ALGEBRAIC MODELS OF QUESTION ANSWERING SYSTEMS

Jānis Cirulis

Department of Computer Science University of Latvia
jc@lanet.lv

Theory Days at Jõulumäe October 3-5, 2008

OVERWIEV

1. Background: information systems

Some simple models
Dependencies and compatibility in information systems
2. Functional-dependency frames

Definitions
Examples
Knowledge spaces
3. Question answering systems

Information functions of a frame
QA-systems and their formal contexts
4. Simulation

How a QA-system simulates another one
Esentially incomplete QA-systems, and representable QA-systems
5. The previous work

1. Background

Some simple models

- Information systems (Z. Pawlak)
(another names: attribute systems, knowledge representation systems)
Ob is a set of objects,

At is a set of attributes of objects,
Val $:=\left(V a l a_{a} \mid a \in A t\right)$ is a family of sets; each $V a l_{a}$ is the set of values for the attribute a, $F:=\left(f_{o} \mid o \in O b\right)$ on $A t$ is a family of descriptions (functions on $A t$, where f_{o} assigns to every a an element of Val_{a}).
(b) Incomplete: if the descriptions may be not complete, i.e., if each $f_{o}(a)$ is a nonempty subset of $V a l a_{a}$.
$f_{a}(o)$ could also be a fuzzy subset of $V a l_{a}$, or a probability distribution on $V a l_{a}$, e.c.

Another interpretation: a (simple) question answering system:
Elements of Ob - states, elements of $A t$ - questions,
elements of Vala - possible answers to a question a, descriptions - information functions.

- Formal contexts (R.Wille \& B.Ganter)

A formal context is a triple $F C:=(G, M, I)$, where
G is a set of objects (Gegenstände),
M is a set of possible properties (Merkmale),
I is a binary incidence relation in $G \times M$.
g Im means "the object g has the property m ".
$F C$ induces a Galois connection between $\mathcal{P}(G)$ and $\mathcal{P}(M)$:
$A \subseteq G \mapsto A^{*}:=\{m \in M \mid g I m$ for all $g \in A\}$,
$B \subseteq M \mapsto B^{*}:=\{g \in G \mid g I m$ for all $m \in B\}$.

A pair (A, B) is a concept of the context if $A^{*}=A$ and $B^{*}=B$.
Concepts are ordered by
$(A, B) \leq\left(A^{\prime}, B^{\prime}\right): \equiv A \subseteq A^{\prime} \quad\left(\right.$ and $\left.B^{\prime} \subseteq B\right)$
and form a lattice under this ordering (the concept lattice of the context).

- Information systems as formal contexts
($O b, A t, V a l, F)$ - an information system.
A descriptor is a pair (a, v) with $a \in A t$ and $v \in V a l_{a}$. The information space of S is the set K of all descriptors.
The formal context of S is the triple $(O b, K, \Vdash)$, where $\left.o \mid \vdash(a, v): \equiv v \in f_{o}(a)\right\}$.

Information system \leftrightarrow formal context of this type.

- The inner logic of an information system
$I S:=(O b, A t, V a l, F)-$ an information system.
A pair (a, V) with $a \in A t r$ and $V \subseteq V a l_{a}$ is interpreted as a proposition "the value of a belongs to V ".
$P:=$ the set of all propositions.
The inner logic of $I S$ is the triple (in fact, a formal context) ($O b, P, \models$), where $o \vDash(a, V): \equiv f_{o}(a) \subseteq V \quad$ ("the proposition (a, V) is true of o ").

Information system \leftrightarrow formal context of this type.

- Many-valued contexts (R.Wille \& B.Ganter)

A many-valued context is a quadruple (G, M, W, I), where
G is a set of objects,
M is a set of attributes,
W is a set of values (Werte),
$I \quad$ is a ternary incidence relation in $G \times M \times W$ such that $(g, m, w) \in I$ and $(g, m, w) \in I$ implies $w=w^{\prime}$.
$(g, m, w) \in I$ means "the attribute m has a value w for the object g ".

