, 100) and magnification is 3, and grid is 0, the output array will be of size
(600, 300) and each pixel in the original array will be expanded to 3 × 3 blocks 9 new pixels. If grid is 1, the
blocks will be 2 × 2, there will be a spacing of 1 between each block and the output array size is (601, 301).
The extra space is for the grid line at the edge.
Normally the grid lines have an intensity of zero. To specify a different color for the grid lines, supply an output
array that’s already filled with the desired color.

2.3.4 Declaring colors

The outputs of a rendering rule are UInt8 OutputSignal objects.

A user may declare them with something like

red,green,blue = map(OutputSignal,[UInt8]*3)
rgb = (red,green,blue)

Since this declaration is such a common one, simp provides a special method for making these declarations.

declarecolors (generator=None)
Convenience function for declaring a commonly used set of color signals as UInt8 -type OutputSignal
objects in the global namespace.
The generator is the generator matrix for these signals.
Basically, it acts as a macro for the following code which declares all of the commonly used color
OutputSignal objects:

# declare all the color outputs that one might use
red,green,blue,white,alpha = map(OutputSignal,[UInt8,generator]*5)
grayscale = (white,white,white) # convenience for grayscale RGB images
rgb = (red,green,blue) # convenience for RGB images
rgba = (red,green,blue,alpha) # convenience for RGB images with transparency

One of the output tuples is usually passed as an argument to a Renderer object.
Will raise a NameError if red , green , blue , alpha , white , rgb , rgba , or grayscale is already
defined.
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2.3.5 NumArray helper functions

makedistribution ( shape,dist)
Return a new numarray with a given shape and distribution of values.
shape is a vector giving the shape of the array, while dist gives the ratios of the integer values to be generated.
For example

makedistribution((4,4),[1,3,5])

returns a 4× 4 array in which elements have a 1/9 chance of being 0, a 3/9 chance of being 1 and a 5/9 chance
of being 2.
Use SeedRandom to seed the random number generator.

getdistribution (arr,min,max)
Return the distribution of values between min and max of an integer array.
The primary use is to get distributions of signal states.
arr is the array to be examined. min is the minimum value for the histogram while max is the non-inclusive
maximum value of the range.

>>> arr = numarray.array([1,2,2,2,1,1,2,3,3,0])
>>> getdistribution(arr,0,3)
[1,3,4]

For efficiency, should only be called on small ranges of values.

ellipsemask ( shape)
Return a 2D mask of values indicating the interior of an ellipse.
shape is the desired shape of the mask array.
The major axes of the ellipse are Y-1,X-1 where shape=Y,X. The goodness of the discrete ellipse approximation
is dependent on the shape. Odd number sizes are typically more accurate than accurate than even.
The mask is suitable for use with the numarray putmask(array,mask,values) function.
Note: This method can currently only be used to create 2D ellipses. We hope to extend it to ellipses in arbitrary
numbers of dimensions in the future.

2.4 Declaring and using Signal objects

In this section, we describe Signal constructors and semantics of Signal methods and member data. In partic-
ular, we describe how signal objects are declared and used, their possible data types, neighbor indexing and slicing
(slice objects). Signal objects provide an abstract interface to parallel data allocations that ultimately exist and are
managaded entirely inside of a STEP.

2.4.1 Declaring Signal objects

Declaring a signal entails specifying the lattice it’s allocated on and the type of data it holds. Signals are indexed
using multidimensional subscripts. Subscripting a signal implicitly calls getitem which returns a reference
to a SignalRegion which can be used to read and write values in an absolute, global context and inside Rule
declarations to access and set signal values in a relative, local context. Special OutputSignal objects declare
output-only signals whose state information is not maintained in a STEP, but are rather used for reading output values
rendered by local rules.
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Both Signal and Rule objects subclass LatticeArray which is the base class for representing lattices.

class LatticeArray (generator,size)
Base class for representing lattice declarations on the grid.
generator is a HNF lattice generator matrix (see XXX) defined on a rectangular integer grid bounded in each
dimension by size.
Read-only attributes

generator
The generator matrix for the lattice.

