Monads and More: Part 2

Tarmo Uustalu, Institute of Cybernetics, Tallinn

University of Nottingham, 14–18 May 2007 University of Udine, 2–6 July 2007

(ロ)、(型)、(E)、(E)、 E) の(の)

Monads from adjuctions (Huber)

 For any pair of adjoint functors L : C → D, R : D → C, L ⊢ R with unit η : Id_C → RL and counit ε : LR → Id_D, the functor RL carries a monad structure defined by

•
$$\eta^{RL} =_{df} \mathsf{Id} \xrightarrow{\eta} RL$$
,
• $\mu^{RL} =_{df} RLRL \xrightarrow{R \in L} RL$.

• The Kleisli and Eilenberg-Moore adjunctions witness that any monad on ${\cal C}$ admits a factorization like this.

State monad:

•
$$L, R : C \to C, LA =_{df} A \times S, RB =_{df} S \Rightarrow B,$$

$$\frac{A \times S \to B}{A \to S \Rightarrow B}$$

• $RLA = S \Rightarrow A \times S$,

An exotic one:

• $L, R : C \to C$, $LA =_{df} \mu X.A + X \times S \cong A \times ListS$, $RB =_{df} \nu Y.B \times (S \Rightarrow Y)$,

$$\frac{\mu X.A + X \times S \to B}{A \to \nu Y.B \times (S \Rightarrow Y)}$$

- $RLA = \nu Y.(\mu X.A + X \times S) \times (S \Rightarrow Y) \cong \nu Y.A \times \text{List}S \times (S \Rightarrow Y).$
- What notion of computation does this correspond to?

• Continuations monad:

•
$$L: \mathcal{C} \to \mathcal{C}^{\mathrm{op}}, LA =_{\mathrm{df}} A \Rightarrow E,$$

 $R: \mathcal{C}^{\mathrm{op}} \to \mathcal{C}, RB =_{\mathrm{df}} B \Rightarrow E,$

$$\frac{\overline{A \Rightarrow E \leftarrow B}}{\overline{E \leftarrow B \times A}} \\
\frac{\overline{A \times B \rightarrow E}}{\overline{A \rightarrow B \Rightarrow E}}$$

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ = のへで

•
$$RLA = (A \Rightarrow E) \Rightarrow E$$
.

Monads from adjunctions ctd.

- Given two functors $L : \mathcal{C} \to \mathcal{D}$ and $R : \mathcal{D} \to \mathcal{C}$, $L \dashv R$ and a monad T on \mathcal{D} , we obtain that RTL is a monad on \mathcal{C} .
- This is because *T* factorizes as *UJ* where *J* ⊢ *U* is the Kleisli adjunction.

That means an adjoint situation $JL \vdash RU$ implying that RUJL = RTL is a monad.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• The monad structure is

•
$$\eta^{RTL} =_{df} Id \xrightarrow{\eta} RL \xrightarrow{R\eta^T L} RTL,$$

• $\mu^{RTL} =_{df} RTLRTL \xrightarrow{RT \in TL} RTTL \xrightarrow{\mu^T} RTL.$

- State monad transformer:
 - $L, R : \mathcal{C} \to \mathcal{C}, LA =_{\mathrm{df}} A \times S, RB =_{\mathrm{df}} S \Rightarrow B,$
 - $T a \mod c$,
 - $RTLA = S \Rightarrow T(A \times S)$,
 - In particular, for T the exceptions monad we get $RTLA = S \Rightarrow (A \times S) + E$.
- Continuations monad transformer:

•
$$L: \mathcal{C} \to \mathcal{C}^{\mathrm{op}}, LA =_{\mathrm{df}} A \Rightarrow E,$$

 $R: \mathcal{C}^{\mathrm{op}} \to \mathcal{C}, RB =_{\mathrm{df}} B \Rightarrow E,$

• T – a monad on C^{op} , i.e., a comonad on C,

• $RTLA =_{df} T(A \Rightarrow E) \rightarrow E.$

Free algebras, free monads

Given a endofunctor H on a category C, let
 (H*A, [η^H_A, τ^H_A]) be the initial algebra of A + H− (if it
 exists), so that, for any A + H−-algebra (C, [g, h]), there
 is a unique map f : H*A → C satisfying

• *H***A* is the type of wellfounded *H*-trees with mutable leaves from *A*, i.e., of *H*-terms over variables from *A*.

((H*A, τ_A^H), η_A^H) is the free H-algebra on A,
 i.e., A → (H*A, τ^HA) : C → alg(H) is left adjoint to the forgetful functor U : alg(H) → C.

$$\frac{(H^*A, \tau_A) \to (C, h)}{\frac{A \to C}{\overline{A \to U(C, h)}}}$$

and η^{H} is the unit of the adjunction.

