Comonads

Comonads

Directed containers

Directed containers

A directed container is given by

```
• S: \mathbf{Set} (shapes)
• P: S \to \mathbf{Set} (positions)
```

and

```
• \downarrow: \Pi s: S. P s \rightarrow S (subshape)

• o: \Pi \{s: S\}. P s (root position)

• \oplus: \Pi \{s: S\}. \Pi p: P s. P (s \downarrow p) \rightarrow P s (subshape positions)
```

such that

- Laws 3-5 resemble those of a monoid, laws 1-2 those of an action.

Directed container morphisms

- A directed container morphism t, q between $(S, P, \downarrow, o, \oplus)$ and $(S', P', \downarrow', o', \oplus')$ is given by
 - $t: S \rightarrow S'$
 - $q: \Pi\{s: S\}.P'(ts) \to Ps$

such that

- **2** $\forall \{s\}. o \{s\} = q (o' \{t s\})$
- Laws 2-3 are like those of a monoid morphism, law 1 that of an action morphism.
- Directed containers form a category **DCont**.

Interpretation of directed containers

- Any directed container $(S, P, \downarrow, o, \oplus)$ defines a comonad $[S, P, \downarrow, o, \oplus]^{dc} = (D, \varepsilon, \delta)$ where
 - $D : \mathbf{Set} \to \mathbf{Set}$ $D X = \Sigma s : S. P s \to X$ $D f (s, v) = (s, f \circ v)$
 - $\varepsilon : \forall \{X\}.(\Sigma s : S. P s \to X) \to X$ $\varepsilon (s, v) = v (o \{s\})$
 - $\delta: \forall \{X\}. (\Sigma s: S. P s \rightarrow X) \rightarrow \Sigma s: S. P s \rightarrow \Sigma s': S. P s' \rightarrow X$ $\delta(s, v) = (s, \lambda p. (s \downarrow p, \lambda p'. v (p \oplus \{s\} p')))$

Interpretation of directed container morphisms

• Any directed container morphism t,q between $(S,P,\downarrow,{\sf o},\oplus)$ and $(S',P',\downarrow',{\sf o}',\oplus')$ defines a comonad morphism $[\![t,q]\!]^{{
m dc}}$

between $[\![S,P,\downarrow,\mathsf{o},\oplus]\!]^{\mathrm{dc}}$ and $[\![S',P',\downarrow',\mathsf{o}',\oplus']\!]^{\mathrm{dc}}$

• [-]^{dc} is a fully faithful functor from **DCont** to **Cmnds(Set**).

Streams

- *S* = 1
- P* = Nat
- $s \downarrow p = s$
- o = 0
- $\bullet \ p \oplus p' = p + p'$

Nonempty lists

with the comultiplication structure of suffixes

•
$$Ps = [0..s]$$

•
$$s \downarrow p = s - p$$

•
$$o = 0$$

•
$$p \oplus p' = p + p'$$

with the comultiplication structure of cyclic shifts

$$\bullet$$
 $S = Nat$

•
$$Ps = [0..s]$$

•
$$s \downarrow p = s$$

•
$$o = 0$$

•
$$p \oplus \{s\} p' = (p+p') \mod s$$

Comonads \cap containers = directed containers

- Directed containers account for all those containers whose interpretation carries a comonad structure.
- More precisely, the following is a pullback in **CAT**:

$$\begin{array}{c|c} \mathbf{DCont} \cong \mathbf{Comonoid}(\mathbf{Cont}) & \xrightarrow{U} \mathbf{Cont} \\ & & & & & & & & & & & & & & \\ & & & & & & & & & & & & & \\ & & & & & & & & & & & & & \\ & & & & & & & & & & & & & \\ \mathbf{Cmnd}(\mathbf{Set}) \cong \mathbf{Comonoid}([\mathbf{Set}, \mathbf{Set}) & \xrightarrow{U} [\mathbf{Set}, \mathbf{Set}] \end{array}$$

Compatible compositions of comonads

Distributive laws of comonads

• A distributive law between comonads $(D_0, \varepsilon, \delta)$ and $(D_1, \varepsilon, \delta)$ is a natural transformation $\theta: D_0 \cdot D_1 \xrightarrow{\cdot} D_1 \cdot D_0$ such that

• Comonad structures on $D_0 \cdot D_1$ compatible with $(D_0, \varepsilon_0, \delta_0)$ and $(D_1, \varepsilon_1, \delta_1)$ are in a bijection with distributive laws.