spacing
The orthogonal spacing between cell sites. (Diagonal of the generator .)

nd
Number of dimensions.

shape
shape of the array. Basically, its the size divided by the spacing .

lattice position functions

The following two functions read and write the starting position registers from the STEP.
getposition ()

Return the starting position of the lattice as described in Section ??. (Wrapper for GetPosition )
setposition (position)

Set the starting position vector of the lattice as described in Section ??. (Wrapper for SetPosition )
geometric helper functions

These are more likely to be more useful to STEP than to the user.
array index ( coord,out=None)

Return the rectangular array index of a grid coord.
Write to the vector out if it is specified.

coset coord ( coord,out=None)
Return the rectangular coset coordinate of a coordinate modulo the lattice.

coord ( index,out=None)
Return the grid coordinate associated with the array index vector.

class Signal ( type,generator=None,simp=None)
Declares a parallel data allocation of type ’type’ on the lattice declared by the generator matrix. If not specified,
the generator taken from the simp module’s default value.
This class extends LatticeArray and therefore has the same methods and attributes. (The size parameter of
the LatticeArray is obtained from simp )
Note: The user need not specify the SIMP argument since simp provides a wrapper function for the Signal
constructor that automatically specifies it.
Read-only members

type
the type of the signal.

Methods

array ()
Return the entire array for the signal as a numarray .
When called from a SignalRegion , as in ‘sig[:,4:5].array() ’ it returns the array for the signal
at the slice. The type of the array depends on the signal type.
(Wrapper for the STEP Read operation)
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getitem ( subscript)
Returns a SignalRegion with a region specified by the subscript.
A SignalRegion can be used in transition functions and for reading and writing data.

setitem ( subscript,value)
Assigns the value of a region specified by the subscript.
If the value is a scalar, all elements in the region are assigned to that value. Otherwise, if it is an array,
elements are assigned to array values. Arrays sizes must match the shape of the region. (Wrapper for the
STEP Write operation)

Back-end functions

These have lesser significance to the user.
base signal ()

Return a reference to self.
Only defined so that one can handle Signal and SignalRegion objects in a homogenous way.

neighbor offset ()
Returns an n dimensional zero vector.
Only defined so that one can handle Signal and SignalRegion objects in a homogenous way.

Signal Types

Currently, the primary type is the SmallUInt . This type is parameterized on the number of values it may take on.
One must call the SmallUint constructor to instantiate the type.

class SmallUInt (n=2)
The STEP parameterized small unsigned integer type. It can take on n possible values from 0 to n .

Currently, the only1 other type is numarray.UInt8 and it may only be used for OutputSignal objects. It is
used for RGB and grayscale rendered color output signals.

2.4.2 Reading and writing values and using slices

At the level of the STEP interface, a signal’s data is managed by the STEP itself and can not be directly accessed.
Instead, the data is read and written through Read and Write operations, and updated using Rule operations.
For convenience, however, SignalRegions objects, which may be obtained by subscripting Signal objects can
be used to represent the data in a region. A SignalRegion may also serve as a wrapper for Read and Write
operations.

[XXX Need some slicing examples or to reference some from the tutorial.]

class SignalRegion ( signal,subscript)
Obtained by subscripting a Signal .
It references a signal at a specific subscript. The subscript can be a Python subscript or a Region object. (see
i slice and Region ).
If the subscript is a single point, the value can be coerced to an int or array. Otherwise, it can only coerce to
an array.
To write to a SignalRegion, one can assign the value of the output attribute, ’ ’ as in

1As soon as we have an efficient STEP that can support them, we will add the rest of the numarray types. To do this, however, we will need
to add a Python to C code compiler to SIMP capable of converting transition functions directly to C functions. We believe that the scipy.weave
or pyinline package will be a good way to do this.
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sigregion = sig[:,4:4]
sigregion._ = 1

Doing this calls a STEP Write operation.
Member data (read only)

region
The Region object for this subscript.

shape
The shape of the array associated with the region .

