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1. Background

Some simple models

• Information systems (Z. Pawlak)
(another names: attribute systems, knowledge representation systems)

Ob is a set of objects,
At is a set of attributes of objects,
Val := (Vala | a ∈ At) is a family of sets;

each Vala is the set of values for the attribute a,
F := (fo | o ∈ Ob) on At is a family of descriptions (functions on At, where

fo assigns to every a an element of Vala).

(b) Incomplete: if the descriptions may be not complete,
i.e., if each fo(a) is a nonempty subset of Vala.

fa(o) could also be a fuzzy subset of Vala, or a probability distribution on
Vala, e.c.
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Another interpretation: a (simple) question answering system:

Elements of Ob – states,
elements of At – questions,
elements of Vala – possible answers to a question a,
descriptions – information functions.
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• Formal contexts (R.Wille & B.Ganter)

A formal context is a triple FC := (G, M, I), where

G is a set of objects (Gegenstände),
M is a set of possible properties (Merkmale),
I is a binary incidence relation in G×M .

g I m means “the object g has the property m”.

FC induces a Galois connection between P(G) and P(M):
A ⊆ G 7→ A∗ := {m ∈ M |g I m for all g ∈ A},
B ⊆ M 7→ B∗ := {g ∈ G|g I m for all m ∈ B}.

A pair (A, B) is a concept of the context if A∗ = A and B∗ = B.
Concepts are ordered by
(A, B) ≤ (A′, B′) :≡ A ⊆ A′ (and B′ ⊆ B)

and form a lattice under this ordering (the concept lattice of the context).

4



• Information systems as formal contexts

(Ob, At, Val, F ) – an information system.

A descriptor is a pair (a, v) with a ∈ At and v ∈ Vala.
The information space of S is the set K of all descriptors.
The formal context of S is the triple (Ob, K, |`), where

o |` (a, v) :≡ v ∈ fo(a)}.
Information system ↔ formal context of this type.
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• The inner logic of an information system

IS := (Ob, At, Val, F ) – an information system.

A pair (a, V ) with a ∈ Atr and V ⊆ Vala is interpreted as a proposition
“the value of a belongs to V ”.

P := the set of all propositions.
The inner logic of IS is the triple (in fact, a formal context) (Ob, P, |=), where

o |= (a, V ) :≡ fo(a) ⊆ V (“the proposition (a, V ) is true of o”).

Information system ↔ formal context of this type.
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• Many-valued contexts (R.Wille & B.Ganter)

A many-valued context is a quadruple (G, M, W, I), where

G is a set of objects,
M is a set of attributes,
W is a set of values (Werte),
I is a ternary incidence relation in G×M ×W such that

(g, m, w) ∈ I and (g, m, w) ∈ I implies w = w′.

(g, m, w) ∈ I means ”the attribute m has a value w for the object g”.

Many-valued context ↔ complete information system.
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• Chu spaces (W.Pratt)

K – a set of values (or an alphabet).
A Chu space over K is a triple (X, r, A), where

X is a set of points
A is a set of states
r is a function of type X ×A → K.

States ↔ objects,
Points ↔ attributes,
Chu space ↔ complete information system

with a common value set K for all attributes.
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Dependencies and compatibility in information systems

Let IS := (Ob, At, Val, F ) be a complete information system.

Drawbacks?

• Attributes in IS are formally independent, for descriptions in F may be
quite arbitrary.

Let A, B ⊆ At (complex attributes).

There is an inclusion dependency between A and B iff A ⊆ B.

A functionally depends on B if, for every object, the value of every attribute
in A turns out to be uniquely determined by values of attributes in B:

a ← B :≡ for all o1, o2 ∈ Ob,
fo1(a) = fo2(a) whenever fo1(b) = fo2(b) for every b ∈ B.

A ← B :≡ a ← B for all a ∈ A.

Dependencies a posteriori.
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A complex attribute A should have a set of complex values:

ValA :=
∏

(Aa | a ∈ A)
i.e., ValA is the set of all functions ϕ on A such that ϕ(a) ∈ Vala for all a ∈ A.

Descriptions should be extended to complex attributes:

f+
o (A) ∈ ValA, f+

o (A)(a) := fo(a).

Proposition. If A ← B, then there is a function dB
A : ValB → ValA which

realises this dependency:
for every object o, f+

o (A) = dB
A(f+

o (B)).
This function is unique only if the sets Vala do not contain “unnecessary”
elements:
for every a ∈ At, Vala = {fo(a) | o ∈ Ob}.

