ALGEBRAIC MODELS OF QUESTION ANSWERING SYSTEMS

Jānis Cīrulis

Department of Computer Science University of Latvia

jc@lanet.lv

Theory Days at Jõulumäe October 3–5, 2008

OVERWIEV

Background: information systems Some simple models Dependencies and compatibility in information systems

2. Functional-dependency frames Definitions

Examples

Knowledge spaces

- 3. Question answering systems Information functions of a frame QA-systems and their formal contexts
- 4. Simulation

How a QA-system simulates another one

Esentially incomplete QA-systems, and representable QA-systems

5. The previous work

1. Background

Some simple models

• Information systems (Z. Pawlak)

(another names: attribute systems, knowledge representation systems)

Obis a set of objects,Atis a set of attributes of objects, $Val := (Val_a \mid a \in At)$ is a family of sets; $F := (f_o \mid o \in Ob)$ on Atis a family of descriptions (functions on At, where f_o assigns to every a an element of Val_a).

(b) Incomplete: if the descriptions may be not complete,

i.e., if each $f_o(a)$ is a nonempty subset of Val_a .

 $f_a(o)$ could also be a fuzzy subset of Val_a , or a probability distribution on Val_a , e.c.

Another interpretation: a (simple) *question answering system*:

Elements of Ob- states,elements of At- questions,elements of Val_a - possible answers to a question a,descriptions- information functions.

• Formal contexts (R.Wille & B.Ganter)

A formal context is a triple FC := (G, M, I), where

- G is a set of objects (Gegenstände),
- M is a set of possible properties (Merkmale),
- I is a binary incidence relation in $G \times M$.

g I m means "the object g has the property m".

FC induces a Galois connection between $\mathcal{P}(G)$ and $\mathcal{P}(M)$: $A \subseteq G \mapsto A^* := \{m \in M | g I m \text{ for all } g \in A\},\$ $B \subseteq M \mapsto B^* := \{g \in G | g I m \text{ for all } m \in B\}.$

A pair (A, B) is a *concept* of the context if $A^* = A$ and $B^* = B$. Concepts are ordered by

 $(A, B) \leq (A', B') :\equiv A \subseteq A'$ (and $B' \subseteq B$) and form a lattice under this ordering (the *concept lattice* of the context). • Information systems as formal contexts

(Ob, At, Val, F) – an information system.

A *descriptor* is a pair (a, v) with $a \in At$ and $v \in Val_a$. The *information space of* S is the set K of all descriptors. The *formal context of* S is the triple $(Ob, K, | \vdash)$, where $o \mid \vdash (a, v) :\equiv v \in f_o(a)$.

Information system \leftrightarrow formal context of this type.

• The inner logic of an information system

IS := (Ob, At, Val, F) - an information system.

- A pair (a, V) with $a \in Atr$ and $V \subseteq Val_a$ is interpreted as a proposition "the value of a belongs to V".
- P := the set of all propositions.

The *inner logic of IS* is the triple (in fact, a formal context) (Ob, P, \models) , where $o \models (a, V) :\equiv f_o(a) \subseteq V$ ("the proposition (a, V) is true of o").

Information system \leftrightarrow formal context of this type.

• Many-valued contexts (R.Wille & B.Ganter)

A many-valued context is a quadruple (G, M, W, I), where

- G is a set of objects,
- M is a set of attributes,
- W is a set of values (Werte),
- I is a ternary incidence relation in $G \times M \times W$ such that $(g, m, w) \in I$ and $(g, m, w) \in I$ implies w = w'.

 $(g, m, w) \in I$ means "the attribute m has a value w for the object g".

Many-valued context \leftrightarrow complete information system.

• Chu spaces (W.Pratt)

K – a set of values (or an alphabet). A *Chu space over* K is a triple (X, r, A), where

- X is a set of points
- A is a set of states
- r is a function of type $X \times A \to K$.

States \leftrightarrow objects, Points \leftrightarrow attributes, Chu space \leftrightarrow complete information system with a common value set K for all attributes.

Dependencies and compatibility in information systems

Let IS := (Ob, At, Val, F) be a complete information system.

Drawbacks?

 \bullet Attributes in IS are formally independent, for descriptions in F may be quite arbitrary.

