Containers for Effects and Contexts

Tarmo Uustalu, Institute of Cybernetics, Tallinn

University of Oxford, 6-10 July 2015

This course

@ We will think about computational effects and contexts as
modelled with monads, comonads and related machinery.

@ We will primarily be interested in questions like: Where
do they come from? How to generate them? How many
are they?

And also: How to arrive at answers to such questions
with as little work as possible?

@ In other words, we will amuse ourselves with the
combinatorics of monads etc.

@ The main tool: Containers (possibly quotient containers).
But not today.

@ Today's ambition: Monads, monad maps and distributive
laws.

Useful prior knowledge

@ This is not strictly needed, but will help.

@ Basics of functional programming and the use of monads
(and perhaps idioms, comonads) in functional
programming.

@ From category theory:

functors, natural transformations
adjunctions

symmetric monoidal (closed) categories
Cartesian (closed) categories, coproducts
initial algebra, final coalgebra of a functor

(

@ All examples however will be for Set. :-)

@ (But many generalize to any Cartesian (closed) or
monoidal (closed) category.)

Monads

Monads

@ A monad on a category C is given by a
e afunctor T :C = C,

e a natural transformation 7 : Idec = T (the unit),
e a natural transformation p: T - T = T (the

multiplication)
such that
Tpa
TA——— T(TA) T(T(TA) —— T(TA)
77TAl \ LHA MTAl l/’A
T(TA) —a TA T(TA) — TA

@ This definition says that monads are monoids in the
monoidal category ([C,C], Idc, -).

An alternative formulation: Kleisli triples

@ A more FP-friendly formulation is this.
e A Kileisli triple is given by
e an object mapping T : |C| — |C|,
e for any object A, amapna:A— TA,
e for any map k: A— TB, a map k*: TA— TB (the
Kleisli extension operation)

such that
o if k: A— TB, then k* ona = k,
o Ny =id7a,

o ifk: A= TB, (: B — TC, then
(¢* o k)* = * o k* : TA— TC.

o (Notice there are no explicit functoriality and naturality
conditions.)

Monads = Kleisli triples

@ There is a bijection between monads and Kleisli triples.
e Given T, n, u, one defines
o ifk: A= TB, then k* = TA—5- T(TB) 22~ TB .
@ Given T (on objects only), n and —*, one defines
o if f: A— B, then)
Tf = (A_f>3£> TB) : TA— TB,

*

o pp= (TA T TA) . T(TA) — TA.

Kleisli category of a monad

@ A monad T on a category C induces a category KI(T)
called the Kleisli category of T defined by
e an object is an object of C,
a map of from A to B is a map of C from A to TB,
idl = A—“- TA,
o ifk:A—=T B, ¢:B—T C, then
toT k= At~ TB% TC

0>

@ From C there is an identity-on-objects inclusion functor J
to KI(T), defined on maps by

o if f: A— B, then
JF=AT-B " TB = A" TA T TB .

Monad algebras

@ An algebra of a monad (T,n, 1) is an object A with a
map a: TA — A such that

A T(TA) 2~ TA

TA—2= A TA—2 o

@ A map between two algebras (A, a) and (B, b) is a map h
such that
TA-""- TB

| g

AN B

@ The algebras of the monad and maps between them form
a category EM(T) with an obvious forgetful functor
U:EM(T)—C.

Computational interpretation

@ Think of C as the category of pure functions and of TA as
the type of effectful computations of values of a type A.

@ 74 : A— TA is the identity function on A viewed as
trivially effectful.

e Jf : A— TB is a general pure function f : A — B viewed
as trivially effectful.

® pa: T(TA) — TA flattens an effectful computation of an
effectful computation.

@ k*: TA — TB is an effectful function k: A— TB
extended into one that can input an effectful
computation.

@ An algebra (A a: TA — A) serves as a recipe for
handling the effects in computations of values of type A.

Kleisli adjunction

@ In the opposite direction of J : C — KI(T) there is a
functor R : KI(T) — C defined by
e RA=TA,
o ifk:A—T B, then Rk = TA—X~TB.
@ R is right adjoint to J.

KI(T) oy
g0 4 VR A:%TB
<) A— TB
N
C RB

@ Importantly, R-J = T. Indeed,
o R(JA) = TA,
o if f: A— B, then R(Jf) = (ng o f)* = Tf.
@ Moreover, the unit of the adjunction is 7.
@ J - R is the initial adjunction factorizing T in this way.

Eilenberg-Moore adjunction

@ In the opposite direction of U : EM(T) — C there is a
functor L : C — EM(T) defined by
o LA = (TA ia),
o if f:A— B, then Lf = Tf : (TA, ua) — (TB, ug).