- The pointed functor (H^*, η^H) carries a monad structure.
- The Kleisli extension k^{*} : H^{*}A → H^{*}B of any given map k : A → H^{*}B is defined as the unique map f satisfying

Intuitively, this is grafting of trees into the mutable leaves of a tree or substitution of terms into the variables of a term.

・ロト・日本・モート モー うへぐ

((H^{*}, η^H, μ^H), τ^H) is the free monad on H,
 i.e., H → (H^{*}, η^H, μ^H) : [C, C] → Monad(C) is left
 adjoint to the forgetful functor U : Monad(C) → [C, C]

$$\frac{(H^*, \eta^H, \mu^H) \to (S, \eta^S, \mu^S)}{\frac{H \to S}{H \to U(S, \eta^S, \mu^S)}}$$

and τ is the unit of the adjunction.

Free completely iterative algebras, free completely iterative monads (Adámek, Milius, Velebil)

The final coalgebras H[∞]A of A + H− (the free completely iterative H-algebras over A) for each A also a give a monad (the free completely iterative monad on H).

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

 If HX = 1 + X × X, then H*A is the type of wellfounded binary trees with a termination option and with mutable leaves from A

(i.e., terms in the signature with one nullary, one binary operator over variables from A).

If HX =_{df} ListX ≅ ∐_{i∈ℕ} Xⁱ, then H*A is the type of wellfounded rose trees with mutable leaves from A (i.e., terms in the signature with one operator of every finite arity over variables from A).

Monads from parameterized monads via initial algebras / final coalgebras (U.)

- A parameterized monad on C is a functor $F : C \to Monad(C)$.
- If *F* is a parameterized monad then the functors $F^*, F^{\infty} : \mathcal{C} \to \mathcal{C}$ defined by $F^*A =_{df} \mu X.FXA$ and $F^{\infty}A =_{df} \nu X.FXA$ carry a monad structure.
- In fact more can be said about them, but here we won't.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Free monads:
 - $FXA =_{df} A + HX$ where $H : \mathcal{C} \to \mathcal{C}$,
 - $F^*A =_{\mathrm{df}} \mu X.A + HX$, $F^{\infty}A =_{\mathrm{df}} \nu X.A + HX$.
 - These are the types of wellfounded/nonwellfounded *H*-trees with mutable leaves from *A*.
- Rose tree types:
 - $FXA =_{df} A \times HX$ where $H : C \to Monoid(C)$,
 - $F^*A =_{df} \mu X.A \times HX$, $F^{\infty}A =_{df} \nu X.A \times HX$.
 - If HX =_{df} ListX, these are the types of wellfounded/nonwellfounded A-labelled rose trees.

- Types of hyperfunctions with a fixed domain:
 - $FXA =_{\mathrm{df}} HX \Rightarrow A$ where $H : \mathcal{C} \to \mathcal{C}^{\mathrm{op}}$,
 - $F^*A =_{\mathrm{df}} \mu X.HX \Rightarrow A, F^{\infty}A =_{\mathrm{df}} \nu X.HX \Rightarrow A.$
 - If FX =_{df} X ⇒ E, these are the types of wellfounded/nonwellfounded hyperfunctions from E to A. (Of course these types do no exist in Set.)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Distributive laws

- If T, S are monads on C, it is not generally the case that ST is a monad. But sometimes it is.
- A distributive law of a monad T over a monad S is a natural transformation $\lambda : TS \rightarrow ST$ satisfying

 A distributive law λ of T over S gives a monad structure on the endofunctor ST:

•
$$\eta^{ST} =_{df} \operatorname{Id} \xrightarrow{\eta^{S} \eta^{T}} ST$$
,
• $\mu^{ST} =_{df} STST \xrightarrow{S\lambda T} SSTT \xrightarrow{\mu^{S} \mu^{T}} ST$.

- The exceptions monad distributes over any monad.
 - S a monad,
 - $TA =_{df} A + E$ where E is an object,
 - $\lambda =_{\mathrm{df}} SA + E \xrightarrow{\mathrm{id} + \eta^S} SA + SE \xrightarrow{[Sinl,Sinr]} S(A + E),$
 - STA = S(A + E).
 - For T the state monad, this gives $ST = S \Rightarrow (A + E) \times S$, which is a different combination of exceptions and state than we saw before.

- The output monad distributes over any $(1, \times)$ strong monad.
 - (S, sl) a strong monad,
 - $TA =_{df} A \times E$ where E is a monoid,
 - $\lambda =_{\mathrm{df}} SA \times E \xrightarrow{\mathrm{sr}} S(A \times E)$,
 - $STA = S(A \times E)$.

