Monads and More: Part 2

Tarmo Uustalu, Institute of Cybernetics, Tallinn

University of Nottingham, 14-18 May 2007 University of Udine, 2-6 July 2007

Monads from adjuctions (Huber)

- For any pair of adjoint functors $L: \mathcal{C} \rightarrow \mathcal{D}, R: \mathcal{D} \rightarrow \mathcal{C}$, $L \dashv R$ with unit $\eta: \mathrm{Id}_{\mathcal{C}} \rightarrow R L$ and counit $\varepsilon: L R \rightarrow \mathrm{Id}_{\mathcal{D}}$, the functor $R L$ carries a monad structure defined by
- $\eta^{R L}={ }_{\mathrm{df}} \mathrm{Id} \xrightarrow{\eta} R L$,
- $\mu^{R L}={ }_{\mathrm{df}} R L R L \xrightarrow{R \varepsilon L} R L$.
- The Kleisli and Eilenberg-Moore adjunctions witness that any monad on \mathcal{C} admits a factorization like this.

Examples

- State monad:
- $L, R: \mathcal{C} \rightarrow \mathcal{C}, L A={ }_{\mathrm{df}} A \times S, R B={ }_{\mathrm{df}} S \Rightarrow B$,

$$
\frac{A \times S \rightarrow B}{\overline{A \rightarrow S \Rightarrow B}}
$$

- $R L A=S \Rightarrow A \times S$,
- An exotic one:
- $L, R: \mathcal{C} \rightarrow \mathcal{C}, L A={ }_{\mathrm{df}} \mu X . A+X \times S \cong A \times \operatorname{List} S$, $R B={ }_{\mathrm{df}} \nu Y . B \times(S \Rightarrow Y)$,

$$
\frac{\mu X . A+X \times S \rightarrow B}{A \rightarrow \nu Y . B \times(S \Rightarrow Y)}
$$

- $R L A=\nu Y .(\mu X . A+X \times S) \times(S \Rightarrow Y) \cong$ $\nu Y . A \times \operatorname{List} S \times(S \Rightarrow Y)$.
- What notion of computation does this correspond to?
- Continuations monad:
- $L: \mathcal{C} \rightarrow \mathcal{C}^{\mathrm{op}}, L A={ }_{\mathrm{df}} A \Rightarrow E$, $R: \mathcal{C}^{\mathrm{op}} \rightarrow \mathcal{C}, R B={ }_{\mathrm{df}} B \Rightarrow E$,

$$
\begin{aligned}
& \hline \overline{A \Rightarrow E \leftarrow B} \\
& \hline \overline{\bar{E} \leftarrow B \times A} \\
& \overline{\overline{A \times B \rightarrow E}} \\
& \hline A \rightarrow B \Rightarrow E
\end{aligned}
$$

- $R L A=(A \Rightarrow E) \Rightarrow E$.

Monads from adjunctions ctd.

- Given two functors $L: \mathcal{C} \rightarrow \mathcal{D}$ and $R: \mathcal{D} \rightarrow C, L \dashv R$ and a monad T on \mathcal{D}, we obtain that $R T L$ is a monad on \mathcal{C}.
- This is because T factorizes as $U J$ where $J \vdash U$ is the Kleisli adjunction.
That means an adjoint situation $J L \vdash R U$ implying that $R U J L=R T L$ is a monad.
- The monad structure is

$$
\begin{aligned}
& \text { - } \eta^{R T L}={ }_{\mathrm{df}} \mathrm{Id} \xrightarrow{\eta} R L \xrightarrow{R \eta^{T} L} R T L, \\
& \text { - } \mu^{R T L}={ }_{\mathrm{df}} R T L R T L \xrightarrow{R T \varepsilon T L} R T T L \xrightarrow{\mu^{T}} R T L .
\end{aligned}
$$

Examples

- State monad transformer:
- $L, R: \mathcal{C} \rightarrow \mathcal{C}, L A={ }_{\mathrm{df}} A \times S, R B={ }_{\mathrm{df}} S \Rightarrow B$,
- T - a monad on \mathcal{C},
- $R T L A=S \Rightarrow T(A \times S)$,
- In particular, for T the exceptions monad we get $R T L A=S \Rightarrow(A \times S)+E$.
- Continuations monad transformer:
- $L: \mathcal{C} \rightarrow \mathcal{C}^{\mathrm{op}}, L A={ }_{\mathrm{df}} A \Rightarrow E$, $R: \mathcal{C}^{\mathrm{op}} \rightarrow \mathcal{C}, R B={ }_{\mathrm{df}} B \Rightarrow E$,
- T - a monad on $\mathcal{C}^{\text {op }}$, i.e., a comonad on \mathcal{C},
- $R T L A={ }_{\mathrm{df}} T(A \Rightarrow E) \rightarrow E$.