@ L is left adjoint to U.

EM(T) —
Y (TANMA)_)(B?b)
<) A— B
C
U(B,b)

@ U-L=T. Indeed,

o U(LA) = U(TA, pia) = TA,

o if f: A— B, then U(Lf) = U(TF) = T¥.
@ The unit of the adjunction is 7.
@ L — U is the final adjunction factorizing T.

Exceptions monads

@ The functor:
o TA = E + A where E is some set (of exceptions)

@ The monad structure:
@ NaXx =inrx,
o pa(inle) =inle,
pa (inr (inle)) =inle,
pa (inr (inrx)) = inr x.
@ This is the only monad structure on this functor.

@ (This example generalizes to any coCartesian category, in
fact to any monoidal category with a given monoid.
In a coCartesian category, any object E carries exactly
one monoid structure defined by o =7¢ : 0 — E and
®=Ve:E+E—E)

Reader monads

@ The functor:

o TA=S = A where S is a set (of readable states)
@ The monad structure:

° NaX = As. X,

o upaf =MAs.fss.
@ This is the only monad structure on this functor.

@ (This example generalizes to any monoidal closed
category with a given comonoid. In a Cartesian closed
category, any object S comes with a unique comonoid
structure given by s : S — 1, As: S —- 5% S.)

Writer monads

@ We are interested in this functor:
o TA= P x A where P is a set (of updates)
@ The possible monad structures are:
o nax = (0,x),
o pua(p,(p'sx))=(P®p,x)
where (o0, ®) is a monoid structure on P (trivial update,
composition of updates)
@ Monad structures on this functor are in a bijection with
monoid structures on P.

@ (This example generalizes to any monoidal category with
a given monoid.)

State monads

@ The monad:
e TA=S5= S x Awhere S is a set (of
readable/overwritable states),
® nax = As.(s,x)
o uaf =MAs.let (s, g) =fsin g(s,x)

@ (This example works in any monoidal closed category.)

List monad and variations

@ The list monad:
o TA = List A,
o nax = [x],
® /i XSS = concat xss.

@ Some variations:

o TA = {xs: A" | xs is square-free}

o TA={xs:A*| xs is duplicate-free}
o TA=1+AXA

o TA= M A

o TA=P;A

o

non-empty versions of the above

@ Can you characterize the algebras of these monads?

Monad maps

Monad maps

@ A monad map between monads T, T’ on a category C is
a natural transformation 7 : T — T’ satisfying

A——A T(TA) 7 T/(TA) 4 T/(T'A)
nA jng MAl lM’A
TA _TA) T/A TA T/A

TA

@ Monads on C and maps between them form a category
Monad(C).

@ Monad maps are monoid maps in the monoidal category
([C,C],Id¢,) and the category of monads is the category
of monoids in ([C,C],Idc, -).

Kleisli triple maps

@ A map between two Kleisli triples T, T’ is, for any object
A, amap 74 : TA— T'A such that

® TACNA =14
o if k: A— TB, then 75 0 k* = (75 0 k)* o 7a.

@ (No explicit naturality condition on 7!)

@ Kleisli triples on C and maps between them form a
category that is isomorphic to Monad(C).

Monad maps vs. functors between Kleisli categories

@ There is a bijection between monad maps 7: T — T’
and functors V : KI(T) — KI(T’) such that

KI(T")

\/

@ This is defined by

o VA=A,
o ifk:A— TB, then Vk = A -5 TB 5 T'B.
and

o ta=V(TAYATA) . TA T A

Monad maps vs. functors between E-M categories

@ There is a bijection between monad maps 7: T — T’
and functors V : EM(T’) — EM(T) such that

Vv

EM(T') EM(T)

N

C

(Note the reversed direction.)
@ This is defined by
o V(A a)=(A,aoTa),
o if h: (A a) — (B, b), then
Vh=h: (A,aOTA) — (B,bOTB).
and
o Ta=let (T'A a) < V(T'A 1y) inao Ty

Examples: Exceptions, reader, writer monads

@ Monad maps between the exception monads for sets E,
E’ are in a bijection with pairs of an element of E/ + 1
and a function between E and E’.

(Why?)

@ Monad maps between the reader monads for sets S, S’
are in a bijection with maps between S, S.

@ Monad maps between the writer monads for monoids
(P,0,®) and (P’,0’,@’) are in a bijection with
homomorphisms between these monoids.

Examples: From exceptions to writer or vice versa

@ There is no monad map 7 from the exception monad for
a set E and the writer monad for a monoid (P, 0, ®)
(unless E = 0).