Let $A, B \subseteq At$ (*complex* attributes).

There is an *inclusion dependency* between A and B iff $A \subseteq B$.

A functionally depends on B if, for every object, the value of every attribute in A turns out to be uniquely determined by values of attributes in B:

 $a \leftarrow B :\equiv$ for all $o_1, o_2 \in Ob$, $f_{o_1}(a) = f_{o_2}(a)$ whenever $f_{o_1}(b) = f_{o_2}(b)$ for every $b \in B$. $A \leftarrow B :\equiv a \leftarrow B$ for all $a \in A$.

Dependencies a posteriori.

A complex attribute A should have a set of complex values:

 $Val_A := \prod (A_a \mid a \in A)$

i.e., Val_A is the set of all functions φ on A such that $\varphi(a) \in Val_a$ for all $a \in A$.

Descriptions should be extended to complex attributes:

 $f_o^+(A) \in Val_A, f_o^+(A)(a) := f_o(a).$

Proposition. If $A \leftarrow B$, then there is a function $d_A^B : Val_B \rightarrow Val_A$ which realises this dependency:

for every object o, $f_o^+(A) = d_A^B(f_o^+(B))$.

This function is unique only if the sets Val_a do not contain "unnecessary" elements:

for every $a \in At$, $Val_a = \{f_o(a) \mid o \in Ob\}$.

In particular, if $A \subseteq B$, then

- $d_A^B(\varphi) = \varphi | A$,
- the function d_A^B is surjective and

is actually the projection of the set Val_B onto A.

• It may happen that not all attributes permit simultaneous determination of their values.

Suppose that given is a symmetric and irreflexive *rejection* relation on At.

A complex attribute $A \subseteq At$ is said to be *coherent* if no attributes from A reject each other.

Two coherent complex attributes A and B are said to be *compatible* if A and B have a common coherent superset. This is the case if and only if the union $A \cup B$ is coherent.

Proposition. The union of any set of parts of a coherent complex attribute is coherent,

i.e., the coherent complex attributes form a bounded complete poset under set inclusion.

• Summing up: an extension of an information system.

IS := (Ob, At, Val, F) - a complete information system. Put

- At^+ a set of coherent complex attributes together with inclusion and dependence relations,
- Val^+ the family of all complex value sets Val_A together with the family of all dependency functions d_A^B ,
- F^+ the set of all extended descriptions f_o^+ .

Then $IS^+ := (Ob, At^+, Val^+, F^+)$ is an information system, called an *extension of S*.

Problem 0. Characterise abstractly the class of structures isomorphic to such extensions.

This was the motivation for constructions in the next section.

"Question-answer" interpretation again:

Notion:	Notation:
states instead of objects questions instead of coherent complex attributes answers instead of complex values information functions instead of descriptions	$ \begin{vmatrix} S & \text{instead of } Ob, \\ Q & \text{instead of } At^+, \\ A & \text{instead of } Val^+, \\ F \end{vmatrix} $

2. Functional-dependency frames

Definition. An *fd-structure* is a pair FD := (Q, A), where

- Q is a preordered set (Q, \leftarrow) (the scheme of the frame),
- A is a system (a *model* of the scheme) consisting of
 - a family of sets $(A_q \mid q \in Q)$, and
 - a family of mappings $d_p^q \colon A_q \to A_p$ with $p,q \in Q, p \leftarrow q$ such that

 $d_p^p(a) = a$, $d_p^q d_q^r(c) = d_p^r(c)$.

A subset Q' of Q is *compatible* if it is bounded from above:

i.e., if there is $r \in Q$ such that $p \leftarrow r$ for every $p \in Q'$.

The set Q is *[finitely] bounded complete* if every [finite] (possibly, empty) compatible subset of Q has a l.u.b.

Roughly, a l.u.b. of a compatible subset $Q' \subseteq Q$ represents the "complex question" Q' as a one element of Q.

Equivalently, Q is bounded complete iff every nonempty subset of Q (in particular, Q itself) has a g.l.b.

 ${\cal Q}$ is finitely bounded complete iff

- $p \ _{\rm O}$ q always implies that $\{p,q\}$ has a l.u.b., and
- Q has a g.l.b.

