
Monads and More: Part 2

Tarmo Uustalu, Institute of Cybernetics, Tallinn

University of Nottingham, 14–18 May 2007
University of Udine, 2–6 July 2007



Monads from adjuctions (Huber)
For any pair of adjoint functors L : C → D, R : D → C,
L a R with unit η : IdC

.→ RL and counit ε : LR
.→ IdD,

the functor RL carries a monad structure defined by

ηRL =df Id
η−→ RL,

µRL =df RLRL
RεL−→ RL.

The Kleisli and Eilenberg-Moore adjunctions witness that
any monad on C admits a factorization like this.



Examples

State monad:

L,R : C → C, LA =df A× S , RB =df S ⇒ B,

A× S → B

A→ S ⇒ B

RLA = S ⇒ A× S ,

An exotic one:

L,R : C → C, LA =df µX .A + X × S ∼= A× ListS ,
RB =df νY .B × (S ⇒ Y ),

µX .A + X × S → B

A→ νY .B × (S ⇒ Y )

RLA = νY .(µX .A + X × S)× (S ⇒ Y ) ∼=
νY .A× ListS × (S ⇒ Y ).
What notion of computation does this correspond to?



Continuations monad:

L : C → Cop, LA =df A⇒ E ,
R : Cop → C, RB =df B ⇒ E ,

A⇒ E ← B
E ← B × A

A× B → E

A→ B ⇒ E

RLA = (A⇒ E )⇒ E .



Monads from adjunctions ctd.

Given two functors L : C → D and R : D → C , L a R and
a monad T on D, we obtain that RTL is a monad on C.
This is because T factorizes as UJ where J ` U is the
Kleisli adjunction.
That means an adjoint situation JL ` RU implying that
RUJL = RTL is a monad.

The monad structure is

ηRTL =df Id
η−→ RL

RηT L−→ RTL,

µRTL =df RTLRTL
RTεTL−→ RTTL

µT

−→ RTL.



Examples
State monad transformer:

L,R : C → C, LA =df A× S , RB =df S ⇒ B,
T – a monad on C,
RTLA = S ⇒ T (A× S),
In particular, for T the exceptions monad we get
RTLA = S ⇒ (A× S) + E .

Continuations monad transformer:

L : C → Cop, LA =df A⇒ E ,
R : Cop → C, RB =df B ⇒ E ,
T – a monad on Cop, i.e., a comonad on C,
RTLA =df T (A⇒ E )→ E .



Free algebras, free monads

Given a endofunctor H on a category C, let
(H∗A, [ηH

A , τH
A ]) be the initial algebra of A + H− (if it

exists), so that, for any A + H−-algebra (C , [g , h]), there
is a unique map f : H∗A→ C satisfying

A
ηH

A //

g
!!DDDDDDDD H∗A

f
��

HH∗A
τH
Aoo

Hf
��

C HC
h

oo

H∗A is the type of wellfounded H-trees with mutable
leaves from A, i.e., of H-terms over variables from A.



((H∗A, τH
A ), ηH

A ) is the free H-algebra on A,
i.e., A 7→ (H∗A, τHA) : C → alg(H) is left adjoint to the
forgetful functor U : alg(H)→ C.

(H∗A, τA)→ (C , h)

A→ C
A→ U(C , h)

and ηH is the unit of the adjunction.



The pointed functor (H∗, ηH) carries a monad structure.

The Kleisli extension k∗ : H∗A→ H∗B of any given map
k : A→ H∗B is defined as the unique map f satisfying

A
ηA //

k !!DD
DD

DD
DD H∗A

f
��

HH∗A
τAoo

Hf
��

H∗B HH∗BτB

oo

Intuitively, this is grafting of trees into the mutable leaves
of a tree or substitution of terms into the variables of a
term.



((H∗, ηH , µH), τH) is the free monad on H ,
i.e., H 7→ (H∗, ηH , µH) : [C, C]→Monad(C) is left
adjoint to the forgetful functor U : Monad(C)→ [C, C]

(H∗, ηH , µH)→ (S , ηS , µS)

H → S

H → U(S , ηS , µS)

and τ is the unit of the adjunction.



Free completely iterative algebras, free completely

iterative monads (Adámek, Milius, Velebil)

The final coalgebras H∞A of A + H− (the free
completely iterative H-algebras over A) for each A also a
give a monad (the free completely iterative monad on H).



Examples

If HX = 1 + X × X , then H∗A is the type of wellfounded
binary trees with a termination option and with mutable
leaves from A
(i.e., terms in the signature with one nullary, one binary
operator over variables from A).

If HX =df ListX ∼=
∐

i∈N X i , then H∗A is the type of
wellfounded rose trees with mutable leaves from A
(i.e., terms in the signature with one operator of every
finite arity over variables from A).



Monads from parameterized monads via initial

algebras / final coalgebras (U.)

A parameterized monad on C is a functor
F : C →Monad(C).
If F is a parameterized monad then the functors
F ∗, F∞ : C → C defined by F ∗A =df µX .FXA and
F∞A =df νX .FXA carry a monad structure.

In fact more can be said about them, but here we won’t.



Examples
Free monads:

FXA =df A + HX where H : C → C,
F ∗A =df µX .A + HX , F∞A =df νX .A + HX .
These are the types of wellfounded/nonwellfounded
H-trees with mutable leaves from A.

Rose tree types:

FXA =df A× HX where H : C →Monoid(C),
F ∗A =df µX .A× HX , F∞A =df νX .A× HX .
If HX =df ListX , these are the types of
wellfounded/nonwellfounded A-labelled rose trees.