There is not even a natural transformation between the
underlying functors: it is impossible to have a map
70:0+E — P xO0.

@ Monad maps 7 from the writer monad for (P, 0, ®) to
the exception monad for E are in a bijection between
monoid homomorphisms between (P, 0, ®) and the free
monoid on the left zero semigroup on E. (Can you
simplify this condition further?)

They can be written as

Tx = PxX — (E+1)xX — ExX+1xX — E+X

Examples: Reader and state monads

@ The monad maps between the state monads for S and C
are in a bijection with lenses, i.e., pairs of functions
lkp: C — S, upd : C x S — C such that

o lkp(upd(c,s)) =s,
e upd(c,lkpc)) = c,
o upd (upd(c,s),s’) = upd(c,s).

@ Can you characterize the monad maps from the reader
monad for S to the state monad for C? The other way
around? (Be careful here!)

Examples: Nonempty lists and powerset

@ How many monad maps are there from the nonempty list
monad to itself?

@ Answer: 4, viz. the identity map, reverse, take only the
first element, take only the last element.

@ Why does taking the 2nd element not qualify? Or taking
the two first elements? (These are natural
transformations, but. . .)

@ How many monad maps are there from the nonempty list
monad to the nonempty powerset monad? The other way
around?

Compatible compositions of monads

Compatible compositions of monads

@ A compatible composition of two monads (Ty, 1o, jt0),
(T1,7m1, 1) is @ monad structure (n,) on T = To- Ty

satisfying
70-1m
To-To o To
/\ T0‘771-T0'771l lTO"’Il
ld————>ToTh To-Ti-To- i ————>To- T
T T = ! To- Ty
To'm1-mo- T;
mo-Timo-T1 no-T1
TO'Tl'TO‘Tl‘L%TO'Tl To-Tl-To-Tl m To-Tl

e Conditions 1-3 say just that Ty -7; and 79 - T; are monad
morphisms between (Ty, 1o, o) resp. (T1,m1, 111) and
(T,n,).
Condition 1 fixes that n = ng - 11; so the only freedom is
about /11

Distributive laws of monads

e A distributive law of a monad (Ty, n1, pu1) over (To, 7o, f4o)
is a natural transformation 6 : T; - Ty — To - T1 such that

0-Ty To-0
T1~T0'T0—>-T04T1~T0—>-T0~T0~T1

Ti-mo no-T1
T1-po mo-T1

- To — To - T1-To 5 To-T1

T1-60 6-Ty
T1~T1'Toﬁ-T1~T0~T1—>-T0~T1~T1

m-To To-m
p1-To To 1

- To — To - T1-To To-T1

Compatible compositions = distributive laws

@ Compatible compositions of (To, 1o, o), (T1,m1, 111) are
in a bijection with distributive laws of (Ty, 11, u1) over
(To, 70, Ho)-

@ Given 1, one recovers 6 by

Ty To-
A T T To- i —=To- Th

0= T, Ty
e Given 0, 1 is defined by

= To-T1-To-T1 UEAE To-ToTh T8 To- Th

Algebras of compatible compositions

@ Given a distributive law 6, a 6-pair of algebras is given by
a set A with a (To, no, ito)-algebra structure (A, a9) and a
(T1,m1, pa)-algebra structure (A, a;) such that

ai ao

T, A A ToA
Tlaol LToal
0
T1(ToA) A To(T1A)

@ Such pairs of algebras are in a bijection with
(T,n, u)-algebras.
e Given ag, a;, one constructs a as
o a= To(T1A) 22 ToA 2 A,
@ Given a, 3y and a; are defined by
@ g9 = TOA MA To(TlA) —a) A,

T A

o ay = 1A —% To(T1A) = A.

Any monad and an exceptions monad

@ The exceptions monad for E distributes in a unique way
over any monad (To, 7o, ft0)-
"] 9E+ ToA—} To(E+A)
G4 (inle) = no (inle),
G4 (inrc) = Toinr
@ So we have a unique monad structure on
TA = To(E + A) that is compatible with (T, 70, f10)-

@ (This generalizes to any coCartesian category, also to any
monoidal category with a comonoid.)

Any monad and a writer monad

@ There is a unique distributive law of the writer monad for
(P,0,@®) over any monad (T, 7o, f40)-

0 0:P x ToA— To(P x A)
Oa(p,c) = To(Ax.(p,x)) c.
(6 is nothing but the unique strength of Ty!)

@ So monad structures on TA = To(P x A) compatible

with (To, 70, 110) are in a bijection with monoid structures
on P.