Free algebras, free monads

- Given a endofunctor H on a category \mathcal{C}, let ($H^{*} A,\left[\eta_{A}^{H}, \tau_{A}^{H}\right]$) be the initial algebra of $A+H-$ (if it exists), so that, for any $A+H$--algebra $(C,[g, h])$, there is a unique map $f: H^{*} A \rightarrow C$ satisfying
- $H^{*} A$ is the type of wellfounded H-trees with mutable leaves from A, i.e., of H-terms over variables from A.
- $\left(\left(H^{*} A, \tau_{A}^{H}\right), \eta_{A}^{H}\right)$ is the free H-algebra on A, i.e., $A \mapsto\left(H^{*} A, \tau^{H} A\right): \mathcal{C} \rightarrow \operatorname{alg}(H)$ is left adjoint to the forgetful functor $U: \operatorname{alg}(H) \rightarrow \mathcal{C}$.

$$
\frac{\underline{\left(H^{*} A, \tau_{A}\right) \rightarrow(C, h)}}{\frac{A \rightarrow C}{\overline{A \rightarrow U(C, h)}}}
$$

and η^{H} is the unit of the adjunction.

- The pointed functor $\left(H^{*}, \eta^{H}\right)$ carries a monad structure.
- The Kleisli extension $k^{*}: H^{*} A \rightarrow H^{*} B$ of any given map $k: A \rightarrow H^{*} B$ is defined as the unique map f satisfying

Intuitively, this is grafting of trees into the mutable leaves of a tree or substitution of terms into the variables of a term.

- $\left(\left(H^{*}, \eta^{H}, \mu^{H}\right), \tau^{H}\right)$ is the free monad on H, i.e., $H \mapsto\left(H^{*}, \eta^{H}, \mu^{H}\right):[\mathcal{C}, \mathcal{C}] \rightarrow \operatorname{Monad}(\mathcal{C})$ is left adjoint to the forgetful functor $U: \operatorname{Monad}(\mathcal{C}) \rightarrow[\mathcal{C}, \mathcal{C}]$

$$
\frac{\left(H^{*}, \eta^{H}, \mu^{H}\right) \rightarrow\left(S, \eta^{S}, \mu^{S}\right)}{\frac{H \rightarrow S}{H \rightarrow U\left(S, \eta^{S}, \mu^{S}\right)}}
$$

and τ is the unit of the adjunction.

Free completely iterative algebras, free completely

 iterative monads (Adámek, Milius, Velebil)- The final coalgebras $H^{\infty} A$ of $A+H$ - (the free completely iterative H-algebras over A) for each A also a give a monad (the free completely iterative monad on H).

Examples

- If $H X=1+X \times X$, then $H^{*} A$ is the type of wellfounded binary trees with a termination option and with mutable leaves from A
(i.e., terms in the signature with one nullary, one binary operator over variables from A).
- If $H X={ }_{\text {df }} \operatorname{List} X \cong \coprod_{i \in \mathbb{N}} X^{i}$, then $H^{*} A$ is the type of wellfounded rose trees with mutable leaves from A (i.e., terms in the signature with one operator of every finite arity over variables from A).

Monads from parameterized monads via initial

 algebras / final coalgebras (U.)- A parameterized monad on \mathcal{C} is a functor $F: \mathcal{C} \rightarrow \operatorname{Monad}(\mathcal{C})$.
- If F is a parameterized monad then the functors $F^{*}, F^{\infty}: \mathcal{C} \rightarrow \mathcal{C}$ defined by $F^{*} A={ }_{\mathrm{df}} \mu X . F X A$ and $F^{\infty} A={ }_{\mathrm{df}} \nu X . F X A$ carry a monad structure.
- In fact more can be said about them, but here we won't.