In particular, if A ⊆ B, then
¦ dB

A(ϕ) = ϕ|A,
¦ the function dB

A is surjective and
is actually the projection of the set ValB onto A.
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• It may happen that not all attributes permit simultaneous determination of
their values.

Suppose that given is a symmetric and irreflexive rejection relation on At.

A complex attribute A ⊆ At is said to be coherent if no attributes from A
reject each other.
Two coherent complex attributes A and B are said to be compatible if A
and B have a common coherent superset. This is the case if and only if the
union A ∪B is coherent.

Proposition. The union of any set of parts of a coherent complex attribute
is coherent,
i.e., the coherent complex attributes form a bounded complete poset under
set inclusion.
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• Summing up: an extension of an information system.

IS := (Ob, At, Val, F ) – a complete information system.
Put

At+ – a set of coherent complex attributes
together with inclusion and dependence relations,

Val+ – the family of all complex value sets ValA
together with the family of all dependency functions dB

A,
F+ – the set of all extended descriptions f+

o .

Then IS+ := (Ob, At+, Val+, F+) is an information system, called an exten-
sion of S.

Problem 0. Characterise abstractly the class of structures isomorphic to
such extensions.

This was the motivation for constructions in the next section.
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“Question-answer” interpretation again:

Notion: Notation:

states instead of objects S instead of Ob,
questions instead of coherent complex attributes Q instead of At+,
answers instead of complex values A instead of Val+,
information functions instead of descriptions F
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2. Functional-dependency frames

Definition. An fd-structure is a pair FD := (Q, A), where

¦ Q is a preordered set (Q,←) (the scheme of the frame),
¦ A is a system (a model of the scheme) consisting of

¦ a family of sets (Aq | q ∈ Q), and
¦ a family of mappings dq

p: Aq → Ap with p, q ∈ Q, p ← q
such that

dp
p(a) = a, dq

pdr
q(c) = dr

p(c).

A subset Q′ of Q is compatible if it is bounded from above:
i.e., if there is r ∈ Q such that p ← r for every p ∈ Q′.

The set Q is [finitely] bounded complete if every [finite] (possibly, empty)
compatible subset of Q has a l.u.b.

Roughly, a l.u.b. of a compatible subset Q′ ⊆ Q represents the “complex
question” Q′ as a one element of Q.

14



Equivalently, Q is bounded complete iff every nonempty subset of Q (in
particular, Q itself) has a g.l.b.

Q is finitely bounded complete iff
¦ p |◦ q always implies that {p, q} has a l.u.b., and
¦ Q has a g.l.b.

We shall assume that all finitely bounded complete preordered sets considered
below satisfy also condition
¦ any fiinite nonempty subset of Q has a g.l.b.
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Definition. An fd-structure (Q, A) is said to be an fd-frame if

¦ its scheme Q is finitely bounded complete, and
¦ the model A of the scheme satisfies the condition

if r is a l.u.b of a finite subset Q′ of Q, and
if a, b ∈ Ar,

then dr
p(a) = dr

p(b) for all p ∈ Q implies a = b.

The later condition garanties that an answer to the question r is completely
detemined by the answers to its “components” from Q′.

Dependencies apriori
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Definition. We say that an fd-frame is a frame with inclusions if its scheme
Q is equipped with an order relation ⊆ (inclusion, or part of relation) whose
interaction with ← is subject to the following axioms:
¦ if p ⊆ q, then p ← q,
¦ if Q′ is a finite compatible subset of Q in which

p ← q only if p ⊆ q,
then Q′ has the l.u.b. with respect to ⊆,

¦ every mapping dq
p is surjective whenever p ⊆ q.

In particular, such a poset (Q,⊆) is a finitely bounded complete also with
respect to ⊆:
¦ if p |◦ q, then p ∪ q exists in Q′,
¦ any two elements p, q of Q′ have the meet p ∩ q in Q′,
¦ there is the ⊆-least element ∅ in Q.
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Proposition. The Amstrong axioms for functional dependencies
¦ if p ⊆ q, then p ← q,
¦ if p ← r, q ← r, p |◦ q, then p ∪ q ← r,
¦ if p ← q, q ← r, then p ← r

hold in (Q,←,⊆).
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Examples

E1: Simple frames

Suppose that
Q is a flat domain

(i.e., a poset (Q,≤,0) with the least element 0, in which
every chain is of length ≤ 2),

A is a family (Ap | p ∈ Q) of non-empty sets
A0 is a singleton.,

Put
p ← q :≡ p ⊆ q :≡ p ≤ q,

dq
p :=

{
the identity function on Aq if p = q,
the single function Aq → A0 if p = 0.

