Monads and More: Part 2

Tarmo Uustalu, Institute of Cybernetics, Tallinn

University of Nottingham, 14-18 May 2007
University of Udine, 2—6 July 2007



Monads from adjuctions (Huber)

@ For any pair of adjoint functors L :C — D, R: D — C,
L 4 R with unit n : Ide — RL and counit € : LR = Idp,
the functor RL carries a monad structure defined by

o nRl =4t 1d -5 RIL,

o uRl =y RLRL FE5 Ry

@ The Kleisli and Eilenberg-Moore adjunctions witness that
any monad on C admits a factorization like this.



Examples
@ State monad:
° L,R:C—>C, LA:deXS, RB:de:>B,
AxS—B
A—S=B
e RIA=S=AxS,
@ An exotic one:
o LLR:C—C, LA=g4 uX.A+ X x § = A x ListS,
RB =df vY.B x (5:> Y),
UXA+XxS— B
A—-vY.Bx(S5=Y)

o RLA=vY.(uX. A+ X xS)x (S=Y)=
vY.A x ListS x (§ = Y).
e What notion of computation does this correspond to?



@ Continuations monad:

o L:C— (C°P, LA:de:>E,
R:C®° - (C, RB=4 B=E,

A=E—B
E+—BxA
Ax B — E
A—-B=E

o RLA=(A=E) = E.



Monads from adjunctions ctd.

@ Given two functors L:C —Dand R: D — C, L4 R and
a monad T on D, we obtain that RTL is a monad on C.

@ This is because T factorizes as UJ where J = U is the
Kleisli adjunction.
That means an adjoint situation JL = RU implying that
RUJL = RTL is a monad.

@ The monad structure is
o nRTL —4 1d RL™E RTL,
.
o uRTL =y RTLRTL "It RTTL 2 RTL.



Examples

@ State monad transformer:
[_,RZC—>C, LA=4 AXx S, RB=4S = B,
T —a monad on C,
RTLA=S= T(AXxS),
In particular, for T the exceptions monad we get
RTLA=S= (AxS)+E.
@ Continuations monad transformer:
o L:C—(C°P, LA:de:>E,
R:C° —C, RB =4t B=E,
e T — a monad on C°P, i.e., a comonad on C,
o RTLA=4 T(A= E) — E.



Free algebras, free monads

@ Given a endofunctor H on a category C, let
(H*A, [n%,74]) be the initial algebra of A+ H— (if it
exists), so that, for any A+ H—-algebra (C, [g, h]), there
is a unique map f : H*A — C satisfying

i ™
A~ H A=<~ HH*A
f Hf
£y v
C HC

h

@ H*Ais the type of wellfounded H-trees with mutable
leaves from A, i.e., of H-terms over variables from A.



o ((H*A,7),nk) is the free H-algebra on A,
ie., A (H*A, 7HA) : C — alg(H) is left adjoint to the
forgetful functor U : alg(H) — C.

(H*A,74) — (C, h)

A— C
A— U(C,h)

and 1" is the unit of the adjunction.



@ The pointed functor (H*,n'") carries a monad structure.

@ The Kleisli extension k* : H*A — H*B of any given map
k : A— H*B is defined as the unique map f satisfying

A—2 HfA<i HH* A
f Hf

k v v
H*B <.,.73 HH*B

Intuitively, this is grafting of trees into the mutable leaves
of a tree or substitution of terms into the variables of a
term.



o ((H*,nM, ut),7H) is the free monad on H,
ie., H— (H*,n" uH) :[C,C] — Monad(C) is left
adjoint to the forgetful functor U : Monad(C) — [C,C]

(H*,n", uty — (S, n°, 1)
H—S
H— U(S,n°, 1°)

and 7 is the unit of the adjunction.



Free completely iterative algebras, free completely
iterative monads (Adamek, Milius, Velebil)

@ The final coalgebras H*A of A+ H— (the free
completely iterative H-algebras over A) for each A also a
give a monad (the free completely iterative monad on H).



Examples

o If HX =1+ X x X, then H*A is the type of wellfounded
binary trees with a termination option and with mutable
leaves from A
(i.e., terms in the signature with one nullary, one binary
operator over variables from A).

o If HX =4 ListX =[],y X', then H*A'is the type of
wellfounded rose trees with mutable leaves from A
(i.e., terms in the signature with one operator of every
finite arity over variables from A).



Monads from parameterized monads via initial
algebras / final coalgebras (U.)
@ A parameterized monad on C is a functor
F :C — Monad(C).

e If F is a parameterized monad then the functors
F*, F>* :C — C defined by F*A =4 uX.FXA and
F°A =4 vX.FXA carry a monad structure.

@ In fact more can be said about them, but here we won't.



Examples

@ Free monads:
o FXA =4t A+ HX where H:C — C,
o F*A =4t uX.A+ HX, F*A =4 vX.A+ HX.
o These are the types of wellfounded/nonwellfounded
H-trees with mutable leaves from A.

@ Rose tree types:
o FXA =4 A x HX where H : C — Monoid(C),
o F*A =4t uX.Ax HX, F*A =4 vX.Ax HX.
o If HX =4t ListX, these are the types of
wellfounded /nonwellfounded A-labelled rose trees.