Distributive laws of directed containers

- A distributive law between directed containers $(S_0, P_0, \downarrow_0, o_0, \oplus_0)$ and $(S_1, P_1, \downarrow_1, o_1, \oplus_1)$ is given by 3 operations
 - $t_1 : \Pi s : S_0 . \Pi v : P_0 s \to S_1 . P_1 (v (o_0 \{s\})) \to S_0$
 - $q_0: \Pi \{s: S_0\}. \Pi \{v: P_0 s \to S_1\}. \Pi p_1: P_1 (v (o_0 \{s\})). P_0 (t_1 s v p_1)) \to P_0 s$
 - $q_1 : \Pi \{s : S_0\}. \Pi \{v : P_0 s \to S_1\}. \Pi p_1 : P_1 (v (o_0 \{s\}). \Pi p_0 : P_0 (t_1 s v p_1). P_1 (v (q_0 \{s\} \{v\} p_1 p_0))$

subject to 11 laws (on next slides).

• They induce a container morphism $(t, q: (S_0, P_0) \cdot {}^{c} (S_1, P_1) \rightarrow (S_1, P_1) \cdot {}^{c} (S_0, P_0)$

•
$$t(s, v) = (v(o_0 \{s\}), t_1 s v)$$

 $q\{s, v\}(p_1, p_0) = (q_0 \{s\} \{v\} p_1 p_0, q_1 \{s\} \{v\} p_1 p_0)$

Distributive law laws

- A distribute law is required to satisfy these 11 laws.
- (Shape equations)

 - ② $\forall \{s, v\}. t_1 s v o_1 = s$
 - $\forall \{s, v, p_1, p'_1\}. \ t_1 \ s \ v \ (p_1 \oplus_1 p'_1) = t_1 \ (t_1 \ s \ v \ p_1) \left(\lambda p_0. \ v \ (q_0 \ p_1 \ p_0) \downarrow_1 \ q_1 \ p_1 \ p_0\right) p'_1$

Distributive law laws

(Position equations)

$$\forall \{s, v, p_1, p'_1, p_0\}. \ q_0\{s\} \{v\} (p_1 \oplus_1 p'_1) p_0 = q_0 p_1 (q_0 p'_1 p_0)$$

 The laws 4-11 resemble the conditions of matching pairs of mutual actions.

Composed directed container

 Given two directed containers and a distributive laws between them, the composed directed container is given by

```
• S = \Sigma s : S_0. P_0 s \rightarrow S_1

• P(s, v) = \Sigma p : P_0 s. P_1 (v p_0)

• o(s, v) = (o_0(s), o_1(v (o_0(s)))

• (s, v) \downarrow (p_0, p_1) = (t_1(s \downarrow_0 p_0) (\lambda p. v (p_0 \oplus_0 p)) p_1, \lambda p. v (p_0 \oplus_0 q_0 p_1 p) \downarrow_1 q_1 p_1 p)

• (p_0, p_1) \oplus (p'_0, p'_1) = (p_0 \oplus_0 q_0 p_1 p'_0, q_1 p_1 p'_0 \oplus_1 p'_1)
```

Product comonad and any comonad

- Two directed containers
 - $S_0, P_0, \downarrow_0, o_0, \oplus_0$ arbitrary for any comonad • S_1 arbitary, $P_1 s = 1$, for the product comonad $s \downarrow_1 * = s, o_1 = *, * \oplus_1 * = *$
- Distributive law
 - $t_1 s v p = s$
 - $q_0 p_1 p_0 = p_0$
 - $q_1 p_1 p_0 = p_1$
- Composed directed container
 - $S = \Sigma s : S_0.P_0 s \to E$
 - $P(s, v) = \sum p_0 : P_0 s. 1$
 - $(s, v) \downarrow (p_0, p_1) = (s \downarrow_0 p_0, \lambda p.v(p_0 \oplus_0 p))$
 - $o(s, v) = (o_0, *)$
 - $(p_0,*) \oplus (p'_0,*) = (p_0 \oplus_0 p'_0,*)$

Streams with suffixes and sampling

- Two directed containers
 - $S_0=1$, $P_0*=\operatorname{Nat}$, $*\downarrow_0 p=*$, $o_0=0$, $p\oplus_0 p'=p+p'$
 - $ullet S_1=1$, $P_1*=\operatorname{\sf Nat}$, $*\downarrow_1 p=*$, ${\sf o_1}=1$, $p\oplus_1 p'=p imes p'$
- Distributive law
 - $t_1 * (\lambda_- *) p = *$
 - $q_0 p_1 p_0 = p_1 \times p_0$
 - $q_1 p_1 p_0 = p_1$
- Composed directed container
 - $S = \Sigma * : 1. P_0 * \rightarrow 1$
 - $P(*, \lambda_{-}.*) = \sum p_0 : P_0. P_1 *$
 - $(*, \lambda_{-}, *) \downarrow (p_0, p_1) = (*, \lambda_{-}, *)$
 - o = (0,1)
 - $(p_0, p_1) \oplus (p'_0, p'_1) = (p_0 + p_1 \times p'_0, p_1 \times p'_1)$