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Overview

@ Cyclic structure of irreducible matrices
@ Road-colorings and right-closures

@ The finite-state coding theorem
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Entropy
Definition
The entropy of a nonempty shift X is
.1 .1
h(X) = lim —log|B,(X)| = inf = log|B,(X)|
n—oo N n>1n

If X =0 we put h(X) = —c0.

Basic facts on entropy
@ If Y is a factor of X then h(Y) < h(X).
@ If Y embeds into X then h(Y) < h(X).
e If G = (G, L) is right-resolving then h(Xg) = h(Xg).
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The Perron-Frobenius theorem

Let A be a nonnegative irreducible nonzero matrix.
@ A has a positive eigenvector va.

@ The eigenvalue A4 corresponding to v 4 is positive.
© A\, is algebraically—and geometrically—simple, i.e.,
> det(t/ — A) = (t — Aa)p(t) with p(Aa) #0, and
» dim{v | Av = Aav} = 1.

Q If wis another eigenvalue of A then |u| < Aa.
© Any positive eigenvector of A is a positive multiple of va.

The value A4 is called the Perron eigenvalue of A
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Computing entropy via the Perron-Frobenius theorem

Theorem

@ Let G be a graph, let A be its adjacency matrix, and let A4 be the
maximum Perron eigenvalue of an irreducible component of A.

@ Then h(X¢g) = logAa.
e In addition, if G = (G, L) is right-resolving, then h(Xg) = log Aa.
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Periods

Period of a shift
If X is a shift we define

per X = gcd{n € N | p,(X) > 0}

with the conventions ged () = oo, ged(U U {oo}) = ged U.

Period of a matrix

Let G be graph and A its adjacency matrix. The period of a state / is
per | =gcd{n e N| (A");; > 0}
The period of A (and G) is
per G = per A = gcd{per ! | | € V(G)} = per Xg

A is aperiodic if per A = 1.

v
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Periods of irreducible graphs

Theorem

States of an irreducible graph have same period.

Reason why
@ Suppose p = per/ and n is a period of J.
@ Suppose (A"); ;>0 and Ai, > 0.
@ Then p divides both r+s and r+n+s...
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Period equivalence

Definition
@ Let G be an irreducible graph s.t. A= A(G) is nonzero.

@ States / and J are period equivalent if there is a path from / to J
whose length is divisible by per G.

Period equivalence is an equivalence relation
A path from / to J plus a path from J to / form a cycle from [ to /.

Period classes
A period class is a class of period equivalence.
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Periodic decomposition

Theorem

Let A be an irreducible nonzero matrix and let p be its period.
@ Period equivalence on A has p classes.

@ There is an ordering Dy, ..., D,_1 of period classes s.t. every edge e
with i(e) € D; has t(e) € D(j11) mod p-

Proof
@ Fix Dy and just put D;y 1 ={t(e) | i(e) € D;}.

@ By construction, each D; is a period class. There are p of them
because A is irreducible. Each edge from D, 1 must end in Dy.
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Cyclic form of an irreducible nonzero matrix

By previous argument, after renaming the states,

0 By 0 ... 0
0 0 By ... 0
A — . . E .
0 0 O Bp—2
Bp1 0 0 0
Moreover,
Ao 0 O 0
0 A O 0
AP == 0 0 A2 0
0O 0 O Ap

for suitable A;'s.
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Primitive graphs

Definition
@ A matrix is primitive if it is irreducible and aperiodic.

@ A graph is primitive if its adjacency matrix is primitive.

Characterization
Let A be a nonnegative matrix. TFAE.
O A is primitive.
@ AN is positive for some N.
O AV is positive for all sufficiently large N.

Rationale
o If Ais primitive, then (A");; >0 for all n > N;.
o Put N = M + maxjey N; where (A"); ; > 0 for some n < M.
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Mixing shifts

Definition

A shift X is mixing if for any u,v € B(X) there exists N > 1 s.t. for every
n > N there exists w € B,(X) s.t. uwv € B(X).