Methods

Calling array() returns the array associated with this region.
array ()

Return the data array associated with this region as a NumArray .
If the subscript references a single coordinate, it returns a scalar. (Wrapper for the STEP Read operation)

base signal ()
Return a reference to the Signal of which this is a region selection.

neighbor offset ()
Return a single coordinate specifying the neighbor offset. Raises an error if the region contains more than
one site.

A neighbor is a SignalRegion that references a single coordinate. Neighbor slices are used to write cellular
automata rules.

class Region ( region)
A class for representing multidimensional slices.
The constructor expects region to be a Region object or a multidimensional Python subscript.
Member data (read-only)

start
start position for the region (vector)

stop
stop position for the region (vector)

size
The size of the region (stop-start). Returns None if the size is undefined because the size of the boundary
is not known.

methods

subscript ()
Return a Python list representing the region’s subscript

class LatticeArrayRegion ( region)
A class for representing multidimensional slices selecting the sites of a LatticeArray object.
Extends the Region class.
member data (read-only)
shape

The shape of the array representing the region.

2.4.3 Output signals

A special kind of signal, called an OutputSignal can be used for rendering purposes. One would often like to apply
a rule to do a rendering operation. If one used regular signals to hold the output values and then read the values out
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of these signals, extra storage would be needed—internal storage for the signals and an external array for the output
data. In addition, an extra copy would be needed—a copy from the signal to the output array. Two copies must be
kept, because, it is assumed that signals will be used again as inputs to future rules.

If one instead declares a special output signal, a STEP can realize that it the output signal will only be written and
avoid keeping an extra copy around—and the data can be written directly to the output.

class OutputSignal ( type,generator=None,simp=None)
A signal that is used as an output only.
It is the same as an ordinary signal in all ways except that it is output only.
OutputSignal objects are used in rendered Read operations.

2.5 STEP operations

STEP operations (ops) are represented by Python classes. They must be declared before they can be used. An op is
declared by calling its class constructor and issued by calling it (as in op() ) or by passing it as an argument to the
STEP Do function (as in Do(op) ).

An op’s constructor automatically registers it with the STEP2. This is done so that the STEP may raise an exception
if the op is somehow invalid or a StepError if for some reason it is unable to perform the op. The STEP may also
perform some internal compilation in order to be ready to do the op later.

exception StepError ()
Base class for STEP exceptions. STEP will put relevant information in the exception’s string.

2.5.1 Rules

Note: Because the current STEPs use lookup tables (LUTs) to implement rules, one should be careful not to make the
number of input signals too large.

The rule function must follow some special restrictions. A STEP may not enforce these restrictions, but as the writer
of a STEP function, one should be certain that they are upheld, otherwise unexpected results may arise.

In general, a rule should be written as a simple aritmetic and logical function of neighbors using only simple flow
control primitives.

• A rule may not ’carry’ values. (it may not write a global value and expect to re-read that global in the next
iteration).

• No ‘time variant’ function calls. All external functions called must be strictly deterministic—given a set of input
values, it should always return the same set of outputs.

• No exceptions. The rule may not use try statements or raise exceptions.

In addition to these rules, a STEP (especially one that generates C code) may enforce the following

• Single type. A local variable may only be assigned to a single type within the rule

• Restricted allowable function calls. Some function calls may be difficult for the STEP to implement or analyze.
A STEP might not allow function calls at all or only allow a fixed subset of them.

• Python construct restrictions. Try to use only simple python constructs.

• Limited types. Mutable types such as lists may be prohibited.
2Internally it uses the step.Register(op) method. Signal objects are also registered in the same way.
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class Rule ( rule function,generator=None,namespace={})
A STEP operation that performs parallel, local updates.
A Rule updates signals in parallel by locally applying rule function at the sites of the lattice specified by its
generator and overriding global names in the function with names in namespace if it is defined.
The Rule class extends the LatticeArray class and thus all of its attributes and methods.
When a Rule is instantiated, the global names in the rule function are strobed—replaced with constant values.
Strobing is necessary to allow a STEP to perform type analysis on a the Python rule function, determine the
input and output signals, and compile a LUT to represent the function. A new private namespace for the
Rule is created and mutable objects are copied with a deep copy. Once the globals have been strobed, the
internal representation of the rule function is no longer affected by changes made to global variables.
Names in namespace dictionary supersede the the rule function’s globals, allowing one to construct parameter-
ized rules.
When a Rule is strobed, it constructs the function’s inputs and outputs . All regions referenced inside
of the rule function are relative to the site being updated—signal subscripts with a single coordinate specify
neighbors.
inputs