Examples

- Free monads:
- $F X A={ }_{\mathrm{df}} A+H X$ where $H: \mathcal{C} \rightarrow \mathcal{C}$,
- $F^{*} A={ }_{\mathrm{df}} \mu X . A+H X, F^{\infty} A={ }_{\mathrm{df}} \nu X . A+H X$.
- These are the types of wellfounded/nonwellfounded H-trees with mutable leaves from A.
- Rose tree types:
- $F X A={ }_{\mathrm{df}} A \times H X$ where $H: \mathcal{C} \rightarrow \operatorname{Monoid}(\mathcal{C})$,
- $F^{*} A={ }_{\mathrm{df}} \mu X . A \times H X, F^{\infty} A={ }_{\mathrm{df}} \nu X . A \times H X$.
- If $H X={ }_{\mathrm{df}}$ List X, these are the types of wellfounded/nonwellfounded A-labelled rose trees.
- Types of hyperfunctions with a fixed domain:
- $F X A={ }_{\mathrm{df}} H X \Rightarrow A$ where $H: \mathcal{C} \rightarrow \mathcal{C}^{\mathrm{op}}$,
- $F^{*} A={ }_{\mathrm{df}} \mu X . H X \Rightarrow A, F^{\infty} A={ }_{\mathrm{df}} \nu X . H X \Rightarrow A$.
- If $F X={ }_{\mathrm{df}} X \Rightarrow E$, these are the types of wellfounded/nonwellfounded hyperfunctions from E to A. (Of course these types do no exist in Set.)

Distributive laws

- If T, S are monads on \mathcal{C}, it is not generally the case that $S T$ is a monad. But sometimes it is.
- A distributive law of a monad T over a monad S is a natural transformation $\lambda: T S \rightarrow S T$ satisfying

- A distributive law λ of T over S gives a monad structure on the endofunctor $S T$:
- $\eta^{S T}={ }_{\mathrm{df}} \mathrm{Id} \xrightarrow{\eta^{S} \eta^{T}} S T$,
- $\mu^{S T}={ }_{\mathrm{df}} S T S T \xrightarrow{S \lambda T}$ SSTT $\xrightarrow{\mu^{S} \mu^{T}} S T$.

Examples

- The exceptions monad distributes over any monad.
- S - a monad,
- $T A={ }_{\mathrm{df}} A+E$ where E is an object,
- $\lambda={ }_{\mathrm{df}} S A+E \xrightarrow{\mathrm{id}+\eta^{s}} S A+S E \xrightarrow{[\text { Sinl,Sinr }]} S(A+E)$,
- $S T A=S(A+E)$.
- For T the state monad, this gives
$S T=S \Rightarrow(A+E) \times S$, which is a different combination of exceptions and state than we saw before.
- The output monad distributes over any $(1, \times)$ strong monad.
- $(S$, sl) - a strong monad,
- $T A={ }_{\mathrm{df}} A \times E$ where E is a monoid,
- $\lambda={ }_{\mathrm{df}} S A \times E \xrightarrow{\mathrm{sr}} S(A \times E)$,
- $S T A=S(A \times E)$.
- Any $(1, \times)$ strong monad distributes over the environment monad.
- ($T, \mathrm{sl})$ - a strong monad,
- $S A={ }_{\mathrm{df}} E \Rightarrow A$ where E is an object,
- $\lambda={ }_{\mathrm{df}} \Lambda(T(E \Rightarrow A) \times E \xrightarrow{\mathrm{sr}} T((E \Rightarrow A) \times E) \xrightarrow{T \mathrm{ev}} T A)$,
- $S T A=E \Rightarrow T A$.

Coproduct of monads

- An interesting canonical way to combine monads is the coproduct of monads.
- A coproduct of two monads T_{0} and T_{1} on \mathcal{C} is their coproduct in Monad(C).
- I.e., it is a monad $T_{0}+{ }^{\mathrm{m}} T_{1}$ together with two monad maps $\mathrm{inl}^{\mathrm{m}}: T_{0} \rightarrow{ }^{\mathrm{m}} T_{0}+{ }^{\mathrm{m}} T_{1}, \mathrm{inr}^{\mathrm{m}}: T_{0} \rightarrow{ }^{\mathrm{m}} T_{0}+{ }^{\mathrm{m}} T_{1}$ such that for any monad S and monad maps
$\tau_{0}: T_{0} \rightarrow{ }^{\mathrm{m}} S, \tau_{1}: T_{1} \rightarrow{ }^{\mathrm{m}} S$ there exists a unique monad map $T_{0}+{ }^{\mathrm{m}} T_{1} \rightarrow{ }^{\mathrm{m}} S$ satisfying

$$
T_{0} \stackrel{\mathrm{in} \mathrm{~m}^{\mathrm{m}}}{\longrightarrow} T_{0}+{ }^{\mathrm{m}} T_{1} \stackrel{\mathrm{inf}^{\mathrm{m}}}{\tau_{0}} T_{1}
$$

- The coproduct of two monads cannot be computed "pointwise", it is not the coproduct of the underlying functors.
- In fact, most of the time the coproduct of the underlying functors of two monads is not even a monad.

Coproduct of free monads

- The coproduct of the free monads on functors H_{0}, H_{1} is the free monad on their coproduct:

$$
H_{0}^{\star}+{ }^{\mathrm{m}} H_{1}^{\star}=\left(H_{0}+H_{1}\right)^{*}
$$

(obvious, since the free monad delivering functor is a left adjoint and hence preserves colimits, in particular coproducts).

