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Abstract
We introduce and study functor-functor andmonad-comonad
interaction laws as mathematical objects to describe inter-
action of effectful computations with behaviors of effect-
performing machines. Monad-comonad interaction laws are
monoid objects of the monoidal category of functor-functor
interaction laws. We show that, for suitable generalizations
of the concepts of dual and Sweedler dual, the greatest func-
tor resp. monad interacting with a given functor or comonad
is its dual while the greatest comonad interacting with a
given monad is its Sweedler dual. We relate monad-comonad
interaction laws to stateful runners. We show that functor-
functor interaction laws are Chu spaces over the category
of endofunctors taken with the Day convolution monoidal
structure. Hasegawa’s glueing endows the category of these
Chu spaces with a monoidal structure whose monoid objects
are monad-comonad interaction laws.

CCS Concepts: • Theory of computation→ Functional
constructs; Program semantics.

Keywords: effectful computation, monads, comonads, inter-
action laws, dual of a functor, Sweedler dual of a monad, Chu
spaces, Hasegawa’s glueing
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1 Introduction
What does it mean to run an effectful program, abstracted
into a computation?
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In this paper, we take the view that an effectful computa-
tion does not perform its effects (we mean the effects surviv-
ing any internal handling). These effects are to be provided
externally. The computation can only proceed if placed in an
environment that can provide its effects, e.g, respond to the
computation’s requests for input, listen to its output, resolve
its nondeterministic choices by tossing a coin, consistently
respond to its fetch and store commands. Abstractly, such an
environment is a machine whose implementation is opaque
to us; we can witness its behavior, its evolution through ex-
ternally visible states. It is useful to think of the computation
as a client depending on an effect service and of the machine
or its behavior as a server; they can work together following
some agreed protocol.
To formalize this intuition, we follow Moggi [26] in re-

gards to allowed computations (the chosen notions of compu-
tation) and describe them using a monadT on the category of
types and functions that we want to compute on. (In Plotkin
and Power’s approach [30], they are described with a Law-
vere theory.) Allowed machine behaviors (the chosen notion
of machine behavior), at the same time, are described with
a comonad D. An operational semantics is then described
by what we call an interaction law, a natural transforma-
tion ψ : TX × DY → X × Y compatible with the (co)unit
and (co)multiplication. This polymorphic function sends a
computation (TX ) and a machine behavior from some initial
state (DY ) into a return value X and a final state Y . Compat-
ibility with the unit and counit means that interaction of a
“just returning” computation with a machine behavior must
terminate immediately in its initial state. Compatibility with
multiplication and comultiplication means that interaction
of a sequence of computations amounts to a sequence of
interactions whereby the second interaction starts from the
state where the first finished. As we explore these interac-
tions, it will became evident that it is also fine to work with
notions of computation and machine behavior that do not
include “just returning” or/and are not closed under sequen-
tial composition; those can be described with plain functors
instead of a monad and a comonad.
To illustrate how monad-comonad interaction laws de-

scribe execution of a program, we propose a simple example.
Suppose we want to model computations that issue input
and output requests. The arities of the these operations can
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be packed into a functor F Z = (I ⇒ Z ) + (O × Z ). Com-
putations over a set of values X that use these operations
are elements of the carrier F ∗X = µZ .X + F Z of the free
algebra of F on X ; the functor F ∗ underlies the free monad
on F . Concretely, these computations are wellfounded trees
whose nodes correspond to either input or output requests.
A node for an input request has I many children; a node for
output request has one child, but is labelled by an element
of O . Leaves correspond to return points, they are labelled
by elements from the set of values X .

Next we might wonder in which environments these com-
putations can be expected to run. We need something that
provides at least input and output services (but it may be
able to do more). A natural choice is to use a coalgebra of
the functor GW = (I ×W ) × (O ⇒W ). This is a state ma-
chine operating on a set of states Y according to a dynamics
γ : Y → G Y that can supply the computation an input or
accept its output when so requested. It should be clear that
any such state machine determines a polymorphic function
θX : F ∗X × Y → X × Y , which works by walking up the
given computation tree from the root until a leaf is reached,
using the state machine started in the given initial state as
an oracle. At an input request node, the machine provides a
token from I determining the child node to go to and transi-
tions to a new state. At an output request node, there is no
choice about the child node in the computation tree, but the
token fromO labelling the current node determines the next
state of the machine. When a leaf is reached, the leaf label
is returned together with the current state of the machine
that has therewith become final. Uustalu [41] called such a
function θ a stateful runner of F ∗.
But we can go a little more abstract. Given a state ma-

chine, i.e., a set of states Y and dynamics γ : Y → GY ,
any initial state y ∈ Y determines a machine behavior (an
abstraction collecting all runs of the machine from this ini-
tial state) as an element of the carrier G† Y = νW .Y ×GW
of the cofree coalgebra of G on Y ; we note that G† under-
lies the cofree comonad on G. A machine behavior like this
is a non-wellfounded tree whose nodes are labelled with
states from Y . Every node’s first child is additionally labelled
with tokens from I , but it also has O many further chil-
dren with no additional label. To execute computations, ma-
chine behaviors are enough. There is an evident function
ψX ,Y : F ∗X ×G†Y → X ×Y describing how any computation
runs against any given machine behavior; the return value
and final state are determined by traversing the computation
and behavior trees simultaneously in a lock-step fashion
until a leaf is reached in the computation tree. This function,
polymorphic not only in the set of values X but also the set
of states Y , is an example of a monad-comonad interaction
law between F ∗ and G†.

This interaction law is not incidental, it is canonical. The
comonadG† is in a special relationship to the monad F ∗. In a
good technical sense it is the “greatest” comonad interacting

with F ∗. This turns out to be a consequence of the functorG
being the “greatest” functor interacting with the functor F .

In this paper, we find out some basic properties of monad-
comonad interaction laws, some constructions of more so-
phisticated monad-comonad interactions from simpler ones
etc. We take special interest in the questions (a) which is
the “greatest” comonad interacting with the given monad
T (so any interaction law of T with any comonad would
factor through the canonical interaction law of T with this
comonad)? and (b) which is the “greatest” monad (resp. func-
tor) interacting with a given comonad D (or functor G)? To
answer these, we draw inspiration from algebra, where the
dual of a vector space V is V ◦ = V → K. The answer to (b)
turns out to be: the dual of D (resp.G), under a suitably gen-
eralized concept of dual. Question (a) is harder. To answer
it, we need to generalize the concept of what is called the
Sweedler dual. The greatest comonad interacting with T is
the Sweedler dual of T .
The contributions in this paper are the following:

(i) We introduce functor-functor interaction laws, define
the dual of a functor, and show that the greatest functor
interacting with a given functor is its dual (Section 2).

(ii) We study monad-comonad interaction laws as monoid
objects of the category of functor-functor interaction
laws. We show that the dual lifts from functors to
comonads and that the greatest monad interacting
with a given comonad is its dual whereas for monads
it does not lift like this; for the greatest comonad in-
teracting with a monad, the Sweedler dual is needed
(Section 3).

(iii) We relate monad-comonad interaction laws to stateful
runners (Section 4).

(iv) Using the Day convolution and duoidal categories, we
recast monad-comonad interaction laws as monoid-
comonoid interaction laws, and relate them to two
standard constructions: Chu spaces and Hasegawa’s
glueing (Section 5). This gives us a method for com-
puting the Sweedler duals of free monoids (monads)
and their quotients by equations.

We consider a number of examples of interaction laws. We
calculate the dual of a functor and Sweedler dual of a monad
in a number of cases, but we also demonstrate that some-
times the dual of a functor or the Sweedler dual of a monad
is either completely or somewhat degenerate, which has the
consequence that any interaction laws and runners are then
necessarily trivial or limited. (The simplest of those cases
is when the functor comes with a nullary operation, which
means that there is an exception effect.) This is not a defect
in the definitions of interaction laws or runners. It is a mani-
festation of the fact that not every denotationally motivated
notion of computation admits operational semantics that
rely on state only. A remedy that is both mathematically and
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practically well-motivated is provided by residual functor-
functor interaction laws, monad-comonad interaction laws
and stateful runners as generalizations where the machine
need not be able to perform all effects of the computation,
some residual effects can remain after interaction or running
(see the end of Section 2).1

Plotkin and Pretnar’s effect handlers [33] are a mechanism
for treating effects inside an effectful program. On the theo-
retical level, handlers are a straightforward thing—they are
just monad algebras or models—but they are a very useful
concept practically. The novelty of this paper lies in a new
perspective on the scenario where a program’s effects are
performed by an external machine in an interaction. In the
categorical semantics literature, this scenario has been stud-
ied in a small number of papers on comodels (see Section 6 for
a brief review). We contend that the phenomena surrounding
this kind of interaction admit elegant explanations in terms
of constructions developed elsewhere in mathematics. One
of the points we would like to make is that it is useful to
consider not only canonical interactions between a notion
of computation and its dual, but also general interactions.