We shall assume that all finitely bounded complete preordered sets considered below satisfy also condition

• any fiinite nonempty subset of Q has a g.l.b.

Definition. An fd-structure (Q, A) is said to be an *fd-frame* if

- its scheme Q is finitely bounded complete, and
- $\ensuremath{\cdot}$ the model A of the scheme satisfies the condition
 - if r is a l.u.b of a finite subset Q' of Q, and
 - if $a, b \in A_r$,

then $d_p^r(a) = d_p^r(b)$ for all $p \in Q$ implies a = b.

The later condition garanties that an answer to the question r is completely detemined by the answers to its "components" from Q'.

Dependencies apriori

Definition. We say that an fd-frame is a *frame with inclusions* if its scheme Q is equipped with an order relation \subseteq (*inclusion*, or *part_of* relation) whose interaction with \leftarrow is subject to the following axioms:

• if
$$p \subseteq q$$
, then $p \leftarrow q$,

- if Q^\prime is a finite compatible subset of Q in which

$$p \leftarrow q$$
 only if $p \subseteq q$,

then Q' has the l.u.b. with respect to \subseteq ,

• every mapping d_p^q is surjective whenever $p \subseteq q$.

In particular, such a poset (Q, \subseteq) is a finitely bounded complete also with respect to \subseteq :

- if $p \downarrow q$, then $p \cup q$ exists in Q',
- any two elements p,q of Q' have the meet $p\cap q$ in Q',
- there is the \subseteq -least element \emptyset in Q.

Proposition. The Amstrong axioms for functional dependencies

• if
$$p \subseteq q$$
, then $p \leftarrow q$,
• if $p \leftarrow r, q \leftarrow r, p \ _{\circ} q$, then $p \cup q \leftarrow r$,
• if $p \leftarrow q, q \leftarrow r$, then $p \leftarrow r$
hold in $(Q, \leftarrow, \subseteq)$.

Examples

E1: Simple frames Suppose that \boldsymbol{Q} is a flat domain (i.e., a poset $(Q, \leq, 0)$ with the least element 0, in which every chain is of length < 2), A is a family $(A_p \mid p \in Q)$ of non-empty sets A_0 is a singleton. Put $p \leftarrow q :\equiv p \subseteq q :\equiv p \leq q$, $d_p^q := \begin{cases} \text{the identity function on } A_q \text{ if } p = q, \\ \text{the single function } A_q \to A_0 \text{ if } p = 0. \end{cases}$

In this way, Q is converted into a trivial scheme with inclusions, and A, in its model.

So, (Q, A) is an inclusion frame.

We call such frames *simple*.

E2: Frames from information systems

Suppose that IS := ((Ob, At, Val, F) is an information system.

(At, Val) is a simple frame "without bottom"; there is a one-to-one correspondence between pairs of kind (At, Val)and simple frames.

In any extension of IS, the pair (At^+, Val^+) is a frame with inclusions.

E3: Frames in relational databases

Initially At, Val - as in an information system.

 At^+

 Val_A

 \leftarrow together

 $[d^B_A \text{ with } A \subseteq B]$

 \subseteq

```
is the set of finite subsets of At,
                            (relational types)
                        is the set of all rows of type A,
a subset of Val_A
                        is a relation with attributes in A,
                        is the ordinary set inclusion,
                        is given as a kind of constraints,
   with functions d_A^B
                           (sintactically and semantically),
                        is a the projection of Val_B onto A].
```

E4: Frames from automata

Consider an automaton (X, Y, Z, λ, μ) , where

X	is the input alphabet,
Y	is the output alphabet,
Z	is the set of states,
$\lambda \colon Z \times X \to Z$	is the transition function,
$\mu : Z \times X \to Y$	is the output function.

Set

Set Q := X^* , $p \subseteq q$:= p is a prefix of q, $p \leftarrow q$:= $p \subseteq q$, A_p := $Y^{|p|}$, where |p| is the length of p, $d_p^q: A_q \to A_p$:= the function which takes every word from A_q into its prefix of length |p|.

Then (Q, A) is an inclusion frame and two questions are compatible if and only if they are comparable.

Let FD := (Q, V) be a frame.