Many-valued context \leftrightarrow complete information system.

- Chu spaces (W.Pratt)
K - a set of values (or an alphabet).
A Chu space over K is a triple (X, r, A), where
X is a set of points
A is a set of states
r is a function of type $X \times A \rightarrow K$.

States \leftrightarrow objects,

Points \leftrightarrow attributes,
Chu space \leftrightarrow complete information system
with a common value set K for all attributes.

Dependencies and compatibility in information systems

Let $I S:=(O b, A t, V a l, F)$ be a complete information system.
Drawbacks?

- Attributes in $I S$ are formally independent, for descriptions in F may be quite arbitrary.

Let $A, B \subseteq A t$ (complex attributes).
There is an inclusion dependency between A and B iff $A \subseteq B$.
A functionally depends on B if, for every object, the value of every attribute in A turns out to be uniquely determined by values of attributes in B :

$$
\begin{aligned}
& a \leftarrow B: \equiv \text { for all } o_{1}, o_{2} \in O b, \\
& \qquad f_{o_{1}}(a)=f_{o_{2}}(a) \text { whenever } f_{o_{1}}(b)=f_{o_{2}}(b) \text { for every } b \in B . \\
& A \leftarrow B: \equiv a \leftarrow B \text { for all } a \in A .
\end{aligned}
$$

Dependencies a posteriori.

A complex attribute A should have a set of complex values:
$\operatorname{Val}_{A}:=\prod\left(A_{a} \mid a \in A\right)$
i.e., $V a l_{A}$ is the set of all functions φ on A such that $\varphi(a) \in \operatorname{Val}_{a}$ for all $a \in A$.

Descriptions should be extended to complex attributes:

$$
f_{o}^{+}(A) \in V a l_{A}, \quad f_{o}^{+}(A)(a):=f_{o}(a) .
$$

Proposition. If $A \leftarrow B$, then there is a function $d_{A}^{B}: \operatorname{Val}_{B} \rightarrow \operatorname{Val}_{A}$ which realises this dependency:
for every object o, $f_{o}^{+}(A)=d_{A}^{B}\left(f_{o}^{+}(B)\right)$.
This function is unique only if the sets $V_{a l a}$ do not contain "unnecessary" elements:
for every $a \in A t, \quad \operatorname{Val}_{a}=\left\{f_{o}(a) \mid o \in O b\right\}$.
In particular, if $A \subseteq B$, then

- $d_{A}^{B}(\varphi)=\varphi \mid A$,
- the function d_{A}^{B} is surjective and
is actually the projection of the set Val_{B} onto A.
- It may happen that not all attributes permit simultaneous determination of their values.

Suppose that given is a symmetric and irreflexive rejection relation on $A t$.
A complex attribute $A \subseteq A t$ is said to be coherent if no attributes from A reject each other.
Two coherent complex attributes A and B are said to be compatible if A and B have a common coherent superset. This is the case if and only if the union $A \cup B$ is coherent.

Proposition. The union of any set of parts of a coherent complex attribute is coherent,
i.e., the coherent complex attributes form a bounded complete poset under set inclusion.

- Summing up: an extension of an information system.

```
IS:=(Ob,At,Val,F) - a complete information system.
Put
    At+ - a set of coherent complex attributes
        together with inclusion and dependence relations,
    Val+}\mp@subsup{}{}{+}\mathrm{ - the family of all complex value sets Val
        together with the family of all dependency functions d}\mp@subsup{d}{A}{B}\mathrm{ ,
    F+}\quad- the set of all extended descriptions for
```

Then $I S^{+}:=\left(O b, A t^{+}, \mathrm{Val}^{+}, F^{+}\right)$is an information system, called an exten-
sion of S.

Problem 0. Characterise abstractly the class of structures isomorphic to such extensions.