We assume the reader to be familiar with adjunctions /
monads / comonads, extensive categories [12], Cartesian
closed categories, ends/coends (the end-coend calculus [10,
23]). In a nutshell, extensive categories are categories with
well-behaved finite coproducts.

Throughout most of the paper (Sections 2–4), we work
with one fixed base category C that we assume to be exten-
sive with finite products. For some constructions (the dual
of a functor), we also need that C is Cartesian closed. For the
same constructions, we also use certain ends that we either
explicitly show to exist or only use when they happen to
exist. We also rely on Cartesian closedness in most examples.

2 Functor-functor interaction
We begin with functor-functor interaction, to then proceed
to the monad-comonad interaction laws in the next section.

2.1 Functor-functor interaction laws
In a functor-functor interaction law, computations over a
set of values X are elements of FX where F is a given func-
tor fixing the notion of computation considered. Machine
behaviors over a set of states Y are elements of GY where
G is another given functor. Any allowed computation and
any allowed machine behavior can help each other reach a
return value and a final state by interacting as prescribed.
We define an functor-functor interaction law on C to be

given by two endofunctors F , G together with a family of
maps

ϕX ,Y : FX ×GY → X × Y

natural in X and Y .

1 The details can be found in the full version of this paper [22, Sec.5].

Example 2.1. The archetypical example of a functor-functor
interaction law is defined by FX = A ⇒ X , GY = A × Y ,
and ϕ ( f , (a,y)) = ( f a,y) for some fixed object A. But
we can also take, e.g., FX = A ⇒ X , GY = C × Y , and
ϕ ( f , (c,y)) = ( f (h c ),y) for some fixed map h : C → A.

Example 2.2. A more interesting example is obtained by
taking FX = A⇒ (B×X ),GY = A× (B ⇒ Y ), ϕ ( f , (a,д)) =
let (b,x ) ← f a in (x ,дb). We can vary this by taking GY =
(A⇒ B) ⇒ (A×Y ) and ϕ ( f ,h) = let ⟨f0, f1⟩ ← f ; (a,y) ←
h f0 in ( f1a,y).

Example 2.3. If C has the relevant initial algebras and final
coalgebras, we can get interaction laws by iterating the above
interactions, e.g., with FX = µZ .X + (A ⇒ (B × Z )) and
GY = νW .Y × (A × (B ⇒W )). We will shortly explain the
construction of ϕ in this case.

An interaction law map between (F ,G,ϕ), (F ′,G ′,ϕ ′) is
given by natural transformations f : F → F ′, д : G ′ → G
such that

FX ×GY
ϕX ,Y // X × Y

FX ×G ′Y

id×дY 33

fX×id
++
F ′X ×G ′Y

ϕ′X ,Y // X × Y

Interaction laws form a category IL(C), where the iden-
tity on (F ,G,ϕ) is (idF , idG ), and the composition of ( f ,д) :
(F ,G,ϕ) → (F ′,G ′,ϕ ′) and ( f ′,д′) : (F ′,G ′,ϕ ′) →
(F ′′,G ′′,ϕ ′′) is ( f ′ ◦ f ,д ◦ д′).
The composition monoidal structure of [C,C] induces

a similar monoidal structure on the category IL(C). The
tensorial unit is (Id, Id, idId×Id). The tensor of (F ,G,ϕ) and
(J ,K ,ψ ) is (F · J ,G ·K ,ψ ◦ϕ · (J ×K )). The tensor of ( f ,д) :
(F ,G,ϕ) → (F ′,G ′,ϕ ′) and (j,k ) : (J ,K ,ψ ) → (J ′,K ′,ψ ′) is
( f · j,д · k ).2

2.2 Two degeneracy results
Here are two simple degeneracy results. We first recall the
notion of operation for monads and functors.

A comment on operations. The concept of (algebraic)
operation of a monad can be defined in several ways. Given
a monad T , an n-ary operation of T can be defined to be
a natural transformation c ′X : (TX )n → TX (where Xn is
n-fold product of X with itself) satisfying

(TTX )n

(µX )n ��

c ′TX // TTX
µX��

(TX )n
c ′X // TX

This is the format used by Plotkin and Power [31]. Alter-
natively, we can say that it is a natural transformation cX :
Xn → TX and drop the requirement of commutation with µ,
as done by Jaskelioff and Moggi [21].
2See [22, Sec. 2] for proofs.
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In this paper, we prefer to work with operations as maps
cX : Xn → TX because this format is intuitive and economic
in proofs by diagram chasing, but also because it makes sense
already for functors and pointed functors. For operations
associated to functors, this format allows one to express
equations where both sides are applications of an operation
to variables, e.g., commutativity. For operations of pointed
functors, one can state flat equations, e.g., idempotence of an
operation cX : X × X → FX of a pointed functor F = (F ,η)
can be written as cX ◦ ⟨idX , idX ⟩ = ηX .

Functors with a nullary operation. For the functor
MaybeX = (just : X ) + (nothing : 1), it should be clear
intuitively that it cannot have a nondegenerate interacting
functor: from the element nothing0 ofMaybe 0, one cannot
possibly extract an element of 0. Formally, the following is a
theorem: If a functor F has a nullary operation, i.e., comes
with a family of maps cX : 1→ FX natural in X ,3 then any
interacting functorG is constant zero, i.e.,GY � 0 for any Y .
Indeed, for any Y , we have the map

GY
⟨!, id⟩ // 1 ×GY

c0×id // F0 ×GY
ϕ0,Y // 0 × Y fst // 0

Since the initial object of an extensive category is strict (any
map to 0 is an isomorphism), we can conclude that GY � 0.
The theorem applies to Maybe since it comes with a nullary
operation nothingX : 1→ MaybeX .

Functorswith a commutative binary operation. A sim-
ilar no-go theorem holds for commutative binary operations:
If a functor F has a commutative binary operation, i.e., comes
with a family of maps cX : X×X → FX natural inX such that
cX = cX ◦symX ,X , then any interacting functorG is constant
zero, i.e., GY � 0 for any Y . Indeed, let B = (tt : 1) + (ff : 1).
Then, for any Y , the map

fY = GY
⟨!, id⟩ // 1 ×GY

⟨tt,ff⟩×id// (B × B) ×GY
cB×id //

FB ×GY
ϕB,Y // B × Y

fst // B

has the property that not◦ fY = fY . From this by extensivity,
fY factors through 0, i.e., we have a map f ′Y : GY → 0, so
again GY � 0.4

The degeneracy problem can be overcome by switching to
a residual version of interaction laws. Given a monad R on
C, an R-residual functor-functor interaction law is given by
two endofunctors F ,G and a family of maps ϕ : FX ×GY →
R (X × Y ) natural in X , Y . The monoidal structure of the
category IL(C,R) of R-residual functor-functor interaction
laws relies on the monad structure of R. Typically, one would
use the maybe, finite nonempty multiset or finite multiset
monad as R.5.
3See [22, Sec. 2] for a more detailed discussion of operations of functors
and monads.
4For a full proof, see [22, Sec. 2].
5For lack of space, we discuss residual functor-functor and monad-comonad
interaction only in [22, Sec. 5].

2.3 On the structure of IL(C)
We now look at some ways to construct functor-functor
interaction laws systematically.

“Stretching”. Given a functor-functor interaction law
(F ,G,ϕ) and natural transformations f : F ′ → F and
д : G ′ → G, we have a functor-functor interaction law
(F ′,G ′,ϕ ◦ ( f × д)).