The Signal and SignalRegion objects accessed as inputs by the rule function .
outputs

The Signal , SignalRegion , OutputSignal objects written by the rule function .

class LutRule ( lut,inputs,outputs,generator=None)
A STEP Rule with a transition function specified by a lookup-table.
inputs is an in-order list of the Signal /SignalRegion inputs to the lut and outputs is an in-order list of the
lut outputs. The lut itself is an m + 1 dimensional array indexed in the upper m dimensions in-order by the
inputs and in the lowest dimension by the index of the output. The type of the array must be compatible with all
of the output values. (Usually, a UInt8 array is the right choice.)
The input values must be unsigned.
XXX not yet implemented

2.5.2 Moving the lattice

class Shift ( shifts)
STEP operation that shifts the position of LatticeArray objects.
shifts is a dictionary keyed LatticeArray objects and mapping them to shift vectors.
For Signal objects, the data in the lattice is moved by by the amount of the shift. (However the movement
may simply be an update an internal address register that says where the data is the next time it is needed.)
After a shift, the lattice’s start position moves to a new location (modulo the lattice generators) as described in
Section ??. Because the sites of their lattice are undifferentiated, this is all that happens for Rule objects.

class Stir (objects)
STEP operation that randomly shuffles LatticeArray object positions.
objects is a list of LatticeArray objects to stir.
Stirring Signal objects, performs a mild permutation of the array elements and randomizes its starting position.
It is usually implemented by a by a random shift. Stirring data is much more efficient than generating high
quality randomness, and is often sufficient to achieve the same effect.
A Rule does not have data. Stirring a Rule just randomizes its starting position.

class GetPosition ( lattice object)
When called, returns the starting position of a LatticeArray (Rule or Signal .
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A STEP operation is required for this since the STEP maintains the starting position of its Rule and Signal
objects.
Usually, one will use the getposition() wrapper method of Rule , Signal , and OutputSignal objects
to call GetPosition .
object

The object whose position is to be read.

class SetPosition (positions)
Set the starting positions of a set of LatticeArray objects.
positions is a dictionary keyed on LatticeArray objects mapping each to its new starting position. The
starting position is a vector or another LatticeArray object, in which case the new position is the same as
the position of the object.
A STEP operation is required for this since the STEP maintains the starting position of its Rule and Signal
objects.

2.5.3 Input and output operations

class Read ( region,signals,rule=None,samearray=0)
Read Signal and OutputSignal data out to an array.
The operation reads data from signals—a set of Signal or OutputSignal objects—within region—a
Python subscript or Region object—to an output array. If OutputSignal objects are read, the rule for
generating them must be defined—otherwise it need not be. If samearray is true, all data is read out to a single
array, otherwise, data are read out to multiple arrays—one for each signal.
Usually, a Read is generated and called by subscripting a signal and calling the array() method,
as in sig[1:14,:].array() . Renderer objects also create and call Read operations on color
OutputSignal objects with user specified rendering Rule objects. For non-orthonormal lattices, sites are
packed into arrays following the site selection conventions of Section ??.
The output values are read out to an array or list of arrays when the operation is called.

call (array=None)
Return an array (or list) containing the output values.
By default, a new array (or list of arrays) is allocated and returned. If array is given, the output is placed
there instead. If the samearray constructor parameter was true, the results are compacted into a single
array, otherwise, they are returned as a list of arrays—one for each signal.

class Write ( region,signals,values=None)
Write the values in region of each Signal in the signals list with the corresponding value from the values list.
One usually writes to Signal values using subscript indexes. Behind the scenes, this allocates and calls Write
operations.
There are two flavors of writes. If values is specified in the constructor, the write operation is static. Otherwise,
it is dynamic. For a dynamic write, values must be specified when the operation is called.

call ( values=None)
If the write is dynamic, values must be specified, otherwise they need not be.

