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Overview

Shifts of finite type.

Graphs and their shifts.

Graphs as representations of shifts of finite type.

Shifts of finite type and data storage.
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Shifts of finite type

Definition

Let X be a subshift over A. There is a collection F of blocks over A s.t.

X = XF = {x ∈ AZ | x[i,j] 6= u ∀i , j ∈ Z, u ∈ F }

X is a shift of finite type (sft) if F can be chosen finite.
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Examples

Shifts of finite type

The full shift.

The golden mean shift.

The set of labelings of bi-infinite paths on the graph •e
%% f

((
•

g

hh

The (d , k)-run length limited shift.

A shift not of finite type

The even shift.
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Memory

Definition

A sft X = XF has memory M, or is a M-step sft, if F can be chosen so
that |u| = M + 1∀u ∈ F .

Meaning

A sft X has memory M when a machine with a memory size of M

characters can decide whether w ∈ A>M belongs to B(X ).

Examples

0-step sft are full shifts (on smaller alphabets).

1-step sft are Markov chains (minus probabilities).

The (d , k)-run length limited shift has memory M = k + 1.
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Characterization of memory for sft

Theorem

Let X be a subshift over A. TFAE.

1 X is a sft with memory M.

2 For every w ∈ A≥M , if uw , wv ∈ B(X ), then uwv ∈ B(X ).

Corollary: the charge constrained shift is not a sft

Let A = {+1, −1}.

Define x ∈ X iff
∑j+p

i=j xi ∈ [−c , c ] for every j ∈ Z, p ≥ 0.

Fix M ≥ 0.

Take w ∈ A∗ s.t. |w | ≥ M and
∑|w |

i=1 wi = c − 1.

Then 1w , w1 ∈ B(X ) but 1w1 6∈ B(X ).
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Proof

If X is a M-step sft

Suppose |w | ≥ M, uw , wv ∈ B(X ).

Let x , y ∈ X s.t. x[1,|w |] = y[1,|w |] = w , x[1−|u|,0] = u, y|w |+1,|w |+|v | = v .

Then z = x(−∞,0]wy[|w |+1,∞) = x(−∞,−|u|]uwvy[|w |+|v |+1,∞) ∈ X .

If X satisfies property 2

Let F = AM+1 \ BM+1(X ).

Then clearly X ⊆ XF .

But if x ∈ XF , then x[0,M] and x[1,M+1] are in B(X ), so that
x[0,M+1] ∈ B(X ). . .

. . . and iterating the procedure, x[i,j] ∈ B(X ) for every i ≤ j .
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Finiteness of type is a shift invariant

Theorem

Let X be a sft over A, Y a subshift over A.
Suppose there exists a conjugacy φ : X → Y .
Then Y is a sft.

Reason why

Suppose X is M-step.

Suppose φ and φ−1 have memory and anticipation r .

Then Y is (M + 4r)-step.
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Graphs

Definition

A graph G is made of:

1 A finite set V of vertices or states.

2 A finite set E of edges.

3 Two maps i, t : E → V, where i(e) is the initial state and t(e) is the
terminal state of edge e.

Graph homomorphisms

A graph homomorphism is made of two maps Φ : E1 → E2, ∂Φ : V1 → V2

s.t.
i(Φ(e)) = ∂Φ(i(e)) and t(Φ(e)) = ∂Φ(t(e)) ∀e ∈ E1 .

An embedding has Φ and ∂Φ injective.
An isomorphism has Φ and ∂Φ bijective.
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Graphs and matrices

Adjacency matrix of a graph

Given an enumeration V = {v1, . . . , vr }, the adjacency matrix of G is
defined by

(A(G ))I ,J = |{e ∈ E | i(e) = vI , t(e) = vJ }|

Graph of a nonnegative matrix

Given a r × r matrix A with nonnegative entries, the graph of A is defined
by:

V(G (A)) = {v1, . . . , vr }

E(G (A)) has exactly AI ,J elements s.t. i(e) = vI and t(e) = vJ .

Almost inverses

A(G (A)) = A and G (A(G )) ∼= G .
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Edge shifts

Theorem

Let G be a graph and A its adjacency matrix. Then the edge shift

XG = XA = {ξ : Z → E | t(ξi ) = i(ξi+1)∀i ∈ Z}

is a 1-step sft.
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Essential graphs

Definition

A vertex is stranded if it has no incoming, or no outgoing, edges.
A graph is essential if it has no stranded vertices.

Theorem

For every graph G there exists exactly one essential subgraph H s.t.
XH = XG .

Reason why

H is the maximal essential subgraph of G .
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How to construct the maximal essential subgraph

Start with a graph G .

1 Remove all the vertices that are stranded.

2 Remove all the edges that have a loose end.

3 If no vertices have been remove at point 1: terminate.

4 Else: resume from point 1.

The resulting graph H is the maximal essential subgraph of G .
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Not all sft are edge shifts!

If the golden mean shift was an edge shift...

. . . then we could choose an essential graph G s.t XG is the golden
mean shift.

This graph would have two edges, labeled 0 and 1.

But what are the essential graphs with two edges?

One is

•0
""

1bb

which is the graph of the full shift.