• Any (1, ×) strong monad distributes over the environment monad.

•
$$(T, sl)$$
 – a strong monad,
• $SA =_{df} E \Rightarrow A$ where E is an object,
• $\lambda =_{df} \Lambda(T(E \Rightarrow A) \times E \xrightarrow{sr} T((E \Rightarrow A) \times E) \xrightarrow{Tev} TA)$,
• $STA = E \Rightarrow TA$.

・ロト < 団ト < 三ト < 三ト ・ 三 ・ のへの

Coproduct of monads

- An interesting canonical way to combine monads is the coproduct of monads.
- A coproduct of two monads T₀ and T₁ on C is their coproduct in Monad(C).
- I.e., it is a monad T₀ +^m T₁ together with two monad maps inl^m: T₀ →^m T₀ +^m T₁, inr^m: T₀ →^m T₀ +^m T₁ such that for any monad S and monad maps τ₀: T₀ →^m S, τ₁: T₁ →^m S there exists a unique monad map T₀ +^m T₁ →^m S satisfying

- The coproduct of two monads cannot be computed "pointwise", it is not the coproduct of the underlying functors.
- In fact, most of the time the coproduct of the underlying functors of two monads is not even a monad.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Coproduct of free monads

• The coproduct of the free monads on functors H_0 , H_1 is the free monad on their coproduct:

$$H_0^{\star} +^{\mathrm{m}} H_1^{\star} = (H_0 + H_1)^{\star}$$

(obvious, since the free monad delivering functor is a left adjoint and hence preserves colimits, in particular coproducts).

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Coproduct of a free monad and an arbitrary monad (Power)

More generally, the coproduct of a free monad H* with an arbitary monad S is this (if (HS)* exists):

$$H^* +^{\mathrm{m}} S = S(HS)^*$$

i.e.,

$$(H^* + {}^{\mathrm{m}}S)A = S(\mu X.A + HSX) = \mu X.S(A + HX)$$

For HX =_{df} E, H*A = μX.A + E ≅ A + E (exceptions monad) and (H* +^m S)A = μX.S(A + E) ≅ S(A + E). This is the same combination of exceptions with any other monad as obtained from the canonical distributive law of the exceptions monad over another monad.

Ideal monads (Adámek, Milius, Velebil)

- Idea: to generalize the separation of variables from operator terms in term algebras.
- An *ideal monad* on C is a monad (T, η, μ) together with an endofunctor T' on C and a natural transformation

$$u': I'I \rightarrow I'$$
 such that

•
$$T = \mathsf{Id} + T'$$
,

•
$$\eta = \mathsf{inl}$$
,

•
$$\mu = [id, inr \circ \mu'].$$

 An ideal monad map between T = Id + T' and S = Id + S' is monad map τ : T → S together with a nat. transf. τ' : T' → S' satisfying τ = id + τ'.

- Free monads are ideal:
 - $TA =_{df} \mu X.A + HX$ where $H : C \to C$
 - $TA \cong A + HTA$
- The finite powerset monad is not ideal:
 - $TA =_{df} \mathcal{P}_{f}$
 - $TA \cong A + 1 + \mathcal{P}_{\geq 2}A$, but $\mathcal{P}_{\geq 2}$ is not a functor: If for some $f : A \to B$ and $a_0, a_1 \in A$ we have $f(a_0) = f(a_1)$, then $\mathcal{P}_{\mathrm{f}}f$ sends a 2-element set $\{a_0, a_1\}$ to singleton.
- The finite multiset monad is not ideal:
 - $TA =_{df} \mathcal{M}_{f}$
 - $TA \cong A + 1 + \mathcal{M}_{\geq 2}A$, but μ does not restrict to a nat. transf. $\mathcal{M}_{\geq 2}\mathcal{M}_{\mathrm{f}} \xrightarrow{\cdot} \mathcal{M}_{\geq 2}$: If $a \in A$, then $\mu_A\{\{a\}, \emptyset\} = \{a\}$.

• The nonempty finite multiset monad is ideal:

•
$$TA =_{\mathrm{df}} \mathcal{M}_{\geq 1}$$

•
$$TA \cong A + \mathcal{M}_{\geq 2}A$$

• The nonempty list monad is ideal too.

Coproduct of ideal monads (Ghani, U.)

• Given two ideal monads $S_0 = Id + S'_0$ and $S_1 = Id + S'_1$, their coproduct is the ideal monad $T = Id + T'_0 + T'_1$ defined by

 $(T'_0A, T'_1A) =_{\mathrm{df}} \mu(X_0, X_1).(S'_0(A + X_1)), S'_1(A + X_0))$