@ (This generalizes to any Cartesian category and any
monoidal category in the form of a bijection between
strengths and distributive laws.)

Monoid actions

@ A right action of a monoid (P,0,®) on a set S is a map
$ 15 x P — S satisfying

slo=s
sd(poep)=(sip)ip

Reader and writer monads

@ Distributive laws of the writer monad for (P, 0, ®) over
the reader monad for S are in a bijective correspondence
with right actions of (P,0,®) on S.

@ The compatible composition of the two monads
determined by a right action | is

TA=S=PxA
nx = As. (o, x)
uf=2As.let (p,g)="Fs
(P, x)=g(s!lp)
in (p® p',x)

—the update monad for S, (P,0,®), |.

State logging

@ Take S to be some set (of states).

o Take P =ListS, o =[], ® = + (state logs).
°osl=s
sl(s'iss)=s"]ss

(so s | ss is the last element of s :: ss)

Reading a stack and popping

@ Take S = List E (states of a stack of elements drawn
from a set E).

@ Take P = Nat, 0 =0, ® = + (possible numbers of
elements to pop).

@ es | n = removelast n es.

Reading a stack and pushing

@ Take again S = List E (states of a stack of elements
drawn from a set E).

@ Take P = List E, o =[], & = ++ (lists of elements to
push on the stack).

@ es | es’ = est+es'.

@ (So here we choose (S,) to be the initial
(P, 0, ®)-set—which is always a possibility.)

Matching pairs of monoid actions

@ A matching pair of actions of two monoids (P, 09, Do)
and (Py,01,@1) on each other is pair of maps
\:Pl><P0—>Poand/:P1><P0—>Plsuchthat

01 \(Po = Po
(P1 @1 P5) N\« Po = P1 \« (P1 \ Po)
p1 "\ 0o = Op
p1 N\ (Po @o Py) = (P1 \« Po) Do ((P1 v Po) \« Po)
p1 v 00 = p1
P1 " (Po @0 py) = (P1 " Po) " Po
01 po =01

(pr @1 p1) v Po= (P (PL \«P0)) @1 (P} Po)

Zappa-Szép product of monoids

e A Zappa-Szép product (aka knit product, bicrossed
product, bilateral semidirect product) of two monoids
(Po, 00, ®o) and (Py, 01,®1) is a monoid structure (o, ®)
on P = Py x Py such that

o = (09, 01)
(p,01) ® (p',01) = (p @0 p', 01)
(%0, p) @ (00, p') = (00, p 1 P')
(p,01) ® (00, P') = (p, P')

@ Zappa-Szép products of (Py, 09, Bo) and (P, 01, 1) are
in a bijective correspondence with matching pairs of
actions of (Py, 09, @) and (Py, 01, B1).

@ Given &, one constructs \, and /" by

° (P1 ™\« Po;p1 " Po) = (00, p1) ® (po,01)
e Given N\, and ./, @ is defined by

o (po,p1) @ (py, P1) = (Po ©o (P1 v~ Pp), (P1 N\« Py) ©1 P1)

Two writer monads

@ Compatible compositions of writer monads for
(Po, 00, ®o) and (Py,01, 1) are in a bijection with
matching pairs of actions of the two monoids.

@ They are isomorphic to writer monads for the
corresponding Zappa-Szép products.

Combining popping and pushing

e Take (Py,00,@o) = (Nat, 0, +),
(P1,01,®1) = (List E, [], +) where E is some set.

@ es \,n=n — lengthes,
es ./ n = removelast nes.
o (n,es) @ (n',es)
= (n+ (n' — lengthes), (removelast n' es)-+-es')

@ Pairs (n, es) represent net effects of sequences of pop,
push instructions on a stack: some number of elements is
removed from and some new specific elements are added
to the stack.

Combining reading, popping, pushing

@ How do | now show that
o TA = List E = Nat x (List E x A)
is a monad?
@ This is of the form Ty - Ty - T> where
o ToA=ListE = A
o TTHA=Nat x A
e Th)DA=ListE x A
@ We already know that

o TO]_ — TO . T]_

are compatible compositions of monads.

@ We want to be sure that (To- T1) - To and To - (T T3)
are compatible compositions of monads.

@ Moreover they'd better be the same monad!

@ In terms of distributive laws, this only requires checking
the Yang-Baxter equation:

Ti-To-To Tide Ti-To-To

612-To Oo1- T2
0(10)2 Oo(12)

Tr-T1-To To-T1-T>

0o(21) Oo1)2
T>-001 To-012

TQ'TO'T]_HTO'TQ'T]_