Self-duality. For any functor-functor interaction law
(F ,G,ϕ), we have another functor-functor interaction law
(F ,G,ϕ)rev = (G, F ,ϕrev) where ϕrevX ,Y = symY ,X ◦ ϕY ,X ◦

symFX ,GY . This objectmapping extends tomaps by ( f ,д)rev =
(д, f ), so we have a functor (−)rev : (IL(C))op → IL(C). The
functor (−)rev is an isomorphism between (IL(C))op and
IL(C).

The final functor-functor interaction law. The final
functor-functor interaction law is (1, 0,ϕ) where

ϕX ,Y = 1 × 0 snd // 0 ? // X × Y

By self-duality, the initial functor-functor interaction law is
(0, 1,ϕrev).

Product of two functor-functor interaction laws. Given
two functor-functor interaction laws (F0,G0,ϕ0) and
(F1,G1,ϕ1), their product is (F0 × F1,G0 +G1,ϕ) where

ϕX ,Y =

(F0X × F1X ) × (G0Y +G1Y )
rdist //

(F0X × F1X ) ×G0Y + (F0X × F1X ) ×G1Y
fst×id+snd×id //

F0X ×G0Y + F1X ×G1Y
ϕ0X ,Y +ϕ1X ,Y //

X × Y + X × Y
∇ // X × Y

By self-duality, the coproduct of (G0, F0,ϕ
rev
0 ) and (G1, F1,ϕ

rev
1 )

is (G0 +G1, F0 × F1,ϕ
rev).

An initial algebra-final coalgebra construction. As-
sume that C has the relevant initial algebras and final coalge-
bras. Given functors F ,G : C × C → C and a family of maps
ϕX ,Y ,W ,Z : F (X ,Z ) × G (Y ,W ) → X × Y + Z ×W natural
in X ,Y ,Z ,W . Then we have an interaction law (F ′,G ′,ϕ ′)
where F ′X = µZ . F (X ,Z ), G ′X = νW .G (Y ,W ) and ϕ ′ is
constructed as follows. We equip G ′Y ⇒ (X × Y ) with an
F (X ,−)-algebra structure θ 0X ,Y by currying the map

θX ,Y =

F (X ,G ′Y ⇒ (X × Y )) ×G ′Y
id×outG (Y ,−) //

F (X ,G ′Y ⇒ (X × Y )) ×G (Y ,G ′Y )
ϕX ,Y ,G′Y⇒(X×Y ),G′Y //

X × Y + (G ′Y ⇒ (X × Y )) ×G ′Y
id+ev //

X × Y + X × Y
∇ // X + Y
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The map ϕ ′X ,Y is obtained by uncurrying the corresponding
unique map ϕ0X ,Y : F ′X → G ′Y ⇒ (X × Y ) from the initial
F (X ,−)-algebra.

Restricting to fixed F orG. Sometimes it is of interest to
focus on interaction laws of a fixed first functor F or a fixed
second functorG (and accordingly on interaction law maps
with the first resp. the second natural transformation the
identity natural transformation on F resp.G). We denote the
corresponding categories by IL(C) |F ,− and IL(C) |−,G . The
isomorphism of categories IL(C)op � IL(C) given by (−)rev

restricts to (IL(C) |F ,−)op � IL(C) |−,F .
The final object of IL(C) |F ,− is (F , 0,ϕ) where

ϕX ,Y = FX × 0 snd // 0 ? // X × Y

By self-duality, the initial object of IL(C) |−,F is (0, F ,ϕrev).
About the initial object of IL(C) |F ,− we will see in the next
subsection.

2.4 Functor-functor interaction in terms of the dual
If C is Cartesian closed, then we can define the dual G◦ of
an endofunctor G on C by

G◦X =
∫
YGY ⇒ (X × Y )

provided that this end exists, and the dual д◦ : G◦ → G ′◦ of
a natural transformation д : G ′ → G by

д◦X =
∫
YдY ⇒ (X × Y )

This construction is contravariantly functorial, i.e., if the
dual is everywhere defined, then we have (−)◦ : [C,C]op →
[C,C]. The existence of all the ends required for this is a
strong condition (e.g., a small category that has all limits
under classical logic is necessarily a preorder by an argument
by Freyd [24]). But for well-definedness and functoriality
of (−)◦ in the general case, it suffices to restrict it to those
endofunctors on C that happen to have the dual or, if one
so wishes, to some well-delineated smaller class of functors
that are guaranteed to have it (e.g., to finitary functors if C
is locally finitely presentable). For (−)◦ to be a contravariant
endofunctor on some full subcategory of [C,C], we can
restrict it to those endofunctors on C that are dualizable
any finite number of times or to some other class of functors
closed under the dual. Throughout this paper, we deliberately
ignore this existence issue: we either explicitly prove for the
ends of interest that they exist or we use such ends on the
assumption that they happen to exist.

We have

∫
Y C (GY ,

F ◦Y︷                ︸︸                ︷∫
X FX ⇒ (Y × X )) �

∫
Y ,X C (GY × FX ,Y × X )

�
∫
X ,Y C (FX ×GY ,X × Y ) �

∫
X C (FX ,

∫
YGY ⇒ (X × Y )︸                ︷︷                ︸

G◦X

)

where by the top-level ends we just indicate collections (not
necessarily sets) of natural transformations, so existence is
not an issue.

Thus, to have a functor-functor interaction law of F , G is
the same as to have a natural transformation ϕ : F → G◦ or
a natural transformation ϕ : G → F ◦.

From the second one of these bijections, we have a canon-
ical interaction between a functor F and its dual F ◦ (take
G = F ◦ and ϕ = idF ◦ ). Moreover, every interaction law
between F and G factors uniquely through this canonical
interaction law between F and F ◦.

Under the first of the identifications above, an interaction
lawmap between (F ,G,ϕ) and (F ′,G ′,ϕ ′) is given by natural
transformations f : F → F ′ and д : G ′ → G satisfying
д◦ ◦ ϕ = ϕ ′ ◦ f . Under the second one, an interaction law
map between (F ,G,ϕ) and (F ′,G ′,ϕ ′) is given by natural
transformations f : F → F ′ and д : G ′ → G satisfying
ϕ ◦ д = f ◦ ◦ ϕ ′.

We have thus established that these categories are isomor-
phic:
(o) the category IL(C) of functor-functor interaction laws;
(i) the comma category [C,C] ↓ (−)◦ of triples of two

functors F ,G and a natural transformation F → G◦;
(ii) the comma category (−)◦op ↓ [C,C]op of triples of two

functors F ,G and a natural transformation G → F ◦.
From these observations it is immediate that IL(C) |−,G �

[C,C]/G◦ and IL(C) |F ,− � F ◦\[C,C]op. Hence, the initial
object of IL(C) |−,G is (0,G, . . .) while the final object is
(G◦,G, . . .). The initial object of IL(C) |F ,− is (F , F ◦, . . .)while
the final object is (F , 0, . . .).

2.5 Dual for some constructions on functors
Here are constructions of the dual for some basic construc-
tions of functors.6

Dual of the identity functor. Id◦ � Id.

Duals of terminal functor, products of a functor, ini-
tial functor, coproduct of two functors. LetG Y = 1. Then
G◦X � 0.

Let G Y = A × G ′Y . Then G◦X � A ⇒ G ′◦X . A little
more generally, for G Y =

∑
a : A.G ′a Y , one has G◦X �∏

a : A. (G ′a)◦X .
Specializing to A = 0 resp. A = B, we learn: Let G Y =

0. Then G◦X � 1. Let G Y = G0 Y + G1 Y . Then G◦X �
G◦0 X ×G

◦
1 X .

Dual of exponents of the identity functor. Let GY =
A⇒ Y . Then G◦X � A × X .

Example 2.4. Let G Y = Y+ = µW .Y × (1 + W ) �∑
n : N. ([0..n] ⇒ Y ) (nonempty lists). We have G◦X �∏
n : N. ([0..n] × X ).

6For proofs, see [22, Sec. 2].
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Sometimes only a “lower bound” on the dual of a functor
constructed from some given functors can be expressed in
terms of their duals. This holds for the composition of two
general functors, incl. for exponents of a general functor.

Dual of exponents of a general functor. Let G Y =
A⇒ G ′Y . For a generalG ′, we only have a canonical natural
transformation with components A ×G ′◦ Y → G◦ Y .