2.5.4 Composing operations with Sequence

class Sequence (operations)
Class for representing a sequence of STEP operations to be performed. The operations are a list of STEP
operations to be done in order.
Creating Sequence objects notifies the STEP that the operations will be done one-after-another. The STEP, in
turn, can sequence optimize the sequence.
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Because a sequence is itself an operation, a sequence can be nested.

2.6 STEP methods

These are the public methods of a STEP. When one imports simp , it provides wrappers for them.

Do (op,parameters=())
Tells the STEP to do the op with the specified parameters

Note: Normally, this function is not needed since it is called behind the scenes when one calls an op, as in
op() .
The function is a wrapper for the STEP Do method. The optionalparameters are passed to the operation’s call
method. Returns whatever the operation returns.

SeedRandom (n=None)
Seed the SIMP and STEP random number generators with the integer n.
Seeds the pseudo-random (deterministic) random number generator that STEP employs for Stir operations
and SIMP employs for makedistribution .
The default seed is the current time (an integer cast of time.time() ). It is set automatically when SIMP
initializes.
Note: At this time, there is no method to get the seed because SeedRandom seeds multiple random number
generators. At any given time the seed is a collection of all of their seeds.

Flush ()
Flush any STEP operations that may be pending in the pipeline.
Note: This is primarily a debugging function—operations are flushed automatically by the STEP.

ClearCache ()
Often times a STEP will cache code and lookup tables. ClearCache clears the current cache that the STEP
uses.
Note: This is primarily a debugging method.

2.7 Renderers

Renderers are objects that render signals to images. Usually, this involves rendering a set of state values to a RGB
array. They do this by constructing the STEP Read operations necessary to complete the task and performing any
extra buffering that may be needed (in particular, the space-time renderers buffer state information).

Renderer objects implement a common interface so that they may be accessed in a common way by the Console .

Renderers are used to obtain 2-D rendered images from signals. In particular, they implement the Renderer inter-
face, as such, they are compatible with Console objects, which rely on a renderers for generating the images they
display. They also provide handy mechanisms for rendering from scripts.

At its core, rendering is a specialized Read op that does a rendered read to a set of color OutputSignal s. The
rendering function is declared using in a rule object. Given the rendering rule, the renderer automatically constructs
the Read ops that obtain the output.

2.7.1 Rendering

The Renderer defines the basic rendering interface. The XTRenderer extends it. Other extensions might later
include a VolumeRenderer .
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Often one will use the SIMP helper declarecolors () to declare the OutputSignal objects used in rendering.

class Renderer ( render rule,outputs)
Given a render rule (Rule object), that sets the values of the signals in outputs the Renderer constructs the
approproate STEP Read operations for reading the outputs .
It is usually used for rendering two–dimensional spaces, but can render spaces with any number of dimensions.
The renderer provides an interface that the Console and scripts can easily use to control rendering and the
view—the subset of the space—that is rendered.
Initialization parameters

render rule
The Rule used for rendering. It must set values of the outputs.

outputs
List of the OutputSignal objects rendered. If there is more than one output, the least significant
dimension of the result array indexes the output values in the order specified by outputs

The renderer is a callable object. When called it returns the rendered output signal values in a single array. If
there is more than one output signal, the values are packed into a single array with n+1 dimensions—the least
significant is indexed by the ordering of the output signals.

call (out=None)
Call the renderer and return the output array.
out is the array be rendered to. If not specified, a new array is created and returned.
Rendering is performed on the current view specified by the shape ,center , and region parameters.