This was the motivation for constructions in the next section.
"Question-answer" interpretation again:

Notion:	Notation:
states instead of objects	S instead of Ob,
questions instead of coherent complex attributes	Q instead of At^{+},
answers instead of complex values	A instead of Val^{+},
information functions instead of descriptions	F

2. Functional-dependency frames

Definition. An fd-structure is a pair $F D:=(Q, A)$, where

- Q is a preordered set (Q, \leftarrow) (the scheme of the frame),
- A is a system (a model of the scheme) consisting of
- a family of sets ($A_{q} \mid q \in Q$), and
- a family of mappings $d_{p}^{q}: A_{q} \rightarrow A_{p}$ with $p, q \in Q, p \leftarrow q$ such that

$$
d_{p}^{p}(a)=a, \quad d_{p}^{q} d_{q}^{r}(c)=d_{p}^{r}(c)
$$

A subset Q^{\prime} of Q is compatible if it is bounded from above:
i.e., if there is $r \in Q$ such that $p \leftarrow r$ for every $p \in Q^{\prime}$.

The set Q is [finitely] bounded complete if every [finite] (possibly, empty) compatible subset of Q has a l.u.b.

Roughly, a l.u.b. of a compatible subset $Q^{\prime} \subseteq Q$ represents the "complex question" Q^{\prime} as a one element of Q.

Equivalently, Q is bounded complete iff every nonempty subset of Q (in particular, Q itself) has a g.l.b.
Q is finitely bounded complete iff

- $p \downharpoonleft q$ always implies that $\{p, q\}$ has a l.u.b., and
- Q has a g.l.b.

We shall assume that all finitely bounded complete preordered sets considered below satisfy also condition

- any fiinite nonempty subset of Q has a g.l.b.

Definition. An fd-structure (Q, A) is said to be an fd-frame if

- its scheme Q is finitely bounded complete, and
- the model A of the scheme satisfies the condition
if r is a l.u.b of a finite subset Q^{\prime} of Q, and if $a, b \in A_{r}$,
then $d_{p}^{r}(a)=d_{p}^{r}(b)$ for all $p \in Q$ implies $a=b$.
The later condition garanties that an answer to the question r is completely detemined by the answers to its "components" from Q^{\prime}.

Dependencies apriori

Definition. We say that an fd-frame is a frame with inclusions if its scheme Q is equipped with an order relation \subseteq (inclusion, or part_of relation) whose interaction with \leftarrow is subject to the following axioms:

- if $p \subseteq q$, then $p \leftarrow q$,
- if Q^{\prime} is a finite compatible subset of Q in which
$p \leftarrow q$ only if $p \subseteq q$,
then Q^{\prime} has the l.u.b. with respect to \subseteq,
- every mapping d_{p}^{q} is surjective whenever $p \subseteq q$.

In particular, such a poset (Q, \subseteq) is a finitely bounded complete also with respect to \subseteq :

- if $p \circ q$, then $p \cup q$ exists in Q^{\prime},
- any two elements p, q of Q^{\prime} have the meet $p \cap q$ in Q^{\prime},
- there is the \subseteq-least element \emptyset in Q.

Proposition. The Amstrong axioms for functional dependencies

- if $p \subseteq q$, then $p \leftarrow q$,
- if $p \leftarrow r, q \leftarrow r, p \circ q$, then $p \cup q \leftarrow r$,
- if $p \leftarrow q, q \leftarrow r$, then $p \leftarrow r$
hold in $(Q, \leftarrow, \subseteq)$.

Examples

E1: Simple frames

Suppose that
Q is a flat domain

```
(i.e., a poset (Q,\leq,0) with the least element 0, in which
                                    every chain is of length \leq2),
```

A is a family $\left(A_{p} \mid p \in Q\right)$ of non-empty sets
A_{0} is a singleton.,
Put
$p \leftarrow q: \equiv p \subseteq q: \equiv p \leq q$,
$d_{p}^{q}:=\left\{\begin{array}{l}\text { the identity function on } A_{q} \text { if } p=q, \\ \text { the single function } A_{q} \rightarrow A_{0} \text { if } p=0 .\end{array}\right.$
In this way, Q is converted into a trivial scheme with inclusions, and A, in its model.
So, (Q, A) is an inclusion frame.
We call such frames simple.