Dual of composition of two general functors. For gen-
eral G0, G1, we only have the canonical natural transfor-
mation mG0,G1 : G◦0 · G

◦
1 → (G0 · G1)

◦. This hints that
(−)◦ : [C,C]op → [C,C] is not monoidal, but only lax
monoidal (see Section 3.4).

Example 2.5. Let G0 Y = A ⇒ Y , G1 Y = B × Y , so G Y =
(G0 · G1) Y = A ⇒ (B × Y ) � (A ⇒ B) × (A ⇒ Y ). The
dual of G is G◦X � (A ⇒ B) ⇒ (A × X ) rather than
(G◦0 · G

◦
1 )X � A × (B ⇒ X ) as we might perhaps expect.

We saw the interaction law ofG withG◦ in Example 2.2. The
canonical natural transformation mG0,G1 : G◦0 ·G

◦
1 → G◦ is

mG0,G1 (a, f ) = λд. (a, f (д a)).

3 Monad-comonad interaction
3.1 Monad-comonad interaction laws
In a monad-comonad interaction law, the allowed computa-
tions (the chosen notion of computation) must include “just
returning” and be closed under sequential composition, so
they are defined by a monad rather than a functor. To match
this, the allowed machine behaviors (the notion of machine
behavior) are defined by a comonad. The idea is that inter-
action of a “just returning” computation should terminate
immediately (in the initial state of the given machine be-
havior) whereas interaction of a sequence of computations
should amount to a sequence of interactions.

We define a monad-comonad interaction law on C to be
given by a monad T = (T ,η, µ ) and a comonad D = (D, ε,δ )
together with a familyψ of maps

ψX ,Y : TX × DY → X × Y

natural in X and Y (i.e., a functor-functor interaction law of
T , D whereT and D carry a monad resp. comonad structure)
such that also

X × Y X × Y

X × DY

id×εY 55

ηX×id
))
TX × DY

ψX ,Y// X × Y

TTX × DDY
ψTX ,DY// TX × DY

ψX ,Y // X × Y

TTX × DY

id×δY 44

µX×id
**
TX × DY

ψX ,Y // X × Y

(1)

Example 3.1. Take TX = A ⇒ X , DY = A × Y and
ψ ( f , (a,y)) = ( f a,y) for a fixed object A. The functors

T and D are a monad (a reader monad) resp. a comonad and
ψ meets the conditions (1).

Example 3.2. Take TX = B × X , DY = B ⇒ Y and
ψ ((b,x ),д) = (x ,дb) for a fixed monoid B. The functors
T , D are a monad (a writer monad) resp. a comonad andψ
meets the requisite conditions.

Example 3.3. TakeTX = A⇒ (B×X ), DY = A× (B ⇒ Y ),
ψ ( f , (a,д)) = let (b,x ) ← f a in (x ,дb) for a fixed monoid
B acting on a fixed object A. The functors T , D are a monad
(an update monad [6]) resp. a comonad and ψ meets the
requisite conditions.

Example 3.4. Take TX = µZ .X + (A ⇒ (B × Z )), DY =
νW .Y × (A× (B ⇒W )) for fixed objectsA, B. The functorsT
and D are a free monad and a cofree comonad and the canon-
ical natural transformationψ satisfies the two equations of
a monad-comonad interaction law.

Monad-comonad interaction laws are essentially the same
as monoid objects in the monoidal category IL(C) of functor-
functor interaction laws. To be precise, a monad-comonad in-
teraction law ((T ,η, µ ), (D, ε,δ ),ψ ) yields a monoid
((T ,D,ψ ), (η, ε ), (µ,δ )) and vice versa.
A monad-comonad interaction law map between (T ,D,ψ ),

(T ′,D ′,ψ ′) is a pair ( f : T → T ′,д : D ′ → D) of a monad
map and a comonad map that, as a pair of natural transforma-
tions between the underlying functors, is a functor-functor
interaction law morphism between the underlying functor-
functor interaction laws.
Monad-comonad interaction law maps correspond to

monoid morphisms in IL(C). Thus monad-comonad inter-
action laws form a category MCIL(C) isomorphic to the
category Mon(IL(C)).

3.2 A degeneracy result
Monads with an associative operation. Here is a de-

generacy theorem for monad-comonad interaction laws:7 If
a monad T has an associative binary operation, i.e., family
of maps cX : X × X → TX natural in X satisfying

(X × X ) × X

ass
��

ℓX
-- TX

X × (X × X )
rX

11

where

ℓX = (X × X ) × X
cX×ηX // TX ×TX

cTX // TTX
µX // TX

rX = X × (X × X )
ηX×cX // TX ×TX

cTX // TTX
µX // TX

7See [22, Sec. 3] for a proof.
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then, for any comonad D and interaction law ψX ,Y :
TX × DY → X × Y , we have

(X × X ) × X × DY

fst×id×id ��

ℓX×id // TX × DY
ψX ,Y

((
X × X × DY

cX×id // TX × DY
ψX ,Y // X × Y

X × (X × X ) × DY

id×snd×id
OO

rX×id // TX × DY
ψX ,Y

66

Example 3.5. The monad TX = X+ of nonempty lists (the
free semigroup delivering monad) comes with an associative
operation dbltX : X × X → T X defined by dblt (x0,x1) =
[x0,x1]. The degeneracy theorem tells us that, while functor-
functor interaction laws can accomplish this, no monad-
comonad interaction law can extract x1 from a list [x0,x1,x2]
and more generally any middle element xi (0 < i < n + 1)
from a list [x0, . . . ,xn+1].

Just as functor-functor interaction laws can be general-
ized to a residual variant to counteract degeneracies, so can
monad-comonad interaction laws. For a given monad R, an
R-residual interaction law is given by a monadT , a comonad
D and a family of mapsψX : TX × DY → R (X × Y ) natural
in X , Y satisfying two equations. To illustrate them at work,
let us look at two examples.8

Example 3.6. Take RX = X + 1 (the maybe monad), TX =
µZ .X + (1 + Z × Z ) (nullary-binary leaf trees for nonde-
terministic choice), DY = νW .Y × (W +W ) � (Y × B)ω

(behaviors of resolvers of binary choice). There is an obvious
R-residual monad-comonad interaction law of T and D.

Example 3.7. Take RX = TX = νZ .X + Z (the delay
monad), DY = µW .Y × (1 +W ) � Y+ (nonempty lists with
the suffixes comonad structure, the “timeout” comonad). In
theR-residual interaction ofT andD, a possibly nonterminat-
ing computation interacts with a timeout behavior. Should it
be interrupted in this process, the outcome is its remainder,
with the possible return value in it paired up with the final
state (using that R is strong). In this example, suggested to
us by Niels Voorneveld, a residual monad is needed because
the notion of computations is coinductive.

3.3 On the structure of MCIL(C)
We now explore the structure of the category MCIL(C). As
this is the category of monoid objects of IL(C), the structure
ofMCIL(C) is in many respects similar to IL(C). But there
are also important differences.

“Stretching”. Given a monad-comonad interaction law
(T ,D,ψ ), a monad morphism f : T ′ → T and a comonad
morphism д : D ′ → D, we have a monad-comonad interac-
tion law (T ′,D ′,ψ ◦ f × д).

8See [22, Sec. 5] for a detailed discussion.

Final and initial monad-comonad interaction laws.
The final monad-comonad interaction law is (1, 0,ψ ) where
ψX ,Y : 1 × 0→ X × Y is the evident map.

The initial monad-comonad interaction law is (Id, Id, idId×Id).