In this way, Q is converted into a trivial scheme with inclusions, and A, in its
model.
So, (Q, A) is an inclusion frame.

We call such frames simple.
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E2: Frames from information systems

Supose that IS := ((Ob, At, Val, F ) is an information system.

(At, Val) is a simple frame “without bottom”;
there is a one-to-one correspondence between pairs of kind (At, Val)
and simple frames.

In any extension of IS, the pair (At+, Val+) is a frame with inclusions.
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E3: Frames in relational databases

Initially At, Val – as in an information system.

At+ is the set of finite subsets of At,
(relational types)

ValA is the set of all rows of type A,
a subset of ValA is a relation with attributes in A,
⊆ is the ordinary set inclusion,
← together is given as a kind of constraints,

with functions dB
A (sintactically and semantically),

[dB
A with A ⊆ B is a the projection of ValB onto A].
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E4: Frames from automata

Consider an automaton (X, Y, Z, λ, µ), where

X is the input alphabet,
Y is the output alphabet,
Z is the set of states,
λ: Z ×X → Z is the transition function,
µ: Z ×X → Y is the output function.

Set
Q := X∗,
p ⊆ q :≡ p is a prefix of q,
p ← q :≡ p ⊆ q,

Ap := Y |p|, where |p| is the length of p,
dq

p: Aq → Ap := the function which takes every word from Aq

into its prefix of length |p|.

Then (Q, A) is an inclusion frame and two questions are compatible if and
only if they are comparable.
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Let FD := (Q, V ) be a frame.

Definition. An information piece in this frame is any pair (q, a) with
q ∈ Q, a ∈ Aq.

The set of all information pieces is called the knowledge space of FD.

An information piece (p, a) is said to be
¦ entailed by (q, b) (in symbols, (p, a) º (q, b)) if

p ← q and a = dq
p(b),

[“Whenever q has the answer b, p has the answer a”]
¦ a restriction of (q, b) (in symbols, (p, a) ⊆ (q, b)) if

p ⊆ q and a = dq
p(b).

An abstract knowledge space is a triple (K,º,⊆) that is isomorphic to the
knowledge space of some frame with inclusions.

Theorem 1. Up to isomorphisms, there is one-to-one correspondence be-
tween frames with inclusions and abstract knowledge spaces.

[Axiomatic description of abstract knowledge spaces.]
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3. Question answering systems

FD := (Q, A) – an fd-structure with inclusions.

Definition. An information function in FD is a function f on Q that assigns
a nonempty subset of Ap to every p ∈ Q so that
¦ if p ← q, then f(p) = {dq

p(b): b ∈ f(q)} = dq
p(f(q))

(i.e., if p depends on q, then f(p) contains just the answers that can be
calculated out from those in f(q)),
¦ if r is a l.u.b of a finite subset Q′ ⊆ Q with respect to ←, then

f(r) := {c ∈ Ar | dr
p(c) ∈ f(p) for all p ∈ Q′}

(i.e., f(r) contains just the answers that are combined from those
belonging to the “components” of r).

An information function f is
¦ complete if every f(p) is a singleton,
¦ proper if there is no other description f ′ with f ′(p) ⊆ f(p) for all p ∈ Q,
¦ trivial, if f(p) = Ap.

Every complete description is proper; the converse may not hold true.
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Example: A frame which has only the trivial information function.

Let
Q := {p1, p2, q1, q2}, and
for i = 1,2, Api := {ai1, ai2}, Aqi := {bi1, bi2}.
Assume that
p1, p2 ⊆ q1, q2, and ← coincides with ⊆.

Set

d
q1
pi (b1j) = aij, d

q2
p1(b2j) = a1j,

d
q2
p2(b21) = a22, d

q2
p2(b22) = a21.

The trivial information function is proper in this frame, but, clearly, not
complete.
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Definition. A question answering system is a quadruple (Q, A, S, F ), where

(Q, A) is an fd-frame with inclusions,
S is a non-empty set,
F := (fs | s ∈ S) is a family of information functions.