E2: Frames from information systems

Supose that $I S:=((O b, A t, V a l, F)$ is an information system.
($\mathrm{At}, \mathrm{Val}$) is a simple frame "without bottom";
there is a one-to-one correspondence between pairs of kind (At,Val) and simple frames.

In any extension of $I S$, the pair $\left(A t^{+}, \mathrm{Val}^{+}\right)$is a frame with inclusions.

E3: Frames in relational databases
Initially $A t$, Val - as in an information system.
$A t^{+}$
$V a l_{A}$
a subset of Val $_{A}$
\subseteq
\leftarrow together with functions d_{A}^{B}
$\left[d_{A}^{B}\right.$ with $A \subseteq B$
is the set of finite subsets of $A t$, (relational types)
is the set of all rows of type A, is a relation with attributes in A, is the ordinary set inclusion, is given as a kind of constraints, (sintactically and semantically), is a the projection of $V a l_{B}$ onto A].

E4: Frames from automata

Consider an automaton (X, Y, Z, λ, μ), where

X	is the input alphabet,
Y	is the output alphabet,
Z	is the set of states,
$\lambda: Z \times X \rightarrow Z$	is the transition function,
$\mu: Z \times X \rightarrow Y$	is the output function.

Set
$Q \quad:=X^{*}$,
$p \subseteq q \quad: \equiv p$ is a prefix of q,
$p \leftarrow q \quad: \equiv p \subseteq q$,
$A_{p} \quad:=Y^{|p|}$, where $|p|$ is the length of p,
$d_{p}^{q}: A_{q} \rightarrow A_{p}:=$ the function which takes every word from A_{q}
into its prefix of length $|p|$.
Then (Q, A) is an inclusion frame and two questions are compatible if and only if they are comparable.

Let $F D:=(Q, V)$ be a frame.
Definition. An information piece in this frame is any pair (q, a) with $q \in Q, a \in A_{q}$. The set of all information pieces is called the knowledge space of $F D$.
An information piece (p, a) is said to be

- entailed by (q, b) (in symbols, $(p, a) \succeq(q, b)$) if

$$
p \leftarrow q \text { and } a=d_{p}^{q}(b)
$$

["Whenever q has the answer b, p has the answer $a^{"}$]

- a restriction of (q, b) (in symbols, $(p, a) \subseteq(q, b)$) if

$$
p \subseteq q \text { and } a=d_{p}^{q}(b)
$$

An abstract knowledge space is a triple (K, \succeq, \subseteq) that is isomorphic to the knowledge space of some frame with inclusions.

Theorem 1. Up to isomorphisms, there is one-to-one correspondence between frames with inclusions and abstract knowledge spaces.
[Axiomatic description of abstract knowledge spaces.]

3. Question answering systems

$F D:=(Q, A)-$ an fd-structure with inclusions.

Definition. An information function in $F D$ is a function f on Q that assigns a nonempty subset of A_{p} to every $p \in Q$ so that

- if $p \leftarrow q$, then $f(p)=\left\{d_{p}^{q}(b): b \in f(q)\right\}=d_{p}^{q}(f(q))$
(i.e., if p depends on q, then $f(p)$ contains just the answers that can be calculated out from those in $f(q)$),
- if r is a I.u.b of a finite subset $Q^{\prime} \subseteq Q$ with respect to \leftarrow, then $f(r):=\left\{c \in A_{r} \mid d_{p}^{r}(c) \in f(p)\right.$ for all $\left.p \in Q^{\prime}\right\}$
(i.e., $f(r)$ contains just the answers that are combined from those belonging to the "components" of r).