Facts
@ A factor of a mixing shift is mixing.
o If G is essential then X¢ is mixing iff G is primitive.
@ A SFT is mixing iff it is irreducible and aperiodic.
@ For a mixing sofic shift,

1 1
lim —logp,(X) = lim —logqg,(X) = h(X)
n n—oo n

n—oo
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Road-colorings

Definition
o Let G = (V, &) a graph. Recall that & ={e € £ |i(e) = I}.
@ A labeling C : £ — Ais a road-coloring if it is bijective on each &;.

@ A graph G is road-colorable if it admits a road-coloring.

Characterization
Road-colorable graphs are precisely those with constant out-degree.

Use

@ Observe that a road-coloring is right-resolving.

@ Given a word w over A and a state / in G, there is exactly one path
from [ labeled w.

@ In particular, (G,C) is a presentation of the full A-shift.
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The road-coloring problem

Statement

Is it true that every road-colorable primitive graph has a road-coloring
admitting a synchronizing word?

Status at time of publication of Lind and Marcus textbook
Unsolved.

Current status
Solved.

@ Trahtman, Avraham N. (2009) The road colouring problem. /Israel
Journal of Mathematics 172(1): 51-60.

Thanks to Prof. Trahtman for correction. (2010-11-17)
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Right-closing graphs

Definition
o Let G = (G, L) be a labeled graph.
@ Suppose that, given any two paths T = ...7tp 1 and
P=p1...ppy1 of length D+ 1, if i(7t) =i(p) and L(7) = L(p), then
1 = P1.
@ We then say that G is right-closing with delay D.

Motivation
@ G is right-resolving iff it is right-closing with delay zero.
@ Two paths of length N > D on a right-closing graph, that have same
labeling and same initial state, are equal for the first N — D steps.
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One-sided shifts

Definition
If X is a (two-sided) shift over A, we put

)(Jr :{X[O,oo) |X € X}

Special cases
o If X = Xg, then X is the set of infinite paths on G.
e If X =Xg, then X* is the set of labelings of infinite paths on G.
o The map LI, : X — X/ defined by LT (m); = L(7;) is surjective.
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Characterization of right-closing graphs

Theorem

Let G = (G, L) be a labeled graph and let XE’, ={me X{ |i(n) =1}
TFAE.

O G is right-closing.

@ For every state /, LT : X | — X{; s injective.

Reason why
@ Suppose G is not right-closing.

@ For n > |V}? find 7t and p of same length n, same initial state, and
different initial edge.

@ Then m= oyooxsz, p = B1B2B3 with || =B and o and 2 loops.
@ Then L1 (x1(0p)®) = LT(B1(B2)*°).
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Conditions on right-closure

A sufficient condition
o Let G = (G, L) bes.t. L is a conjugacy.
@ Suppose L3} has anticipation n.

@ Then L is right-closing with delay n.

A necessary condition
e Let G = (G, L) be right-closing with delay D.
o Let H be obtained from G via out-splitting.
@ Then H is right-closing with delay D + 1.

Reasons why

@ We can always suppose G essential, so every path is left-extendable.

@ Splitting has memory 0 and anticipation 1; amalgamation is 1-block.

v
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Right-closing labelings preserve entropy

Theorem
o Let G = (G, L) be a labeled graph.
@ Suppose L is right-closing.
o Then h(Xg) = h(Xg).

Reason why
@ Initial state and labeling of a D + 1-path determine first edge.
@ Thus, if G has r states, then |B,(Xg)| < r- [Byip(Xg)l.
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Recoding right-closure into right-resolvedness

Theorem

Let G = (G, L) be a right-closed labeled graph with delay D. There exist a
graph H and labelings ¥, on H s.t.

Oso00P

['oo(XG)
with W right-resolving and © a conjugacy.

Reason why (for D > 0)
o Put V(H) ={(,L(n)) | I € V(G),i(n) = I,|n| = D}.