Coproduct of a free monad and an arbitrary monad

 (Power)- More generally, the coproduct of a free monad H^{*} with an arbitary monad S is this (if $(H S)^{*}$ exists):

$$
H^{*}+{ }^{\mathrm{m}} S=S(H S)^{*}
$$

i.e.,

$$
\left(H^{*}+{ }^{\mathrm{m}} S\right) A=S(\mu X . A+H S X)=\mu X . S(A+H X)
$$

- For $H X={ }_{\mathrm{df}} E, H^{*} A=\mu X . A+E \cong A+E$ (exceptions monad) and $\left(H^{*}+{ }^{\mathrm{m}} S\right) A=\mu X . S(A+E) \cong S(A+E)$. This is the same combination of exceptions with any other monad as obtained from the canonical distributive law of the exceptions monad over another monad.

Ideal monads (Adámek, Milius, Velebil)

- Idea: to generalize the separation of variables from operator terms in term algebras.
- An ideal monad on \mathcal{C} is a monad (T, η, μ) together with an endofunctor T^{\prime} on \mathcal{C} and a natural transformation $\mu^{\prime}: T^{\prime} T \rightarrow T^{\prime}$ such that
- $T=\mathrm{Id}+T^{\prime}$,
- $\eta=\mathrm{inl}$,
- $\mu=\left[i d\right.$, inr $\left.\circ \mu^{\prime}\right]$.

$$
\begin{aligned}
& T \stackrel{\mathrm{inl} T}{>} T T=\left(\mathrm{ld}+T^{\prime}\right) T \stackrel{\mathrm{inr} T}{\rightleftarrows} T^{\prime} T \\
& T=\mathrm{ld}+T^{\prime}<\left.\right|_{\mathrm{inr}} ^{\mu^{\prime}} \\
& T^{\prime}
\end{aligned}
$$

- An ideal monad map between $T=\mathrm{Id}+T^{\prime}$ and $S=\mathrm{Id}+S^{\prime}$ is monad map $\tau: T \dot{\rightarrow} S$ together with a nat. transf. $\tau^{\prime}: T^{\prime} \dot{\rightarrow} S^{\prime}$ satisfying $\tau=\mathrm{id}+\tau^{\prime}$.

Examples

- Free monads are ideal:
- TA $={ }_{\mathrm{df}} \mu X . A+H X$ where $H: \mathcal{C} \rightarrow \mathcal{C}$
- $T A \cong A+H T A$
- The finite powerset monad is not ideal:
- $T A={ }_{\text {df }} \mathcal{P}_{\mathrm{f}}$
- $T A \cong A+1+\mathcal{P}_{\geq 2} A$, but $\mathcal{P}_{\geq 2}$ is not a functor: If for some $f: A \rightarrow B$ and $a_{0}, a_{1} \in A$ we have $f\left(a_{0}\right)=f\left(a_{1}\right)$, then $\mathcal{P}_{\mathrm{f}} f$ sends a 2-element set $\left\{a_{0}, a_{1}\right\}$ to singleton.
- The finite multiset monad is not ideal:
- $T A={ }_{\mathrm{df}} \mathcal{M}_{\mathrm{f}}$
- $T A \cong A+1+\mathcal{M}_{\geq 2} A$, but μ does not restrict to a nat. transf. $\mathcal{M}_{\geq 2} \mathcal{M}_{\mathrm{f}} \dot{\rightarrow} \mathcal{M}_{\geq 2}$: If $a \in A$, then $\mu_{A}\{\{a\}, \bar{\emptyset}\}=\{a\}$.
- The nonempty finite multiset monad is ideal:
- $T A={ }_{\mathrm{df}} \mathcal{M}_{\geq 1}$
- $T A \cong A+\mathcal{M}_{\geq 2} A$
- The nonempty list monad is ideal too.

Coproduct of ideal monads (Ghani, U.)

- Given two ideal monads $S_{0}=\mathrm{Id}+S_{0}^{\prime}$ and $S_{1}=\mathrm{Id}+S_{1}^{\prime}$, their coproduct is the ideal monad $T=\mathrm{Id}+T_{0}^{\prime}+T_{1}^{\prime}$ defined by

$$
\left.\left(T_{0}^{\prime} A, T_{1}^{\prime} A\right)={ }_{\mathrm{df}} \mu\left(X_{0}, X_{1}\right) \cdot\left(S_{0}^{\prime}\left(A+X_{1}\right)\right), S_{1}^{\prime}\left(A+X_{0}\right)\right)
$$