Product of twomonad-comonad interact. laws. Given
two monad-comonad interaction laws (T0,D0,ψ0) and
(T1,D1,ψ1), their product is (T0×T1,D0+D1,ψ ) whereψX ,Y :
(T0X × T1X ) × (D0Y + D1Y ) → X × Y is defined as in Sec-
tion 2. The product of the underlying functors of the two
monads is the underlying functor of their product. Likewise,
the coproduct of the underlying functors of the two comon-
ads is the underlying functor of their coproduct. The natural
transformation ψ agrees with these monad and comonad
structures.9

An initial algebra-final coalgebra construction. The
initial algebra-final coalgebra construction from Sec. 2 gives a
monad-comonad interaction law if we start with a parameter-
ized monadT , a parameterized comonad D [40] and a family
of maps ψX ,Y ,Z ,W : T (X ,Z ) × D (Y ,W ) → X × Y + Z ×W
natural in X ,Y ,Z ,W that agree in the sense of commutation
of the diagrams

X × Y X × Y

inl

��
X × D (Y ,W )

id×εY ,W 33

ηX ,Z ×id
++

T (X , Z ) × D (Y ,W )

ψX ,Y ,Z ,W
// X × Y + Z ×W

T (T (X , Z ), Z )
×D (D (Y ,W ),W )

ψT (X ,Z ),D (Y ,W ),Z ,W

// T (X , Z ) × D (Y ,W )
+Z ×W

ψX ,Y ,Z ,W +id

// (X × Y + Z ×W )
+Z ×W

id+inr

��

T (T (X , Z ), Z )
×D (Y ,W )

id×δY ,W 55

µX ,Z ×id **
T (X , Z ) × D (Y ,W )

ψX ,Y ,Z ,W // X × Y + Z ×W

Weget amonad-comonad interaction law (T ′,D ′,ψ ′)where
T ′X = µZ .T (X ,Z ),D ′Y = νW .D (Y ,W ) andψ ′ is defined as
in Sec. 2. The functorsT ′ and D ′ carry monad resp. comonad
structures [40] and the natural transformationψ agrees with
those.

Free monad-comonad interaction law. If C has rele-
vant initial algebras and final coalgebras, then, given an
interaction law (F ,G,ϕ), the free monad-comonad interac-
tion law is provided by the free monad F ∗ and the cofree
comonad G† and a suitable natural transformationψ ′.

The free monad is given by F ∗X = µZ .X + FZ . Its monad
structure is induced by the parameterized monad T (X ,Z ) =
X + FZ . Similarly, the cofree comonad is given by G†Y =
νW .Y × GW . Its comonad structure is induced by the pa-
rameterized comonad D (Y ,W ) = Y ×GW . In order to con-
struct ψ ′ following the construction we described in the
previous paragraph, we need to construct a family of maps
9For the coproduct of two monad-comonad interaction laws and also for
monad-comonad interaction laws from distributive laws, see [22, Sec. 3].
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ψX ,Y ,Z ,W : (X + FZ ) × (Y ×GW ) → X ×Y +Z ×W natural
in X ,Y ,Z ,W . This is defined as follows:

ψX ,Y ,Z ,W =

(X + FZ ) × (Y ×GW )
ldist //

X × (Y ×GW ) + FZ × (Y ×GW )
id×fst+id×snd //

X × Y + FZ ×GW
id+ϕZ ,W // X × Y + Z ×W

Restricting to fixedT or D. We denote the categories ob-
tained fromMCIL(C) by fixing the monadT or the comonad
D by MCIL(C) |T ,− and MCIL(C) |−,D . The final object of
MCIL(C) |T ,− is (T , 0,ψ ) where

ψX ,Y = TX × 0 snd// 0 ? // X × Y

Note that 0 is the initial comonad. The initial object of
MCIL(C) |−,D is (Id,D,ψ ) where

ψX ,Y = X × DY
id×εY // X × Y

This is because Id is the initial monad.

3.4 Monad-comonad interaction in terms of dual
and Sweedler dual

Similarly to case of functor-functor interaction laws and
maps between them, the dual allows us to obtain useful
alternative characterizations of monad-comonad interaction
laws and their maps. But a complication arises, see below.10
First, let us notice that we have, canonically, a natural

transformation e : Id→ Id◦ and, for any F ,G , a natural trans-
formation mF ,G : F ◦ ·G◦ → (F ·G )◦. These are informally
defined by eXx = λY . λy. (x ,y) : X →

∫
Y Y ⇒ (X × Y ) and

(mF ,G )X f = λY . λz. let (д,w ) ← fGY z in дY w :
∫
Y ′ FY

′ ⇒

(
∫
Y ′′ GY

′′ ⇒ (X × Y ′′)) × Y ′ →
∫
Y F (GY ) ⇒ (X × Y ). The

natural transformation e is a natural isomorphism; its inverse
e−1 : Id◦ → Id is defined by e−1X f = let (x , _) ← f 1∗ in x :∫
Y Y ⇒ (X × Y ) → X .
The data (e,m) satisfy the conditions to make (−)◦ :

[C,C]op → [C,C] a lax monoidal functor wrt. the (Id, ·)
composition monoidal structure of [C,C].
Now, as a first alternative characterization, a monad-

comonad interaction law of T and D is essentially the same
as a natural transformationψ : T → D◦ satisfying

Id
η ��

e // Id◦

ε◦��
T

ψ // D◦

T ·T
µ
��

ψ ·ψ // D◦ · D◦
mD,D // (D · D)◦

δ ◦��
T

ψ // D◦

Now, since (−)◦ : [C,C]op → [C,C] is lax monoidal, it
sends monoids in [C,C]op to monoids in [C,C], i.e., comon-
ads to monads. In particular, it sends the comonad (D, ε,δ )
to the monad D◦ = (D◦, ε◦ ◦ e,δ◦ ◦m). The conditions above
are precisely the conditions forψ to be a monad map from

10We discuss these isomorphisms of categories only on the level of objects
here.

T to D◦. Summing up, a monad-comonad interaction law of
T , D amounts to a monad mapψ : T → D◦.

As a second alternative, a monad-comonad interaction
law of T , D is given by a natural transformationψ : D → T ◦

satisfying

Id
e // Id◦

D

ε
OO

ψ // T ◦
η◦
OO D · D

ψ ·ψ // T ◦ ·T ◦
mT ,T // (T ·T )◦

D

δ
OO

ψ // T ◦
µ◦
OO (2)

Now, unfortunately, (−)◦ is not oplax monoidal, so it does
not generally send comonoids to comonoids, and T ◦ is gen-
erally not a comonad. We could define a candidate counit
for T ◦ as e−1 ◦ η◦ : T ◦ → Id, but there is generally no candi-
date for the comultiplication as we cannot invert mT ,T . So
we cannot generally say that a monad-comonad interaction
law is a comonad map from D to T ◦; the functor T ◦ is not a
comonad.

But it may be that there exists what one could informally
describe as the greatest comonad smaller (in an appropriate
sense) than T ◦. The formal object of interest here is what
we call, following the use of this word in other contexts
[18, 34, 35], the Sweedler (or finite) dual of the monad T . It
is really just the greatest among all comonads D satisfying
conditions (2).

We say that the Sweedler dual of themonadT is the (unique
up to isomorphism, if it exists) comonad T • = (T •,η•, µ•)
together with a natural transformation ι : T • → T ◦ such that

Id
e // Id◦

T •
η•
OO

ι // T ◦
η◦
OO T • ·T •

ι ·ι // T ◦ ·T ◦
mT ,T // (T ·T )◦

T •
µ•
OO

ι // T ◦
µ◦
OO (3)

and such that, for any comonad D = (D, ε,δ ) and a natural
transformation ψ satisfying conditions (2), there exists a
unique comonad map h : D → T • satisfying ψ = ι ◦ h as
summarized in the following diagrams:

Id
e // Id◦

Id

T •

η•

OO

ι // T ◦

η◦

OO

D

ε

OO

h 66
ψ

33

T • ·T •
ι ·ι // T ◦ ·T ◦

mT ,T // (T ·T )◦

D · D

h ·h 55
ψ ·ψ

22

T •

µ•

OO

ι // T ◦

µ◦
OO

D

δ

OO

h 44

ψ

11

The left-hand diagrams of (3) and (2) are secondary in this
definition. In the left-hand diagram of (3),η• is determined by
ι as η• = e−1 ◦ η◦ ◦ ι. The left-hand diagram of (2) commutes
trivially whenψ = ι ◦ h for some comonad map h.
Now, if T has the Sweedler dual, there is a bijection be-

tween monad-comonad interaction laws of T , D, i.e, natural
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transformations ψ : D → T ◦ satisfying (2), and comonad
mapsh : D → T •. Indeed, any natural transformationψ satis-
fying (2) induces a unique comonad map h such that ι◦h = ψ
by definition of T •. On the other hand, for a comonad map
h, we get a natural transformationψ satisfying (2) simply as
the composition ι ◦ h. These constructions are inverses.