View descriptor data (read-only)

The view is the portion of the state rendered. The renderer has the following read only state attributes pertaining
to the view. Note that the parameters describe the view in terms of both the array that will be rendered (which is
what the console cares about) and the underlying coordinate space.
The Console will be primarily interested in modifying the shape and center coordinate.
size

The grid size of the region to be rendered.
maxsize

The maximum size of the region that could be rendered to.
shape

The shape of the array to be rendered for the current view.
maxshape

The maximum shape that could be rendered if the view were to be expanded as wide as possible.
center

The center coordinate of the view to be rendered.
region

The Region object specifying the rectangular region containing the view.
View methods

setregion ( region)
Set the grid coordinate region for rendering.
The default is from 0 to maxsize.

setcenter ( center=None)
Set the center coordinate for rendering.
Augments the region to reflect the new center. If center is None , it sets the center to be the center of
the coordinate space.
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setshape ( shape=None)
Set shape of the array to be rendered to.
If it is larger than maxshape , it is clipped at maxshape. Modifies the region but not the center . The
default is maxshape.

class XTRenderer ( render rule,outputs,time=None)
The space-time renderer, XTRenderer , records past rendering history and provides an n + 1 dimensional
space-time view. Beyond this, it implements the basic Renderer interface.
Except for the addition of time, the initialization parameters are the same. Time gives the amount of history to
be maintained. By default, it’s the same as the size of the lowest dimension.
Normally, time increases moving downwards. To make it increase going upwards, use a negative value for time.
Warning: Currently, setshape, setcenter, and setregion don’t do anything.
Calling record renders a new line in the space-time history. Typically, it will be called by the Console , after
"STEP" events. The Console automatically checks to see whether a renderer defines the record event.
record ()

Records the rendered value of the current state.
Calling the renderer returns an array containing the rendered history.

2.8 The Console

The Console provides a viewer window and an interactive key command interface for running SIMP programs
interactively. The Console included with SIMP is built on the pygame (http://pygame.org) Python interface to the
SDL (simple direct media layer).

class Console ( renderers,shape=None,center=None,mag=None, zoom=1,showgrid=1)
Console user interface.
The renderers argument is a list (or single object) specifying the Renderer objects that the Console uses
to get the image arrays that it displays. shape is the shape of the screen—defaults to maxshape of the first
renderer object. center is the center position for rendering (defaults to the center of the space) and mag is the
magnification (defaults to 1). zoom gives the zoom in factor for the display. showgrid indicates whether grid
lines are to be shown when one zooms in.
bind ( event,object)

Bind a keypress or event to a function or callable object that handles it.
generic key events
The console defines lower-case key commands. When introducing new commands, the user should typi-
cally use upper-case keys.
special events

•’STEP’ Function or operation to be called when running a single step.
binding ( event)

Return the handler bound to event.
unbind ( event)

Unbind the handler bound to event.
array ()

Return the image array of the current view.
start ()

Start the control panel. Will not exit until the user quits.
close ()

Close the console—destroys its window.

XXX document the builtin commands.
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2.9 Using import locally to make multiple simp instances

The simp module is designed to be imported once and be imported with from simp import * . In some sit-
uations, one might like to have multiple instances of simp at the same time. The import locally supports
this.

Note: Some methods require that either a SIMP instance be passed to them explicitly or that they be initialized
in a namespace where all methods from simp have been imported. In particular, they look for the function,
simpmodule() .

This module is used in cross validation. We don’t expect it to be used frequently by users since usually a program
requires only one simp instance. The basic template is

import import_locally
simp1 = import_locally.import_copy("simp")
simp2 = import_locally.import_copy("simp")

Now, one must explicitly qualify all of the simp methods as in simp1.import_locally(...) and
a = Signal(...,simp=simp1) . One must be careful not to mix operations and signals from the different
simp modules.

To emulate from simp import * on one of the modules, use

import_locally.import_all(simp1)

To switch the local definitions to the other module, first unimport the first module and load the second,

import_locally.unimport_all(simp1)
import_locally.import_all(simp2)

import copy (module name)
Import a new copy of a module, but don’t add it to the global list of modules. This way, separate imports don’t,
as is normally the case in Python, access the same module object.
module name is the string name of the module. Returns the module object.

import all (module)
Import all methods and variables from an module object into the current local namespace. Emulates ‘from
module import * ’.
Note: Only static module attributes should be referenced. Don’t expect values to change in the local namespace
when they change in the module. To change module values, one must reference the module directly. Although
all of the attributes are imported, changing the value associated with the attribute in the local namespace does
not change the value that module methods use and attributes whose values are modified by the module will not
be updated in the module’s namespace, but not in the local namespace.

unimport all (module)
Removes all references from a module object from the current local namespace. Python does not have an
equivalent.