Definition. An *information piece* in this frame is any pair (q, a) with $q \in Q, a \in A_q$. The set of all information pieces is called the *knowledge space* of *FD*.

An information piece (p, a) is said to be

• entailed by (q, b) (in symbols, $(p, a) \succeq (q, b)$) if

$$p \leftarrow q$$
 and $a = d_p^q(b)$,

["Whenever q has the answer b, p has the answer a"]

• a restriction of (q, b) (in symbols, $(p, a) \subseteq (q, b)$) if $p \subseteq q$ and $a = d_p^q(b)$.

An *abstract knowledge space* is a triple (K, \succeq, \subseteq) that is isomorphic to the knowledge space of some frame with inclusions.

Theorem 1. Up to isomorphisms, there is one-to-one correspondence between frames with inclusions and abstract knowledge spaces.

[Axiomatic description of abstract knowledge spaces.]

3. Question answering systems

FD := (Q, A) - an fd-structure with inclusions.

Definition. An *information function* in FD is a function f on Q that assigns a nonempty subset of A_p to every $p \in Q$ so that

• if $p \leftarrow q$, then $f(p) = \{ d_p^q(b) \colon b \in f(q) \} = d_p^q(f(q))$

(i.e., if p depends on q, then f(p) contains just the answers that can be calculated out from those in f(q)),

if r is a l.u.b of a finite subset Q' ⊆ Q with respect to ←, then f(r) := {c ∈ A_r | d^r_p(c) ∈ f(p) for all p ∈ Q'} (i.e., f(r) contains just the answers that are combined from those belonging to the "components" of r).

An information function f is

- complete if every f(p) is a singleton,
- proper if there is no other description f' with $f'(p) \subseteq f(p)$ for all $p \in Q$,
- trivial, if $f(p) = A_p$.

Every complete description is proper; the converse may not hold true.

Example: A frame which has only the trivial information function.

Let $Q := \{p1, p2, q1, q2\}, \text{ and}$ for $i = 1, 2, A_{pi} := \{a_{i1}, a_{i2}\}, A_{qi} := \{b_{i1}, b_{i2}\}.$ Assume that $p1, p2 \subseteq q1, q2, \text{ and } \leftarrow \text{ coincides with } \subseteq.$ Set $d_{pi}^{q1}(b_{1j}) = a_{ij}, \quad d_{p1}^{q2}(b_{2j}) = a_{1j},$ $d_{p2}^{q2}(b_{21}) = a_{22}, \quad d_{p2}^{q2}(b_{22}) = a_{21}.$

The trivial information function is proper in this frame, but, clearly, not complete.

Definition. A *question answering system* is a quadruple (Q, A, S, F), where

(Q, A)	is an fd-frame with inclusions,
S	is a non-empty set,
$F := (f_s \mid s \in S)$	is a family of information functions.

Elements of

of Q are called *questions*, those of A_q , answers to the question q.

A QA-system is

complete if all of its information functions are complete, *simple* if its frame is simple.

Simple QA-system \leftrightarrow information system.

Definition. The *formal context of a QA-system QA* := (Q, A, S, F) is the triple $(S, K, | \vdash)$, where • *K* is the knowledge space of *QA*, and • $| \vdash$ is a binary relation in $S \times K$ such that

 $s \models (p, a) :\equiv a \in f_s(p).$

A *QA-context* is a formal context of some QA-system.

A formal context $(S, K, | \vdash)$, where K is an abstract knowledge space, is said to be an *abstract QA-context* if it is isomorphic to some QA-context. Something like Kripke structures, with S the possible word space, and K the algebra of propositions.

Theorem 2. Up to isomorphisms, there is one-to-one correspondence between QA-systems and abstract QA-contexts.

Problem 1. Characterise the class of abstract QA-contexts.

The concept lattice of the formal context of a QA-system is said to be the *concept lattice of this system*.

Problem 2. Characterise the class of concept lattices of QA-systems. Have concept lattices of complete QA-systems any distinctive property?

Problem 3. Two QA-systems may be considered as equivalent if their concept lattices are isomorphic. Characterise the class of QA-systems which are equivalent to a complete QA-system.

4. Simulation

In this section we assume that all QA-systems are *faithful* in the sense that, for every q, $A_q = \bigcup (f_s(q) \mid s \in S)$.