To sum up, we have proved that the following categories
are isomorphic:
(o) monad-comonad interaction laws;
(i) triples of a monad T , a comonad D and a monad map

from T to D◦;
(ii) triples of a monadT , a comonad D and a natural trans-

formation from D to T ◦ subject to conditions (2);
(iii) triples of a monad T , a comonad D and a comonad

map from D to T •.
We see that the initial object ofMCIL(C) |−,D is (Id,D, . . .)

while the final object is (D◦,D, . . .). The initial object of
MCIL(C) |T ,− is (T ,T •, . . .) while the final object is (T , 0, . . .).

Calculating the Sweedler dual is a complicated matter and
we will come to it in Section 5. But here are two examples
where the dual of the underlying functor of a monad is not
a comonad and the underlying functor of the Sweedler dual
differs from the dual.

Example 3.8. In Example 2.4, we saw that the dual of the
functor TX = X+ was T ◦Y �

∏
n : N. [0..n] × Y . While the

functor T is a monad (the free semigroup delivering monad),
its dualT ◦ is not a comonad. The Sweedler dual isT •Y = Y ×
(Y+Y ),η• (y, _) = y, µ• (y, inly ′) = ((y, inly ′), inl (y ′, inly ′)),
µ• (y, inry ′) = ((y, inry ′), inr (y ′, inry ′)), with ιY : T •Y →
T ◦Y defined by ι (y, _) 0 = (0,y), ι (_, inly ′) (n + 1) = (0,y ′),
ι (_, inry ′) (n + 1) = (n + 1,y ′). The monad-comonad in-
teraction law ψX ,Y : TX × T •Y → X × Y is defined by
ψ ([x0], (y, _)) = (x0,y), ψ ([x0, . . . ,xn+1], (_, inly ′)) =
(x0,y

′),ψ ([x0, . . . ,xn+1], (_, inry ′)) = (xn+1,y
′).

Example 3.9. We learned in Example 2.5 that the dual of
the functorTX = A⇒ (B×X ) isT ◦Y = (A⇒ B) ⇒ (A×Y ).
But the Sweedler dual of T as a monad when B is a monoid
acting on A is T •Y = A × (B ⇒ Y ), ι (a, f ) = λд. (a, f (д a)).
In Example 3.3, we showed the monad-comonad interaction
law of T and T •.

4 Stateful running
Monad-comonad interaction laws are related to stateful run-
ners as introduced by Uustalu [41]. Next we present the basic
facts about runners using the Sweedler dual and then explain
the connection to monad-comonad interaction laws.

4.1 Runners
A runner is similar to a monad-comonad interaction law but
the allowed machine behaviors are restricted to operate on a
fixed state set and their dynamics is also fixed (in the sense
that, for any prospective initial state, there is a behavior

pre-determined). Only the initial state is not fixed. The state
set is manifest but the notion of machine behavior and the
pre-determined dynamics are coalesced with the interaction
protocol into the natural transformation that is the runner.
The runner is a polymorphic function sending any allowed
computation and initial state into a return value and a final
state.

Given a monad T = (T ,η, µ ) on C, we call a (stateful)
runner of T an object Y with a family θ of maps

θX : TX × Y → X × Y

natural in X , satisfying

X × Y
ηX×id ��

X × Y

TX × Y
θX // X × Y

TTX × Y
µX×id ��

θTX // TX × Y
θX // X × Y

TX × Y
θX // X × Y

Example 4.1. We revisit Ex. 2.5 about the update monad
TX = A⇒ (B × X ) defined by an action ↓ : A × B → A of a
monoid B on an objectA. An update lens [5] is an object Y to-
gether with maps lkp : Y → A,upd : Y×B → Y such that lkp
is a map between the B-sets (Y ,upd ) and (A,↓). Any update
lens gives us a runner ofT viaθX : (A⇒ (B×X ))×Y → X×Y
defined by θ ( f ,y) = let (b,x ) ← f (lkp y) in (x ,upd (y,b)).
In fact, runners of this monad are in a bijection with up-
date lenses and those in turn are essentially the same as
coalgebras for the comonad DY = A × (B ⇒ Y ).

A runner map between (Y ,θ ), (Y ′,θ ′) is a map f : Y → Y ′

satisfying

TX × Y
θX //

TX×f ��

X × Y
X×f��

TX × Y ′
θ ′X // X × Y ′

Runners and their maps form a category Run(T ).
Like monad-comonad interaction laws and maps between

them, runners and maps between them admit a number of
alternative characterizations.11

The first one is that runners of T are essentially the same
as objects Y endowed with a monad map ϑ : T → StY

where StY = (StY ,ηY , µY ) is the state monad for Y whose
underlying functor is defined by StYX = Y ⇒ (X × Y ). This
is via the bijection of natural transformations∫

XC (TX × Y ,X × Y ) �
∫
XC (TX ,Y ⇒ (X × Y )︸          ︷︷          ︸

StYX

)

Under this bijection, the runner conditions amount to the
monad map conditions.

X
ηX ��

X

ηYX��
TX

ϑX // StYX

TTX
µX ��

ϑTX // StYTX
StY ϑX // StY StYX

µYX��
TX

ϑX // StYX

11We discuss them here on the level runners only. In [22, Sec. 4], we develop
the isomorphisms of categories in more detail, also accounting for runner
maps.
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Second, a runner of the monad T is also essentially the
same thing as a coalgebra (Y ,γ ) of the functor T ◦ satisfying
the conditions

Y
eY // Id◦Y

Y
γ // T ◦Y

η◦Y
OO Y

γ // T ◦Y
T ◦γ // T ◦T ◦Y

(mT ,T )Y// (T ·T )◦Y

Y
γ // T ◦Y

µ◦Y
OO

(4)
This is because of the bijection∫

XC (TX × Y ,X × Y ) �
∫
XC (Y ×TX ,Y × X )

� C (Y ,
∫
XTX ⇒ (Y × X )︸                ︷︷                ︸

T ◦Y

)

Recall that the functorT ◦ is generally not a comonad asmT ,T
is not invertible, so we cannot generally speak of functor
coalgebras satisfying conditions (4) as comonad coalgebras.
Lastly, recall that the costate comonad for an object Y is

defined by CostY = (CostY , εY ,δY ) is defined by CostYZ =
(Y ⇒ Z )×Y , εY ( f ,y) = f y, δY ( f ,y) = (λy ′. ( f ,y ′),y). This
gives us a third characterization: a runner is essentially the
same as an object Y together with a natural transformation
ζ between the underlying functor of the costate comonad
CostY and the functor T ◦ satisfying

Id
e // Id◦

CostY
εY
OO

ζ // T ◦
η◦
OO CostY · CostY

ζ ·ζ // T ◦ ·T ◦
mT ,T // (T ·T )◦

CostY
δY
OO

ζ // T ◦
µ◦
OO

(5)
This is because of the bijection

C (Y ,T ◦Y ) �
∫
ZC (Y ⇒ Z ,Y ⇒ T ◦Z )

�
∫
ZC ((Y ⇒ Z ) × Y︸          ︷︷          ︸

CostY Z

,T ◦Z )

(The first bijection is an internal version of the Yoneda lemma,
which applies as T ◦ is necessarily strong.) If the Sweedler
dual comonadT • of themonadT exists, thenwe can continue
this reasoning. We see that a runner is the essentially the
same as an object Y with a comonad morphism between
CostY and T • and that is further essentially the same as an
object Y with a comonad coalgebra of T •.

Summing up, we have established that the following cate-
gories are isomorphic:

(o) runners of T ;
(i) objects Y with a monad map from T to StY ;
(ii) functor coalgebras of T ◦ subject to conditions (4);
(iii) objects Y with a natural transformation from CostY

to T ◦ subject to conditions (5);
(iv) objects Y with a comonad map from CostY to T •;
(v) comonad coalgebras of T •.