@ Types of hyperfunctions with a fixed domain:
o FXA =4t HX = A where H:C — CP,
o F*A =gt uX.HX = A, FPA =4 vX.HX = A.
o If FX =4t X = E, these are the types of
wellfounded/nonwellfounded hyperfunctions from E to
A. (Of course these types do no exist in Set.)



Distributive laws

e If T, S are monads on C, it is not generally the case that
ST is a monad. But sometimes it is.

@ A distributive law of a monad T over a monad S is a
natural transformation A : TS — ST satisfying

T——T 7SS 22> 5TS 22~ 55T
Tnsi \Lns T T,usl \LHS T
TS ——=ST 7S - ST
S——35 TTS -2 757 21 STT
nTSl iSUT #TSJ/ lSHT
7S —=ST 7S ST



@ A distributive law A\ of T over S gives a monad structure
on the endofunctor ST
ST nSnT
o n°' =4¢ld — ST,

S, T
o ST =gy STST 2L sSTT 1 ST



Examples

@ The exceptions monad distributes over any monad.

e S —a monad,

o TA =4t A+ E where E is an object,

A =gt SA+ E 4T sa 4 g S ¢
o STA=S(A+E).

For T the state monad, this gives
ST=5= (A+ E) xS, which is a different
combination of exceptions and state than we saw before.

(A+E),

@ The output monad distributes over any (1, x) strong
monad.

(S,sl) — a strong monad,

TA =4¢ A X E where E is a monoid,
A =qt SAx E > S(Ax E),
STA=S(A X E).



@ Any (1, x) strong monad distributes over the
environment monad.

(T,sl) — a strong monad,

SA =4t E = A where E is an object,

A =qt NT(E = A) x E =5 T((E = A) x E) 1% TA),
o STA=E=TA



Coproduct of monads

@ An interesting canonical way to combine monads is the
coproduct of monads.

@ A coproduct of two monads Ty and T; on C is their
coproduct in Monad(C).

@ l.e., itisa monad Ty +™ T, together with two monad
maps inl™ : Tog =™ To+™ Ty, inr™ : Tog =™ To+™ T3
such that for any monad S and monad maps
To: To—™S, 71 : Ty =™ S there exists a unique monad
map To +™ T; —™ S satisfying

TO inl™ -,-0 +m Tl inr™ -,-1

N,

v
S



@ The coproduct of two monads cannot be computed
“pointwise”, it is not the coproduct of the underlying
functors.

@ In fact, most of the time the coproduct of the underlying
functors of two monads is not even a monad.



Coproduct of free monads

@ The coproduct of the free monads on functors Hy, H; is
the free monad on their coproduct:

Hy +™ Hy = (Ho + Hy)*

(obvious, since the free monad delivering functor is a left
adjoint and hence preserves colimits, in particular
coproducts).



Coproduct of a free monad and an arbitrary monad
(Power)

@ More generally, the coproduct of a free monad H* with an
arbitary monad S is this (if (HS)* exists):

H*+™ S = S(HS)"

(H* +™ S)A = S(uX.A + HSX) = uX.S(A + HX)

@ For HX =4t E, H*'A = uX.A+ E = A+ E (exceptions
monad) and (H* +™ S)A = uX.S(A+ E) = S(A+ E).
This is the same combination of exceptions with any
other monad as obtained from the canonical distributive
law of the exceptions monad over another monad.



ldeal monads (Adamek, Milius, Velebil)

@ Idea: to generalize the separation of variables from

operator terms in term algebras.

@ An ideal monad on C is a monad (T,n, i) together with
an endofunctor T' on C and a natural transformation

@' T'T = T’ such that
o T=Id+ T,
e n=inl,
o p=[id,inroy].
inrT

TO-TT=(d+ 7T 77

T=I1d+T T’

inr

@ An ideal monad map between T =Id + T’ and

S=1Id+S"is monad map 7: T — S together with a

nat. transf. 7/ : T' — S’ satisfying 7 = id + 7.



Examples

@ Free monads are ideal:

o TA =g uX.A+ HX where H:C — C
o TAZ A+ HTA

@ The finite powerset monad is not ideal:
o TA=y4 P
o TAZ A+ 1+ P>2A, but P> is not a functor:
If for some f : A— B and ag, a1 € A we have
f(ag) = f(a1), then P;f sends a 2-element set {ap, a1}
to singleton.
@ The finite multiset monad is not ideal:
o TA =4 M;
o TA=Z A+ 1+ Mx2A, but i1 does not restrict to a nat.
transf. M>o Mg — M>o:
If a € A, then ua{{a},0} = {a}.



@ The nonempty finite multiset monad is ideal:

o TA =gt M>1
o TAX A+ MZZA

@ The nonempty list monad is ideal too.



Coproduct of ideal monads (Ghani, U.)

@ Given two ideal monads So = Id + S and S; = Id + 5],
their coproduct is the ideal monad T =1d+ Tg+ T,
defined by

(ToA, T{A) =ar 11(Xo, X1).(So(A + X1)), S1(A + Xo))