An information function f is

- complete if every $f(p)$ is a singleton,
- proper if there is no other description f^{\prime} with $f^{\prime}(p) \subseteq f(p)$ for all $p \in Q$,
- trivial, if $f(p)=A_{p}$.

Every complete description is proper; the converse may not hold true.

Example: A frame which has only the trivial information function.

```
Let
\(Q:=\{p 1, p 2, q 1, q 2\}\), and
for \(i=1,2, A_{p i}:=\left\{a_{i 1}, a_{i 2}\right\}, A_{q i}:=\left\{b_{i 1}, b_{i 2}\right\}\).
Assume that
\(p 1, p 2 \subseteq q 1, q 2\), and \(\leftarrow\) coincides with \(\subseteq\).
Set
\[
\begin{aligned}
& d_{p i}^{q 1}\left(b_{1 j}\right)=a_{i j}, \quad d_{p 1}^{q 2}\left(b_{2 j}\right)=a_{1 j} \\
& d_{p 2}^{q 2}\left(b_{21}\right)=a_{22}, \quad d_{p 2}^{q 2}\left(b_{22}\right)=a_{21}
\end{aligned}
\]
```

The trivial information function is proper in this frame, but, clearly, not complete.

Definition. A question answering system is a quadruple (Q, A, S, F), where (Q, A) is an fd-frame with inclusions, $S \quad$ is a non-empty set, $F:=\left(f_{s} \mid s \in S\right) \quad$ is a family of information functions.

Elements of of Q are called questions, those of A_{q}, answers to the question q.

A QA-system is
complete if all of its information functions are complete, simple if its frame is simple.

Simple QA-system \leftrightarrow information system.

Definition. The formal context of a $Q A$-system $Q A:=(Q, A, S, F)$ is the triple ($S, K, \mid \vdash$), where

- K is the knowledge space of $Q A$, and
- \vdash is a binary relation in $S \times K$ such that $s \vdash(p, a): \equiv a \in f_{s}(p)$.
A QA-context is a formal context of some QA-system.
A formal context (S, K, \Vdash), where K is an abstract knowledge space, is said to be an abstract QA-context if it is isomorphic to some QA-context.

Something like Kripke structures, with S the possible word space, and K the algebra of propositions.

Theorem 2. Up to isomorphisms, there is one-to-one correspondence between QA-systems and abstract QA-contexts.

Problem 1. Characterise the class of abstract QA-contexts.

The concept lattice of the formal context of a QA-system is said to be the concept lattice of this system.

Problem 2. Characterise the class of concept lattices of QA-systems. Have concept lattices of complete QA-systems any distinctive property?

Problem 3. Two QA-systems may be considered as equivalent if their concept lattices are isomorphic. Characterise the class of QA-systems which are equivalent to a complete QA-system.

4. Simulation

In this section we assume that all QA-systems are faithful in the sense that, for every $q, A_{q}=\bigcup\left(f_{s}(q) \mid s \in S\right)$.

Let $Q A:=(Q, A, S, F) Q A^{\prime}:=\left(Q^{\prime}, A^{\prime}, S^{\prime}, F^{\prime}\right)$ be two QA-systems. By a macrostate of a system we understand any non-empty set of its states.
(Macrostates are interpreted as vaguely specified states.)
A simulation of a $Q A$ into $Q A^{\prime}$ is, informally, a triple of "devices" (α, β, γ), where

- α translates every question from Q into a question in Q^{\prime},
- β realizes back translation: for every question $q \in Q$, it associates a nonempty subset of A_{q} with each possible answer $a^{\prime} \in A_{\alpha(q)}^{\prime}$ to the translated question $\alpha(q)$,
- γ interprets every state of $Q A$ as a macrostate of $Q A^{\prime}$: if a question was put to $Q A$ in some state, translated back are all answers to the translated question in $Q A^{\prime}$ obtained in any state from the respective macrostate.