4.2 Runners vs. monad-comonad interaction laws
Monad-comonad interaction laws of T , D are in a bijection
with D-coalgebraicT -runner specs by which we mean carrier-
preserving functors betweenCoalg(D) andRun(T ), i.e., func-
tors Ψ : Coalg(D) → Run(T ) such that

Coalg(D)

U ((

Ψ // Run(T )

Uww
C

Indeed, given a monad-comonad interaction law ψ , we
can define a runner spec Ψ by

(Ψ (Y ,γ ))X = (Y , TX × Y
id×γ // TX × DY

ψX ,Y // X × Y )

In the opposite direction, given a runner spec Ψ, we build a
interaction law from the cofree coalgebras of D. For any Y ,
we have the cofree coalgebra (DY ,δY ) and define a monad-
comonad interaction law ϕ by

ϕX ,Y = TX × DY
Ψ(DY ,δY )X // X × DY

id×εY // X × Y

A pair of a monad map f : T → T ′ and a comonad map
д : D ′ → D is an interaction law map between (T ,D,ψ ) and
(T ′,D ′,ψ ′) iff the corresponding coalgebraic runner specs
satisfy

Coalg(D) Ψ // Run(T )

Coalg(D ′)
Coalg(д)

OO

Ψ′ // Run(T ′)
Run(f )
OO

(Notice that Coalg(−) : Comnd(C) → CAT and Run(−) :
(Mnd(C))op → CAT.) So the categories of monad-comonad
interaction laws and coalgebraic runner specs are isomor-
phic.
More modularly, but assuming that all Sweedler duals

exist, the isomorphism of the categories of monad-comonad
interaction laws and coalgebraic runner specs follows from
the following sequence of isomorphisms of categories, using
that Run(T ) � Coalg(T •):
(o) monad-comonad interaction laws;
(i) triples of a monad T , a comonad D and a comonad

map between D, T •;
(ii) triples of a monad T , a comonad D and a carrier-

preserving functor between Coalg(D), Coalg(T •);
(iii) coalgebraic runner specs.

5 Monoid-comonoid interaction
Exploiting that monads and monad-like objects like arrows
or lax monoidal functors (“applicative functors”) are monoids
has turned out to be very fruitful in categorical semantics
(see, e.g., [11, 21, 37]). We now explore this perspective by
abstracting monad-comonad interaction laws into monoid-
comonoid interaction laws. This leads us to further known
concepts and methods from category theory.
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5.1 Interaction laws and Chu spaces
The first step in generalizing interaction laws to monoids
and comonoids is to account for interaction laws as maps
in a general category. Recall that the Day convolution [13]
of functors F ,G : C → C where C is a category with finite
products is given by

(F ⋆G )Z =
∫ X ,Y

C (X × Y ,Z ) • (FX ×GY )

provided that this coend exists. If C is Cartesian closed
and has enough coends, then ([C,C], Id,⋆) is a symmetric
monoidal category. Moreover, with enough ends, the functor
−⋆G has as a right adjoint the functor G −⋆ − defined by

(G −⋆ H )X =
∫
YGY ⇒ H (X × Y )

Note thatG◦ = G −⋆ Id. (Like in Section 2, if C does not have
all necessary coends and ends, one has to restrict [C,C], e.g.,
to the full subcategory of finitary functors if C lfp, cf. [15].)
By reasoning about natural transformations, we see that

interaction laws for a pair of functors F and G amount to
maps ϕ : F ⋆G → IdC :∫

X ,YC (FX ×GY ,X × Y )

�
∫
X ,Y ,Z Set(C (X × Y ,Z ),C (FX ×GY ,Z ))

�
∫
ZC ((F ⋆G )Z ,Z )

We see that a functor-functor interaction law is a triple
(F ,G,ϕ : F ⋆G → IdC ), i.e., a Chu space [7] over the object
IdC wrt. the Day convolution symmetric monoidal closed
structure on [C,C]. An interaction law map is a Chu space
map under this view, so the category IL(C) is isomorphic to
the category Chu([C,C], IdC ).

This is nice, but not fine-grained enough for developing an
abstract foundation for our theory. The canonical symmetric
monoidal structure on Chu(F ,H ) is based on the symmetric
monoidal closed structure of the base category F , which
in our case is the Day convolution, and uses pullbacks. But
we are interested in a different monoidal structure on IL(C),
the one based on composition that has monad-comonad
interaction laws as monoids. We introduce this monoidal
structure through the characterization of Chu categories as
comma categories by Pavlovic [29] and Hasegawa’s result
about monoidal structures on categorical glueing [17].

5.2 Interaction laws and Hasegawa’s glueing
Pavlovic [29] noticed that, for any monoidal closed category
(F ,⋆,−⋆) and an object R of F , Chu(F ,R) is isomorphic
to the comma category F ↓ (−)◦ where G◦ = G −⋆ R.
We next assume another monoidal structure (I , ⊗) on F ,
and suitable data to make (−)◦ a lax monoidal functor of
type (F , I , ⊗)op → (F , I , ⊗). The following construction by
Hasegawa [17] (cf. also [3]) allows us to equip F ↓ (−)◦ with
a monoidal structure derived from (I , ⊗).
Given two monoidal categories F = (F , I F , ⊗F ),

G = (G, I G, ⊗G ) and a lax monoidal functor ((−)◦, e,m) :

G → F . The comma category F ↓ (−)◦ carries a monoidal
structure given by

I = (I F , I G, I F
e // (I G )◦ )

(F ,G,ϕ) ⊗ (F ′,G ′,ϕ ′) = (F ⊗F F ′,G ⊗G G ′,

F ⊗F F ′
ϕ⊗Fϕ′// G◦ ⊗F G ′◦

mG,G′// (G ⊗G G ′)◦ )

We carry out this construction of a monoidal structure
on the comma category, starting from the duoidal category
(F , I , ⊗, J ,⋆) closed wrt. ⋆ [3, 15]. This is a category with
two monoidal structures, and among its data are a map χ :
I⋆I → I and a family ofmaps ξF ,F ′,G,G′ : (F⊗F ′)⋆(G⊗G ′) →
(F⋆G )⊗ (F ′⋆G ′) natural in F , F ′,G,G ′. If now R is an object
of F with a monoid structure (ηR , µR ) wrt. (I , ⊗), the functor
(−)◦ : F op → F given by G◦ = G −⋆ R is lax monoidal wrt.
the (I , ⊗) monoidal structure since as witnesses e,m of lax
monoidality we have the curryings of

e′ = I ⋆ I
χ // I

ηR // R

m′G,G′ = (G◦ ⊗ G ′◦) ⋆ (G ⊗ G ′)
ξ //

(G◦ ⋆G ) ⊗ (G ′◦ ⋆G ′)
ev⊗ev // R ⊗ R

µR // R

As F , G = F op and (−)◦ in the presence of a monoid struc-
ture wrt. (I , ⊗) on R fulfill the assumptions of the construc-
tion, F ↓ (−)◦ acquires the desired (I , ⊗) based monoidal
structure.
To recover R-residual monad-comonad interaction laws,

we take (F , I , ⊗, J ,⋆,−⋆) to be [C,C] with its composition
monoidal and Day convolution symmetric monoidal closed
structures and R to be a monad. Then from the isomorphism

F ↓ (−)◦ � Chu([C,C],R) � ILR (C),

the Chu category acquires a composition-based monoidal
structure. A monoid with respect to this monoidal structure
is what we will recognize as a R-residual monoid-comonoid
interaction law in the duoidal category F .

If R = Id, the notions of dual and Sweedler dual emerge as
follows. As the ⋆monoidal structure is symmetric, we have

F op
(−)◦

))
⊤ F

(−)◦op
jj

since, for any F ,G ∈ |[C,C]|,

F (F ,G◦) � F (F ⋆G, Id)

� F (G ⋆ F , Id) � F (G, F ◦) � F op (F ◦,G )

Because of this adjunction, we call (−)◦ the dual.
Since the functor (−)◦ is lax monoidal, it lifts to a functor

between the respective categories of monoids (bear in mind
that Mon(F op) = (Comon(F ))op):

(Comon(F ))op
(−)◦ //

U ��

Mon(F )
U��

F op (−)◦ // F

(6)
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However, its left adjoint (−)◦op is only oplax monoidal,
but not lax monoidal, so we cannot get a similar diagram
for (−)◦op. We want to find a substitute for this lifting, in
particular, we want a left adjoint for the lifted (−)◦:

(Comon(F ))op

(−)◦

++
⊤ Mon(F )

(−)•op
ll

We obtain not a natural isomorphism between two functors
(Comon(F ))op → F as in diagram (6), but instead only a
natural transformation ι : (−)◦op ·U → U · (−)•op between
two functorsMon(F ) → F op.

(Comon(F ))op

U ��

Mon(F )
(−)•opoo

U���� ι

F op F
(−)◦op

oo

We call the functor (−)• : (Mon(F ))op → Comon(F ) the
Sweedler dual.