Types of hyperfunctions with a fixed domain:

FXA =df HX ⇒ A where H : C → Cop,
F ∗A =df µX .HX ⇒ A, F∞A =df νX .HX ⇒ A.
If FX =df X ⇒ E , these are the types of
wellfounded/nonwellfounded hyperfunctions from E to
A. (Of course these types do no exist in Set.)



Distributive laws

If T , S are monads on C, it is not generally the case that
ST is a monad. But sometimes it is.

A distributive law of a monad T over a monad S is a
natural transformation λ : TS

.→ ST satisfying

T

TηS

��

T

ηST
��

TS
λ

// ST

TSS
λS //

TµS

��

STS
Sλ // SST

µST
��

TS
λ

// ST

S

ηT S
��

S

SηT

��
TS

λ
// ST

TTS
Tλ //

µT S
��

TST
λT // STT

SµT

��
TS

λ
// ST



A distributive law λ of T over S gives a monad structure
on the endofunctor ST :

ηST =df Id
ηSηT

−→ ST ,

µST =df STST
SλT−→ SSTT

µSµT

−→ ST .



Examples
The exceptions monad distributes over any monad.

S – a monad,
TA =df A + E where E is an object,

λ =df SA + E
id+ηS

−→ SA + SE
[S inl,S inr]−→ S(A + E ),

STA = S(A + E ).
For T the state monad, this gives
ST = S ⇒ (A + E )× S , which is a different
combination of exceptions and state than we saw before.

The output monad distributes over any (1,×) strong
monad.

(S , sl) – a strong monad,
TA =df A× E where E is a monoid,
λ =df SA× E

sr−→ S(A× E ),
STA = S(A× E ).



Any (1,×) strong monad distributes over the
environment monad.

(T , sl) – a strong monad,
SA =df E ⇒ A where E is an object,

λ =df Λ(T (E ⇒ A)× E
sr−→ T ((E ⇒ A)× E )

Tev−→ TA),
STA = E ⇒ TA.



Coproduct of monads

An interesting canonical way to combine monads is the
coproduct of monads.

A coproduct of two monads T0 and T1 on C is their
coproduct in Monad(C).
I.e., it is a monad T0 +m T1 together with two monad
maps inlm : T0 →m T0 +m T1, inrm : T0 →m T0 +m T1

such that for any monad S and monad maps
τ0 : T0 →m S , τ1 : T1 →m S there exists a unique monad
map T0 +m T1 →m S satisfying

T0
inlm //

τ0
%%JJJJJJJJJJJ T0 +m T1

��

T1
inrmoo

τ1
yyttttttttttt

S



The coproduct of two monads cannot be computed
“pointwise”, it is not the coproduct of the underlying
functors.

In fact, most of the time the coproduct of the underlying
functors of two monads is not even a monad.



Coproduct of free monads

The coproduct of the free monads on functors H0, H1 is
the free monad on their coproduct:

H?
0 +m H?

1 = (H0 + H1)
∗

(obvious, since the free monad delivering functor is a left
adjoint and hence preserves colimits, in particular
coproducts).



Coproduct of a free monad and an arbitrary monad

(Power)

More generally, the coproduct of a free monad H∗ with an
arbitary monad S is this (if (HS)∗ exists):

H∗ +m S = S(HS)∗

i.e.,

(H∗ +m S)A = S(µX .A + HSX ) = µX .S(A + HX )

For HX =df E , H∗A = µX .A + E ∼= A + E (exceptions
monad) and (H∗ +m S)A = µX .S(A + E ) ∼= S(A + E ).
This is the same combination of exceptions with any
other monad as obtained from the canonical distributive
law of the exceptions monad over another monad.



Ideal monads (Adámek, Milius, Velebil)

Idea: to generalize the separation of variables from
operator terms in term algebras.
An ideal monad on C is a monad (T , η, µ) together with
an endofunctor T’ on C and a natural transformation
µ′ : T ′T

.→ T ′ such that
T = Id + T ′,
η = inl,
µ = [id , inr ◦ µ′].

T
inlT //

NNNNNNNNNNNNN

NNNNNNNNNNNNN TT = (Id + T ′)T

µ

��

T ′T
inrToo

µ′

��
T = Id + T ′ T ′

inr
oo

An ideal monad map between T = Id + T ′ and
S = Id + S ′ is monad map τ : T

.→ S together with a
nat. transf. τ ′ : T ′ .→ S ′ satisfying τ = id + τ ′.



Examples

Free monads are ideal:

TA =df µX .A + HX where H : C → C
TA ∼= A + HTA

The finite powerset monad is not ideal:

TA =df Pf

TA ∼= A + 1 + P≥2A, but P≥2 is not a functor:
If for some f : A→ B and a0, a1 ∈ A we have
f (a0) = f (a1), then Pf f sends a 2-element set {a0, a1}
to singleton.

The finite multiset monad is not ideal:

TA =df Mf

TA ∼= A + 1 +M≥2A, but µ does not restrict to a nat.
transf.M≥2Mf

.→M≥2:
If a ∈ A, then µA{{a}, ∅} = {a}.



The nonempty finite multiset monad is ideal:

TA =df M≥1

TA ∼= A +M≥2A

The nonempty list monad is ideal too.



Coproduct of ideal monads (Ghani, U.)

Given two ideal monads S0 = Id + S ′0 and S1 = Id + S ′1,
their coproduct is the ideal monad T = Id + T ′

0 + T ′
1

defined by

(T ′
0A, T ′

1A) =df µ(X0, X1).(S
′
0(A + X1)), S

′
1(A + X0))