@ An edge in H joins (/, L(m)) to (t(e), L(7p pj)a) where | and L(mt)a
determine e € £(G). Call (/, £L(m)a) such edge

o Put O(/,L(m)a) = e. Put Y(/, L(m)a) =

v
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Finite-state codes

Definition
A finite-state code is a triple (G,Z, ©O) where:

@ G is a graph—encoder graph

@ 7 is a road-coloring on G—input labeling

@ O is a right-closing labeling on G—output labeling
A finite-state (X, n)-code is a finite-state code where:

@ G has out-degree n.

o O4(Xg) C X.
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Using finite-state codes

Drawing finite-state codes as labeled graphs

Edge e is marked as Z(e)/O(e). Example:
0/a

l/cCOCOQO/b
1/c

Encoding sequences on n-ary alphabets
o Let (G,Z,0) be a finite-state (X, n)-code
@ Let xpx1x2 ... be an infinite sequence on an n-ary alphabet.

@ Fix Iy € V(G). There is exactly one sequence epejes . .. of edges s.t.
Z(e;) = x; for every i.
@ The same sequence is also encoded as O(eg)O(e1)O(ey) ... € XT.

@ Since O is right-closing, input can be reconstructed from output,
given the initial state.

v
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The finite-state coding theorem

Statement

Let X be a sofic shift. TFAE.
@ There exists a finite-state (X, n)-code.
@ h(X) > logn.

Necessity of the condition
@ h(X¢g) = h(Zeo(Xg)) = h(Ox (X)) because Z and O are
right-closing.
@ h(Zs(Xg)) = log n because (G,Z) is a presentation of the full n-shift.
@ h(Ox(Xg)) < h(X) because O (Xg) C X.
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Enforcing finite-state coding

Encoding the full 2-shift into a binary sofic shift

Not possible right away, but. ..
@ Divide input into blocks of length p, i.e., use Xy instead of X[y .
@ Divide output into blocks of length g, i.e., use X9 instead of X.
@ Then condition becomes h(X) > p/q.

Example with the (1,3) run-length limited shift
@ h(X(1,3)) ~ 0.55, so we take p=1 and g = 2.
@ The input alphabet is still the full 2-shift.
@ The output alphabet is B>(X(1,3)) ={00,01, 10}.

@ The labeled graph below yields the modified frequency modulation:
0/00
A
1/01 C o e Q 0/10

1/01

v
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Approximate eigenvectors

Definition
@ Let A be a nonnegative, integral matrix.
@ Let n be a positive integer.
@ Let v be a nonnegative, nonzero, integral vector.
°

v is an (A, n)-approximate eigenvector if Av > nv.

Example

3
oLetA-( 1)

1
6
@ Then v = ( ) is an (A, 5)-approximate eigenvector.
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Interpretations

Physical

@ Suppose we assign weight v; to state /.

® Then 3 ;. (e) = N - vy for every state /.
Geometrical

@ Suppose A is an r X r matrix.
o Each inequality Y _; Aj jx; > n- x; determines a closed half-space.

@ Then, (A, n)-approximate eigenvectors are elements of a closed cone
in r-dimensional space.
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Positive approximate eigenvectors

Lemma
@ Let G be a graph and A = A(G) its adjacency matrix.
@ Let v be an (A, n)-approximate eigenvector.

@ Then there exists a subgraph H of G s.t.
w; =v; VI € V(H)

is a positive (A(H), n)-approximate eigenvector.

Reason why
@ Let K be the subgraph generated by the states where v; > 0.

@ K has an irreducible component H which is a sink.
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Looking for approximate eigenvectors

Theorem

Let A be a nonnegative matrix. TFAE.
© There exists an (A, n)-approximate eigenvector.
Q Aa>n

Moreover, if A is irreducible then there exists a positive (A, n)-approximate
eigenvector.

Reason why
@ It is not restrictive that A is irreducible and v positive.

e If v is an (A, n)-approximate eigenvector then ¢, d > 0 exist s.t.
cnk < szl(Ak),,J < d?\ﬁ for every k, thus n < Ap.