5.3 Sweedler dual for some constructions of
monoids

Aswe have seen in the setting ofmonad-comonad interaction
laws, it is not always easy to find the Sweedler dual. In
the remainder of this section, we focus on the cases of free
monoids and free monoids quotiented by “equations” for one
method to compute them.
Let F ∗ be the free monoid on F . In this case, if the cofree

comonoid on F ◦ exists, then it is the Sweedler dual of F ∗,
i.e., we can show that (F ∗)• = (F ◦)†. This is seen from the
following calculation:

(Comon(F ))op ((F ◦)†,D)

� Comon(F ) (D, (F ◦)†) � F (UD, F ◦)

� F op (F ◦,UD) � F (F , (UD)◦)

� F (F ,UD◦) � Mon(F ) (F ∗,D◦)

This observation facilitates calculation of Sweedler duals
of free monads (i.e., theories without equations). A natural
question is to ask what happens in the presence of equations.
Suppose that we have a monoid T given as a coequalizer

E∗
f L //
дL

// F ∗ // T

in Mon(F ) where (−)L is the left transpose of the free /
forgetful adjunction between F and Mon(F ). The maps
f ,д : E → UF ∗ of F represent a system of equations in a set
of variables E, and we can think ofT as being the monoid ob-
tained by calculating the free monoid and then quotienting
by the equations. We can try to obtain the Sweedler dual ofT
by constructing a “dual” diagram as follows. We can instanti-
ate ι at F ∗ and obtain a map ιF ∗ : (UF ∗)◦ → U ((F ∗)•) in F op,

i.e., a map ιF ∗ : U ((F ∗)•) → (UF ∗)◦ in F . By composing
with f ◦ and д◦, we get:

U ((F ◦)†) = U ((F ∗)•)
ιF ∗ // (UF ∗)◦

f ◦ //
д◦

// E◦

The Sweedler dual T • of T is now obtained as an equalizer
in Comon(F ) by

T • // (F ◦)†
(f ◦◦ιF ∗ )R //
(д◦◦ιF ∗ )R

// (E◦)†

where (−)R is the right transpose of the forgetful/cofree
adjunction between Comon(F ) and F .

Example 5.1. Revisiting Example 3.8, the nonempty list
monad TX = X+ arises as the quotient of the free monad
T0X = µZ .X + Z × Z by the associativity equation for its
operation cX : X × X → T0X . The Sweedler dual of T is
T •Y = Y × (Y + Y ). It is the subcomonad of the cofree
comonad T •0Y = νW .Y × (W +W ) by the coassociativity
coequation for its cooperation c ′Y : T •0Y → Y + Y . The
comonad T • is relatively degenerate because coassociativity
entails corectangularity (while associativity does not entail
rectangularity).12

Example 5.2. Going back to Example 3.9, the update monad
TX = A⇒ (B × X ) where B is a monoid acting on A arises
as the quotient of the free monad T0X = µZ .X + (A ⇒
Z ) + (B ×Z ) by three equations for its operations cX : (A⇒
X ) → T0X and dX : A × X → T0X . The Sweedler dual of
the monad T is T •Y = A × (B ⇒ Y ). It is the subcomonad
of the cofree comonad T •0Y = νW .Y × (A ×W ) × (B ⇒W )
by three coequations for its cooperations c ′Y : T •Y → A × Y
and d ′Y : T •Y → B ⇒ Y .13

6 Related work
Works closest related to this paper on monad-comonad in-
teraction laws are Power and Shkaravska’s work on lenses
as comodels [36], Power and Plotkin’s study of tensors of
models and comodels [32], Abou-Saleh and Pattinson’s [1]
work on comodels for operational semantics, Møgelberg and
Staton’s work on linear usage of state [25] and Uustalu’s
work on runners [41]—the starting point for this work.

Power and Shkaravska [36] observed that lenses (which
they called arrays) are the same as comodels of the Lawvere
theory of state (coalgebras of costate comonads). Hyland,
Plotkin and Power [19] had earlier studied tensors of models
of Lawvere theories. Given the result about lenses, they felt
that a mixed tensor could be relevant for operational seman-
tics and proposed a definition. In the examples, they only con-
sidered tensors with free models, which is the relevant case.
Abou-Saleh and Pattinson [1] employed comodels and the
12In band theory, left and right rectangularity are the equations (x ∗y ) ∗z =
x ∗ z and x ∗ (y ∗ z ) = x ∗ z .
13See [22, Sec. 6] for more detail on these examples.
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tensor of free models with comodels for operational seman-
tics. Møgelberg and Staton [25] described a fully-complete
state-passing translation from a call-by-value language with
generic effects to an enriched call-by-value language with
linearly used state based on comodels of the Lawvere theory.
Uustalu [41] defined runners as a concept of independent
interest and showed that runners of a finitary monad are
in bijection with comodels of the corresponding Lawvere
theory (coalgebras of the comonad they determine), which
was also observed in [25]. He considered a number of con-
crete theories (the semigroup theory, the band theory etc.)
and worked out the corresponding comonads. Pattinson and
Schröder [28] studied equational reasoning about coterms
and gave a generic complete axiomatization of bisimilarity.
In this paper, we chose to avoid discussing monads and

comonads in terms of models and comodels of Lawvere theo-
ries. But our construction in Section 5 of the Sweedler dual of
the quotient of a free monoid by “equations” as an equalizer
entails it as a special case that the Sweedler dual of a finitary
monad is the comonad given by the comodels of the corre-
sponding Lawvere theory. It was this decision to work on
the abstraction level of monads and comonads (and higher)
that made it possible for us to recognize monad-comonad
interaction laws as monoid objects in a category arising from
Hasegawa’s construction.

Runners and therefore also interaction laws are similar to
Plotkin and Pretnar’s effect handlers [33] in that both are
about dealing with effects, but otherwise very different. The
big conceptual difference, which also explains why they have
to be different technically, is that handlers are for dealing
with effects inside a computation while runners and inter-
action laws are about having effects performed externally.14
Bauer in his excellent tutorial [8] has made this point very
strongly [8]. Effect handlers were first implemented in a pro-
gramming language Eff by Bauer and Pretnar [9] and there
is now a flurry of research in this area. Ahman and Bauer in
their new work [4] proposed a language design for (residual)
runners; they also implemented a prototype programming
language Coop.
Canonical interaction between duals or general interac-

tion have been considered many times in different contexts
on different levels of explicitness. Oles [27], who invented
lenses (he called them store shapes), did so in order to de-
scribe the semantics of Algol. Hancock and Hyvernat’s work
[16] on interaction structures centers on the canonical inter-
action law of the free monad on F ◦ and the cofree comonad
on F where F is a container functor. (Intuitionistic) linear-
logic based two-party session typing [39, 42] is very much
about canonical interaction between syntactically dual func-
tors.15 The same idea is central in game-theoretic semantics

14See [22, Sec. 7] for a technical discussion of this.
15See [22, Sec. 7] for some discussion of this.

of (intuitionistic) linear logic (formulae-as-games, proofs-as-
strategies) [2, 14]; glueing and related constructions are a
major tool, cf. [20].
The dual of a vector space is a classical construction in

algebra. The restriction to the finite (or Sweedler) dual was
studied originally by Sweedler in the theory of Hopf algebras
[38], as well as the notion of measuring morphism that is
analogous to interaction laws. Recently, Porst et al. [35] and
Hyland et al. [18] have worked out generalizations of these
constructions in categorical terms.

7 Conclusion and future work
We hope to have demonstrated that monad-comonad interac-
tion laws are a natural concept for describing interaction of
effectful computations with machines providing the effects.
They are well-motivated not only as a computational model,
but also mathematically, admitting an elegant theory based
on concepts and methods that have previously proved useful
in other mathematical contexts, such as the Sweedler dual.

There are many questions that we have not yet answered.
What are some general ways to compute the Sweedler dual?
Power’s work [36] suggests a sophisticated iterative construc-
tion based on improving approximations. What is a good
general syntax for cooperations and coequations? What can
be said about the “dual” and the Sweedler “dual” in the pres-
ence of a residual monad and how to compute them in this
situation? How to compute the Sweedler dual in some (in-
tuitionistic) linear setting adequate for session typing? A
further set of questions concerns handlers. We know how
interaction laws and handlers differ, but what are some rela-
tionships? For example, what could be some general princi-
ples for turning interaction laws into handlers?
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