Definition. A simulation of a $Q A$ into $Q A^{\prime}$ is a triple (α, β, γ), where - α is a mapping $Q \rightarrow Q^{\prime}$,

- β is a family of mappings $\beta_{q}: A_{\alpha(q)}^{\prime} \rightarrow\left(\mathcal{P}\left(A_{q}\right) \backslash \emptyset\right)$ with $q \in Q$,
- γ is a mapping $S \rightarrow\left(\mathcal{P}\left(S^{\prime}\right) \backslash \emptyset\right)$
subject to the following conditions:
- β preserves l.u.b.-s of finite compatible subsets of Q, (then α is isotone with respect to both \leftarrow and \subseteq),
- for all $p, q \in Q$ with $p \leftarrow q$, and every $a^{\prime} \in A_{\alpha(q)}$,

$$
\bigcup\left(f_{p}^{q}(a) \mid a \in \beta_{q\left(a^{\prime}\right)}\right)=\bigcup\left(\beta_{p}\left(b^{\prime}\right) \mid b^{\prime} \in f_{\alpha(p)}^{\prime \alpha(q)}\left(a^{\prime}\right)\right)
$$

- for all $p \in Q$, and every $s \in S$,

$$
f_{s}(p)=\bigcup\left(\beta_{p}\left(a^{\prime}\right) \mid a^{\prime} \in f_{s^{\prime}}^{\prime}(\alpha(p)) \text { for some } s^{\prime} \in \gamma(s)\right)
$$

Let $Q A:=(Q, A, S, F)$ be a simple complete QA-system. Extensions of $Q A$ are constructed like those of an information system.

Let $Q A^{+}$stand for the standard extension ($Q^{+}, A t^{+}, S, F^{+}$) in which $A t^{+}$contains all subsets of Q. Such an extension is unique and completely determined by $Q A$. Recall that extensions of complete QA-systems are complete.

Definition. A QA-system is said to be

- essentially incomplete if it can be simulated by no complete QA-system,
- representable if it can be simulated by a simple complete QA-system.

Proposition. Not every QA-system is representable.
Problem 4. Are there essentially incomplete QA-systems? If yes, characterise abstractly those that are not.

Problem 5. Characterise abstractly the representable QA-systems.

5. The previous work

[1] and [2] are early papers, where several ideas of the later ones already appeared.
Among other things, in [3] discussed are certain formal contexts (without referring to this concept) similar to those appearing here in connection with knowledge spaces.
In [4-6] I used another term "knowledge representation system" rather than "question answering system" going back to [2]. In [4], KR-systems without inclusions were treated in terms of category theory. The approach of $[5,6]$ is not so general, and we use there the language of general algebra (as in this presentation). However, some improvements to the model of [4] can be found at the beginning of [6]. Neither in [5] nor [6] inclusion dependencies are explicitly recognized.
[1] Tsirulis Ya.P. Variations on the theme of quantum logic (Russian). In: Algebra i Diskretnaya Matematika, Latvian State Univ., Riga, 1984, 146158.
[2] CTrulis J. Logic of indeterminancy". Abstracts of the 8-th Congr. "Logic, Methodol. and Philos. Sci." (Moscow, 1987), Vol. 5, P. 1, 246-248.
[3] Cirulis J. An algebraic approach of knowledge representation. In: MFCS'99, LNCS 1672 (1999), 299-309.
[4] CTrulis J. Are there essentially incomplete knowledge representation systems? In: FCT'01, LNCS 2138 (2001), 94-105.
[5] Cirulis J. Knowledge representation in extended Pawlak's information systems: algebraic aspects. In: FOIKS'02, LNCS 2284 (2002), 250-267.
[6] CTrulis J. Knowledge representation systems and skew nearlattices. In.: Contrib. Gen. Algebra 14, Verl. Johannes Hein, Klagenfurt, 2004, 43-51.