@ If Ay = n then vy, is rational: use a suitable multiple.

o If Ay > n modify v, into a rational v s.t. Av > nv still holds.
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Finding approximate eigenvectors

Algorithm
INPUT: nonnegative integral A and z, positive integer n.
O Compute z’ = min {z, I_%AZJ}
Q Ifz' =z :return z
© Replace z with z’
Q Repeat
OUTPUT: either an (A, n)-approximate eigenvector, or the null vector.

Use
@ Put (vi); = k for every /.

@ Apply the algorithm to v1, then to vy, and so on, until output is
non-null.

@ Then the final output is the smallest (A, n)-approximate eigenvector.

v
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Approximate eigenvectors and splittings

Lemma A
@ Let G be an irreducible graph and let A = A(G).
@ Suppose Aaq > n.

@ Then there exists a sequence of graphs
G = Go, G1y..., Gy =H

such that:
Each G; is an elementary splitting of G;_;.
|€1(s)| > n for every state s in H.
@ Let v be a positive (A, n)-approximate eigenvector, and let
k=2 1ev(6) Vi-
@ Then the sequence above can be chosen with m < k —|V(G)| and
V(H)| < k.
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Proof of the finite-state coding theorem

o Let X = Xy be a sofic shift s.t. h(X) > logn.
@ We may suppose K = (K, L) irreducible and right-resolving
o If A= A(K) then Ay = h(X) > log n.
o Construct a sequence K = Gy, G1,...,Gm = H s.t.

» Each G; is an elementary splitting of G;_;.

> |£/(s)| > n for every state s in H.
The labeling L of H resulting from L is right-closing with delay < m.
Construct (G,Z, O) as follows:

» G is a subgraph of H with constant out-degree n.

» 7 is any road-coloring of G.
» O is the restriction of £’ to G.

Then (G,Z, ) is a finite-state (X, n)-code.
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The state splitting algorithm

INPUT: a sofic shift X.

Construct a right-resolving presentation K = (K, L) of X.
Compute h(X) = log A (k)-

Choose integers p and g s.t. h(X) > p/q.

Construct X9—which is a right-resolving presentation of X9.

00000

Use the approximate eigenvector algorithm to find an
(A(K9),2P)-approximate eigenvector. Then reduce to a sink
component H with positive approximate eigenvector.

©

Perform a chain of state splits until obtaining a presentation with
minimum out-degree > 2P.

@ Prune to obtain G = (G, O) with constant out-degree 2P. Choose a
road-coloring Z using binary p-blocks.

OUTPUT: A rate p: g finite-state code (G,Z, O).
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Propagation of errors with finite-state codes

Example
1/b
o Consider the finite-state code g, C e e Q i\
T———
0/c

o If the initial state is the one on the left, 00000... is encoded into
aaaaa...

@ However, suppose that an error occurs, and the first a is written b.

@ Then a decoder would reconstruct 11111...
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Sliding block decoders
Definition
o Let (G,Z,0) be a finite-state (X, n)-code.
@ A sliding block decoder for (G,Z,0) is a SBC ¢ : X — X s.t.

Use

@ Suppose ¢ = d)([;m’“]. Let yoy1y> ... be an output sequence.

@ Fork>mitis vikem. . Voo = O€k—m .- €kia)-

@ Then xx =Z(ex) = ©(Yk—m - - Ykra),
i.e., input can be reconstructed from output without recording the state,
except at most the first m symbols. |
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The sliding block decoding theorem

Statement
@ Let X be a shift of finite type.
@ Suppose h(X) > log n.

@ Then there exists an (X, n)-finite state code with a sliding block
decoder.

Reason why

The labeling of a minimal right-resolving presentation is a conjugacy.

Consequence
@ Let X be a SFT.
@ Suppose h(X) > logn.
@ Then X factors onto the full n-shift.
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Thank you for attention!
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