2.10 Testing and cross-validation

Testing and cross-validation facilities are contained in the test module.
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test ()
Run all of the test code.

cross validate ()
Cross validate the installed STEP implementation modules.
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CHAPTER

THREE

Developer Documentation

This chapter documents the architectural and engineering aspects of the software at a high-level. It is meant to serve
as a reference for those would like to know more about the software either for curiosity’s sake or in order contribute.

3.1 Module layout

XXX

3.2 Project directory layout

The project contains the following directories and files.

• ‘README’ — Instructions for building the project

• ‘TODO’ — List of things to be done

• ‘setup.py’ — Python setup file used to compile code, install, and make binary installers for simp . Follows the
usual distutils conventions.

• ‘Lib/’ — Library containing all the python files

– ‘ init .py’ The simp module and all of its definitions.
– ‘step.py’ The step interface–Signal ,ops,step base class definition.

• ‘Src/’ — Source C code for extension modules

• ‘Doc/’ — Documentation

• ‘DosUtils/’ — compiler utilities for Windows

• ‘Misc/’ — Code that we are testing or thinking of including

• ‘Examples/’ — example SIMP code—including code from the tutorial.

– ‘manual/’ — (Latex file and tools for generating this manual.)
– ‘notes/’ — file with miscellaneous notes about SIMP and future directions.
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3.3 STEP interface

3.3.1 The STEP class

The step module contains the definitions of all the STEP objects described in Section 2.5 and an abstract STEP class
definition called step base .

A STEP is responsible storing signals, implementing STEP operations and keeping track of the starting positions of
lattices. A module exporting the STEP interface contains a class called step that implements the following class

class step ( size,**kwargs)
The base constructor does not have any default keyword arguments, but, an individual implementation may
define some. The constructor should have default values for any arguments that are not specified explicitly.
size

vector giving the size of the grid—the coordinate space on which allocations are made.
name

The name of the STEP module.
Do (op,parameters=())

Do a STEP . The optional parameters list is for passing an op’s optional call parameters such as the output
array for Read ops and the input array for Write ops.

Register (object)
All STEP interface objects (primitives and signals) must be registered before they are valid. When an ob-
ject is registered, the STEP checks to see whether it can implement the operation or allocate the requested
Signal . If not, it raises a StepError indicating the problem.

SeedRandom (n=None)
Seed the random number generator with the integer n. The seed is used for the pseudo-random (determin-
istic) random number generator that STEP employs for Randomize and Stir operations.
The default seed is the current time (an integer cast of time.time() ). It is also set automatically when
a STEP is initialized.

Flush ()
Flush all pending STEP operations and return when finished.
Note: This is primarily a debugging function.

ClearCache ()
Often times a STEP will cache code and lookup tables. ClearCache clears the current cache that STEP
uses.
Note: This is primarily a debugging method.

3.3.2 Current and suggested STEP implementations

The STEP implementations are contained in simp.stepmodules . Currently, we distribute the following,

• reference — A slow, pure Python reference implementation written for correctness and clarity first and
speed second.

• pc — A fast serial PC implementation based upon numarray and C.

• pc thread — Use multiple threads for a multi-processor/multicore PC environment.

Some suggestions for other implementations are

• pc sparse — Optimized for sparse updates.
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• pc inline — uses the pyinline module to compile C code on the fly. (supports arbitrary C typed signals)
This will require more sophisticated function analysis.

• multispin — Use bit operations of the PC vector operations. Fast for repeated steps, but slow for reads and
writes.

• mmx — Uses MMX vectorized instructions when possible.

• mpi — Use MPI (the message passing interface) to make fast updates on parallel machines.

• fpga — Use a FPGA as a stream co-processor.

3.4 Rolling your own—extending SIMP and STEP

3.4.1 Writing your own renderer

In order to get different rendering behavior, one may wish to create a new renderer. Such a renderer may be constructed
manually using Rule and Read operations.

In order to make a renderer work with the Console , one need only implement the interface defined by the methods
of the Renderer class.

[Add some more here...]
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