Let QA := (Q, A, S, F) QA' := (Q', A', S', F') be two QA-systems. By a *macrostate* of a system we understand any non-empty set of its states. (Macrostates are interpreted as vaguely specified states.)

A simulation of a QA into QA' is, informally, a triple of "devices" $(\alpha,\beta,\gamma),$ where

• α translates every question from Q into a question in Q',

• β realizes back translation: for every question $q \in Q$, it associates a nonempty subset of A_q with each possible answer $a' \in A'_{\alpha(q)}$ to the translated question $\alpha(q)$,

• γ interprets every state of QA as a macrostate of QA': if a question was put to QA in some state, translated back are all answers to the translated question in QA' obtained in any state from the respective macrostate.

Definition. A *simulation* of a QA into QA' is a triple (α, β, γ) , where

- α is a mapping $Q \rightarrow Q'$,
- β is a family of mappings $\beta_q: A'_{\alpha(q)} \to (\mathcal{P}(A_q) \setminus \emptyset)$ with $q \in Q$,
- γ is a mapping $S \to (\mathcal{P}(S') \setminus \emptyset)$

subject to the following conditions:

- β preserves l.u.b.-s of finite compatible subsets of Q, (then α is isotone with respect to both \leftarrow and \subseteq),
- for all $p,q \in Q$ with $p \leftarrow q$, and every $a' \in A_{\alpha(q)}$,

$$\bigcup (f_p^q(a) \mid a \in \beta_{q(a')}) = \bigcup (\beta_p(b') \mid b' \in f'^{\alpha(q)}_{\alpha(p)}(a')),$$

. .

• for all $p \in Q$, and every $s \in S$,

$$f_s(p) = \bigcup (\beta_p(a') \mid a' \in f'_{s'}(\alpha(p)) \text{ for some } s' \in \gamma(s)).$$

Let QA := (Q, A, S, F) be a simple complete QA-system. Extensions of QA are constructed like those of an information system.

Let QA^+ stand for the *standard* extension (Q^+, At^+, S, F^+) in which At^+ contains all subsets of Q. Such an extension is unique and completely determined by QA. Recall that extensions of complete QA-systems are complete.

Definition. A QA-system is said to be

- essentially incomplete if it can be simulated by no complete QA-system,
- *representable* if it can be simulated by a simple complete QA-system.

Proposition. Not every QA-system is representable.

Problem 4. Are there essentially incomplete QA-systems? If yes, characterise abstractly those that are not.

Problem 5. Characterise abstractly the representable QA-systems.

5. The previous work

[1] and [2] are early papers, where several ideas of the later ones already appeared.

Among other things, in [3] discussed are certain formal contexts (without referring to this concept) similar to those appearing here in connection with knowledge spaces.

In [4-6] I used another term "knowledge representation system" rather than "question answering system" going back to [2]. In [4], KR-systems without inclusions were treated in terms of category theory. The approach of [5,6] is not so general, and we use there the language of general algebra (as in this presentation). However, some improvements to the model of [4] can be found at the beginning of [6]. Neither in [5] nor [6] inclusion dependencies are explicitly recognized.

[1] Tsirulis Ya.P. Variations on the theme of quantum logic (Russian). In: Algebra i Diskretnaya Matematika, Latvian State Univ., Riga, 1984, 146–158.

[2] Cīrulis J. Logic of indeterminancy". Abstracts of the 8-th Congr. "Logic, Methodol. and Philos. Sci." (Moscow, 1987), Vol. 5, P. 1, 246–248.

[3] Cīrulis J. An algebraic approach of knowledge representation. In: MFCS'99, LNCS **1672** (1999), 299–309.

[4] Cīrulis J. Are there essentially incomplete knowledge representation systems? In: FCT'01, LNCS **2138** (2001), 94–105.

[5] Cīrulis J. *Knowledge representation in extended Pawlak's information systems: algebraic aspects.* In: FOIKS'02, LNCS **2284** (2002), 250–267.

[6] Cīrulis J. *Knowledge representation systems and skew nearlattices.* In.: Contrib. Gen. Algebra **14**, Verl. Johannes Hein, Klagenfurt, 2004, 43–51.