Elements of
of Q are called questions, those of Aq, answers to the question q.

A QA-system is
complete if all of its information functions are complete,
simple if its frame is simple.

Simple QA-system ↔ information system.
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Definition. The formal context of a QA-system QA := (Q, A, S, F ) is the
triple (S, K, |`), where
¦ K is the knowledge space of QA, and
¦ |` is a binary relation in S ×K such that

s |` (p, a) :≡ a ∈ fs(p).

A QA-context is a formal context of some QA-system.

A formal context (S, K, |`), where K is an abstract knowledge space, is said
to be an abstract QA-context if it is isomorphic to some QA-context.
Something like Kripke structures, with S the possible word space,

and K the algebra of propositions.

Theorem 2. Up to isomorphisms, there is one-to-one correspondence be-
tween QA-systems and abstract QA-contexts.

Problem 1. Characterise the class of abstract QA-contexts.
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The concept lattice of the formal context of a QA-system is said to be the
concept lattice of this system.

Problem 2. Characterise the class of concept lattices of QA-systems. Have
concept lattices of complete QA-systems any distinctive property?

Problem 3. Two QA-systems may be considered as equivalent if their
concept lattices are isomorphic. Characterise the class of QA-systems which
are equivalent to a complete QA-system.

28



4. Simulation

In this section we assume that all QA-systems are faithful in the sense that,
for every q, Aq =

⋃
(fs(q) | s ∈ S).

Let QA := (Q, A, S, F ) QA′ := (Q′, A′, S′, F ′) be two QA-systems. By a
macrostate of a system we understand any non-empty set of its states.
(Macrostates are interpreted as vaguely specified states.)

A simulation of a QA into QA′ is, informally, a triple of “devices” (α, β, γ),
where
¦ α translates every question from Q into a question in Q′,
¦ β realizes back translation: for every question q ∈ Q, it associates a non-
empty subset of Aq with each possible answer a′ ∈ A′

α(q) to the translated

question α(q),
¦ γ interprets every state of QA as a macrostate of QA′: if a question was
put to QA in some state, translated back are all answers to the translated
question in QA′ obtained in any state from the respective macrostate.
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Definition. A simulation of a QA into QA′ is a triple (α, β, γ), where
¦ α is a mapping Q → Q′,
¦ β is a family of mappings βq: A′

α(q) → (P(Aq) \ ∅) with q ∈ Q,
¦ γ is a mapping S → (P(S′) \ ∅)
subject to the following conditions:
¦ β preserves l.u.b.-s of finite compatible subsets of Q,

(then α is isotone with respect to both ← and ⊆),
¦ for all p, q ∈ Q with p ← q, and every a′ ∈ Aα(q),

⋃
(fq

p(a) | a ∈ βq(a′)) =
⋃
(βp(b′) | b′ ∈ f

′α(q)
α(p)(a

′)),
¦ for all p ∈ Q, and every s ∈ S,

fs(p) =
⋃
(βp(a′) | a′ ∈ f ′s′(α(p)) for some s′ ∈ γ(s)).
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Let QA := (Q, A, S, F ) be a simple complete QA-system. Extensions of QA
are constructed like those of an information system.

Let QA+ stand for the standard extension (Q+, At+, S, F+) in which At+ con-
tains all subsets of Q. Such an extension is unique and completely determined
by QA. Recall that extensions of complete QA-systems are complete.

Definition. A QA-system is said to be
¦ essentially incomplete if it can be simulated by no complete QA-system,
¦ representable if it can be simulated by a simple complete QA-system.

Proposition. Not every QA-system is representable.

Problem 4. Are there essentially incomplete QA-systems? If yes, charac-
terise abstractly those that are not.

Problem 5. Characterise abstractly the representable QA-systems.
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5. The previous work

[1] and [2] are early papers, where several ideas of the later ones already
appeared.
Among other things, in [3] discussed are certain formal contexts (without
referring to this concept) similar to those appearing here in connection with
knowledge spaces.
In [4-6] I used another term ”knowledge representation system” rather than
”question answering system” going back to [2]. In [4], KR-systems without
inclusions were treated in terms of category theory. The approach of [5,6]
is not so general, and we use there the language of general algebra (as in
this presentation). However, some improvements to the model of [4] can be
found at the beginning of [6]. Neither in [5] nor [6] inclusion dependencies
are explicitly recognized.
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