The other one is

•
0

&&
•

1

ff

which is the graph of {. . . 010101 . . . , . . . 101010 . . .}.
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Paths

Definition

A path on a graph G is a finite sequence π = π1 . . . πm on E s.t.
t(πi ) = i(πi+1) for every i < m.

A path π is a cycle if t(πm) = i(π1).

A path π is simple if the i(πi )’s are all distinct.

The paths on G are precisely the blocks in B(XG ).

Facts

Let G be a graph, A its adjacency matrix.

The number of paths of length m from I to J is (Am)I ,J .

The number of cycles of length m is tr(Am).
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Irreducible graphs

Definition

A graph is irreducible if any two nodes I , J there is a path π = π1 . . . πm

s.t. I = i(π1) and J = t(πm).

Equivalently

Let A be the adjacency matrix of G .
Then G is irreducible iff for every I and J there exists m s.t. (Am)I ,J > 0.
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Irreducible graphs and subshifts

Theorem

Let G be a graph.

1 If G is irreducible then XG is irreducible.

2 If XG is irreducible and G is essential then G is irreducible.

Reason why

If G is irreducible:

Take u, v ∈ B(X ).

Make w that links t(u|u|) to i(v1).

If XG is irreducible and G is essential:

Suppose I = t(e) and J = i(f ).

If eπf ∈ B(XG ) then π links I to J.
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Presenting sft as edge shifts

Theorem

Suppose X is a M-step sft.

Then X [M+1] is an edge shift.

Proof

Consider the de Bruijn graph of order M on X :

V(G ) = BM(X ).

E(G ) = BM+1(X ) with i(e) = e[1,M] and t(e) = e[2,M+1].

Then XG = X [M+1].
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Higher edge graphs

Definition

Given G , define G [N] as follows:

V(G [N]) is the set of paths of length N − 1 in G .

E(G [N]) is the set of paths of length N in G .

For an edge π = π1 . . . πN , i(π) = π[1,N−1] and t(π) = π[2,N].

Theorem

For every graph G , XG [N] = X
[N]

G
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Vertex shifts

Definition

Suppose B is a r × r boolean matrix.

Put F =
{
IJ ∈ {0, . . . , r − 1}2 | BI ,J = 0

}
.

Then X̂B = XF is called the vertex shift of B.

Example

The golden mean shift is a vertex shift, with

B =

(
1 1
1 0

)
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Points of view

Theorem
1 There is a bijection between 1-step sft and vertex shifts.

2 There is an embedding of edge shifts into vertex shifts.

3 For every M-step sft X there exists a graph G s.t. X [M] = X̂G and
X [M+1] = XG .

. . . then why not always use vertex shifts?

Growth in the number of states.

Better properties of integer matrices.
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Powers of a graph

Definition

Let G be a graph. Define GN as follows:

A vertex in GN is a vertex in G .

An edge from I to J in GN is a path of length N from I to J in G .

Facts

Let G be a graph and let A be its adjacency matrix.

Then AN is the adjacency matrix of GN .

Furthermore, if X = XG then XN = XGN .
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An application to data storage

In an ideal world

Our data is encoded in a sequence of bits.

The device reads and writes the data verbatim.

N bits require N memory allocation units.

The main issue

The world we live in, is not ideal.
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Hard disk drives 101

The physics

The unit contains several rotating platters coated in a magnetic
medium, and a head moving radially across the platters’ tracks.

An electrical current through the head magnetizes a portion of the
track. This creates a bar magnet on the track.

Reversing the current creates a bar with the opposite orientation.

A polarity change generates a voltage pulse.

The logic

Tracks are divided into cells of equal length L.

A 0 is written by keeping the current. A 1 is written by reversing the
current.

A pulse is read as a 1. A non-pulse is read as a 0.
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The scheme

Input sequence
0 1 0 0 0 01 1 1 1 10 0

Write current

Magnetic track N N N N N NS S S S S S

Read voltage

Output sequence
0 1 0 0 0 01 1 1 1 10 0

Silvio Capobianco (Institute of Cybernetics at TUT) April 14, 2010 25 / 28



ioc-logo

Two main problems with the näıve approach

Intersymbol interference

If polarity changes are too close, the pulses are weaker.

There must be a “minimum safe distance” ∆ between changes.

An encoding scheme where two 1’s are separated by at least d 0’s
allows cells of size L = ∆/(d + 1).

Clock drift

A block of the form 10n1 is read as two pulses separated by a time
interval of length L · (n + 1).

If the clock is not precise, then the value for n is wrong.

This can be corrected via a feedback loop for each pulse.

If pulses are not “too rare”, then errors won’t accumulate.

A typical requirement is: no more than k 0’s between two 1’s.
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Frequency modulation (FM)

Idea

Store the data adding a clock 1 between each pair of data bits.

Recover the original message by ignoring the clock bits.

Advantages

Stored data is a (0, 1)-run length limited block.

n bits can be stored on a strip of length 2n∆.
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Modified frequency modulation (MFM)

Ideas

If there are at least d 0’s between two 1’s, the detection window can
be shrunk to L = ∆/(d + 1).

Some of the 1’s in the data can be used for synchronization.

The technique

Use clock bits as follows:

Between two 0’s, insert a 1.

Otherwise, insert a 0.

Then the stored sequence is a (1, 3)-run length limited block.
Consequently, n bits can be stored in a strip of length n∆.
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